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ABSTRACT

It is well-known that the conjectured SL(2, Z) invariance of type IIB string theory in
ten dimensions also persists in lower dimensions when the theory is compactified on tori.
By making use of this recent observation, we construct an infinite family of magnetically
charged black hole solutions of type II superstring theory in four space-time dimensions.
These solutions are characterized by two relatively prime integers corresponding to the
magnetic charges associated with the two gauge fields (from NS-NS and R-R sectors) of
the theory and form an SL(2, Z) multiplet. In the extremal limit these solutions are
stable as they are prevented from decaying into black holes of lower masses by a ‘mass

gap’ equation.
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Black hole solutions in string theory [1] provide a very interesting arena to address some
of the long-standing issues involving thermodynamics of black holes, their evaporation and
information loss paradox[2]. It is well-known that string theories admit a rich variety of
static spherically symmetric as well as rotating black hole solutions in various dimensions.
For example, spherically symmetric black hole solutions in string theory having purely
magnetic, purely electric and both charges (dyonic black holes) have been constructed
before [3-6]. Furthermore, rotating black hole solutions containing electric, magnetic and
both charges have been discussed in refs.[7,8]. Since black holes have profound conceptual
implications in our understanding of the nature of general relativity in the quantum
domain and since string theory is believed to lead to a finite, consistent theory of quantum
gravity, it is very important to construct various kinds of black hole solutions in string
theory and study their properties. As black holes are intrinsically non-perturbative, it
is in general difficult to study their properties in the perturbative framework of string
theory. However, there has been a spectacular advancement in our understanding of the
non-perturbative behavior of string theory in recent times. Subsequently, Strominger and
Vafa [9] constructed a special class of black hole solutions in type II string theory in
D = 5 and reproduced the Bekenstein-Hawking area entropy relation through a D-brane
description [10] of such black holes and by counting the number of microstates in this
framework. Black holes in that case saturate the BPS condition in the extremal limit and
carry an electric as well as an axionic charge. Further developments along this line could
be found in refs.[J[11,12].

Recently, we have shown [13,14] that the low energy effective action of type IIB string
theory has a manifest SL(2, R) invariance in lower dimensions when compactified on tori as
a consequence of the corresponding symmetry in ten dimensions [15-18]. This symmetry
is non-perturbative as it transforms the string coupling constant in a non-trivial way. A
discrete subgroup of this SL(2, R) group has been conjectured to be an exact symmetry
of the quantum type IIB string theory. A strong evidence in favor of this conjecture has
been given in ref.[19], when we showed that there exist SL(2, Z) multiplets of macroscopic
string-like solutions in type II string theories in D < 10. The tensions and the charges
of these BPS saturated string-like solutions have been shown to be given by SL(2, Z)
covariant expressions.

In this paper, we will construct another class of black hole solution in D = 4 type II
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string theory. By making use of this SL(2, R) invariance of the lower dimensional type
IT string theory, we construct an SL(2, Z) multiplet of black hole solutions in D = 4.
First, we construct a magnetically charged black hole solution, similar to the one ob-
tained by Garfinkle, Horowitz and Strominger (GHS) [4]. This solution arises due to the
presence of an Abelian gauge field in the NS-NS sector of the theory in four dimensions
as a consequence of compactification of the corresponding antisymmetric tensor field in
the ten dimensional action. Next, we implement the SL(2, R) transformations so that the
resulting solution carries both NS-NS and R-R charges]] The two Abelian gauge fields
correspond to the dimensionally reduced antisymmetric tensor fields coming from the
NS-NS and R-R sectors of type II string theory. As the magnetic charges are quantized,
the final solution will, therefore, be characterized by the two integers corresponding to
the magnetic charges associated with the two gauge fields of NS-NS and R-R sectors.
In the extremal case, we will show that both the charges and the masses of such black
holes are given by SL(2, Z) covariant expressions. Since in the extremal limit the mag-
netically charged black holes are BPS saturated, the SL(2, Z) covariant results give a
strong evidence in favor of the conjectured SL(2, Z) invariance of the quantum theory.
We mention in passing that type II string theory in four dimensions has been conjectured
to possess a much bigger non-compact global symmetry group E7(7)(Z) [20,16], known as
the U-duality group [16], which contains both the S-duality [21] group SL(2, Z) and the
T-duality [22] group O(6, 6; Z) as the subgroup. But we will restrict ourselves only to a
part of this bigger symmetry group, namely, the S-duality group. Then we will show that
these extremal black holes are stable when they are characterized by two relatively prime
integers. In that case, as common to BPS saturated states, the masses of the black holes
satisfy a triangle inequality which prevents the black holes to decay into black holes of
lower masses.

Let us recapitulate how the four dimensional magnetically charged black hole solution
of GHS [4] arises from four dimensional effective action.

The complete low energy four dimensional effective action of interest to us is

S = / d*z/—Ge (R +40,,00" ¢ + %tr 9,M1o"M

1 1 _ 0 4

_EHMVPHWJP - ZFHVM Fﬂu) (1)
'In the recent discussions on the microscopic origin of the Bekenstein-Hawking area entropy relation

[9,11,12], black holes with R-R charges have been considered and this is crucial to have D-brane description

of the black holes.




where G = (det G,,), G, being the four dimensional metric in the string frame, ¢ is
the dilaton field in D = 4, R is the scalar curvature corresponding to the metric G, .
This four dimensional action is of generic form which can be obtained through toroidal
compactification on T of a ten dimensional string effective action. For example, if we start
from the ten dimensional heterotic string, the matrix M which contains the scalar fields,

0(22,6) ) and F,, corresponds to 28 Abelian gauge field strengths

parametrizes the coset, 5766

[23]. On the other hand if we start from ten dimensional action of type II theories, then
the reduced action (1) can be identified with the one that is obtained by dimensional
reductions of the NS-NS sector and now there will be only 12 gauge fields (6 from the
metric and 6 from antisymmetric tensor) and M will contain scalars parametrizing the
coset %. The superscript ‘T” denotes the transpose of a matrix. Definitions of the
field strengths are

f,uz/ - a,uAu — 81/./4“
H,uz/p = a,uByp + Agnf,,p + cyc. in urp (2)

where A, is a 28 dimensional vector field containing the 28 gauge fields coming from
the dimensional reduction of the ten dimensional metric, antisymmetric tensor field and
U(1)!¢ gauge fields in the case of heterotic string.

In order to obtain magnetically charged black hole solution, we choose M to be con-
stant and put H,,, = 0 and set all the gauge fields except one (denoted as Af})) to zero,

then the action (1) reduces in the Einstein frame to,
_ 1 )
S = / d4;m/—g <R — Qaugsaqu _ Ze 2¢Fﬁ)F(l)“ > (3)

where the Einstein metric is related to the string metric by g, = ¢ ?*G,,. R now
denotes the scalar curvature with respect to the Einstein metric g,,. Note that this
action is precisely the one considered by GHS [4]. In their case, the gauge field AS) came
from one of the U(1)'® gauge fields in ten dimensions, whereas, we choose A/(}) to come
from the dimensional reduction of the ten dimensional antisymmetric tensor field.

Our conventions and notations are as follows: the signature of the tangent space
Lorentz metric is (—, +, +, ...). The covariant derivative, connection and the Riemann
curvature tensor are:

vV, = 90,V, -1 W
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1
Fuu)\ = §g,up (akgpu + &Jgp)\ - 8/)91/)\) (4)

RHuAp = 8)\F“Vp - 8PFHV)\ + Fu)\orgup - Fupcrrgu)\

. L o o
where V), is any vector. The scalar curvature is given as R = g"' R, = g"' R’ .

The equations of motion derived from the action (3) are as given by

V(e Py = 0 (5)
1
v2¢ + §6_2¢Fl§111)F(1) W (6)
1 1
RNV — 28“¢8V¢ + 56_2¢F/5§\)FV(1) A gglu,ye_zd)F)S;)F(l) Ap (7)

A static spherically symmetric black hole solution of these equations can be obtained from

the following ansatz of the space-time metric

ds* = —f2dt* + f2dr* + R*dQ
= —f2d* + f72dr® + R? (67 + sin® 6y (8)

and the Maxwell field
FQ%) = Qsind (9)

We denote the coordinates ¢, r, 8 and ¢ by 0, 1, 2 and 3 respectively. f, R and ¢ are
functions of the radial coordinate r only. Asymptotically, as r — oo, f — 1, R — r
and ¢ — ¢y, otherwise the functions are arbitrary. We also note from (9) that since
Fz(é) is the only non-zero component of the Maxwell field, it is magnetic and @) is the
corresponding charge defined as @ = ;- [ F(. It can be easily checked from (8) and (9)
that F ;E,{)F M =202 /R*. Also, the only non-zero components of the connection we find

from (4) and (8) are

Fo(n = fTI

My = P, Ty = _J% Iy = —f’RR, T'y = —f°RR'sin’0
I?,, = —sinfcosd, I?, = % (10)
M, = % and T%,, = cotf

Here ‘prime’ denotes the derivative with respect to the radial coordinate r. Note that

Eq.(5) is automatically satisfied using above information and then from Eq.(7) we arrive
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at the relations,

_ 22

Fao = ‘e ™ = V% (11)
Q* —2¢ 272

R22 = —4R26 = —qub (12)

where we have made use of Eq.(6) to write the last expressions in (11) and (12). By
comparing (11) and (12) we have,

2

Ryy = %Rm (13)

Furthermore, Ry and Rs; can also be expressed in terms of the functions f and R,

appearing in the metric (8), through the definition of Ricci tensor (4) as follows,
R/
Ry = f? (ff//+(f/)2+2fflﬁ> (14)
Ry = 1—(f°RR) (15)

where we have made use of (10). Substituting (14) and (15) in (13), we obtain an equation

involving the two unknown functions f and R as,

(1°R?)" =2 (16)
Now using (11), (14) and the expression for V2¢ = f2¢" + 2f f'¢/ + 2f>£ ¢/, we obtain
another equation involving f, R and the dilaton ¢ as,

(f21j;X/>/:0 (17)

where, X = f2e?. Eqs.(16) and (17) can now be easily solved if we impose the asymptotic

limit as r — oo, f — 1 and R — r. The solution is:
£ = (1+2)
-
2 2 b
R*(r) = r (1 + ;) (18)

b
e = 720 (1 + —)
r

with ab = %Qze_zd’o. Here a, b are integration constants and to find ab, we have used
Eq.(6). The integration constant ‘a’ can be identified from the weak field limit]] as —2M,

TWe have set the Newton’s constant G = 1.




where M is the mass of the black hole and therefore b = —%6_2%, @ being the magnetic
charge of the black hole defined earlier. The background field configurations, therefore,

take the following form:

2M 2MN\ ! Q?
2 _ = 2 il 2 2 24y
ds (1 - )dt +(1 : ) dr? + <1 e )dQ (19)
2 2 2\2 2
-2 _  _,—2¢ Q —2¢ =29 R =29 (1—f ) R
o °<1—m6 ) T VR
F' = Qsino (21)

The solution may be written in a more symmetric fashion by introducing the dilaton
charge D = = [ d*S#V ¢ = B0 ge = _%6—2% as,

47
2M 2MN\ 1 2|D
d82 = _<1_—)dt2+<1— > d?”2—|—7”2 <1_ ‘ ‘)dQ
T r r
2|D
e = g% <1 _2 |> (22)
r
Now with the coordinate transformation of the form:
0’ o= r? (1 - —2‘7)‘) , for r>2|D|
r
= —r? <1 — @> , for r <2|D| (23)
T

which implies, r = |D| 4+ /D2 + p?, for r > 2|D|, r = |D| + /D% — p2, for |D| < r < 2|D|
and r = |D| — /D? — p?, for r < |D|, it can be easily checked that (22) represents a black

hole with an event horizon located at
1
p=2[M (M — |DJ)]> (24)

for M > |D|. However, for M < |D|, there is no event horizon and consequently the space-
time singularity at r = 0 is directly observable representing a “naked” singularity. Thus
the transition between the black hole and the “naked” singularity occurs at M = |D| =

Q2
8M

e~2%0 or Q? = 8M?%e??. The transition point is known as the extremal limit. Note from
(22) that at the extremal limit the area of the event horizon vanishes causing the surface
to be singular. Thus the black hole solution of GHS with magnetic charge was obtained
for a special background configuration of four dimensional heterotic string theory and
the one we presented exactly coincides with GHS; however, the four dimensional action

is the NS-NS sector of type II theory as remarked earlier. Now, we proceed to discuss
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compactification of type IIB theory to four dimensions with relevant massless fields in
both NS-NS and R-R sector.

Let us recall that the massless spectrum of the type IIB string theory in the bosonic
sector contains a graviton, a dilaton and an antisymmetric tensor field as NS-NS sector
states, whereas, in the R-R sector it contains another scalar, another antisymmetric tensor
field and a four-form gauge field whose field-strength is self-dual. It is well known that
a covariant action for self dual five index antisymmetric tensor fields in ten dimensions
does not exist [24] and we set this field strength to zero, since this field is of no relevance
to us in what follows. Therefore, a consistent, covariant action can be written [17] from
which the type IIB supergravity equations of motion can be derived. We have studied
the dimensional reduction of this action on a (10 — D) dimensional torus in ref.[13,14].
When D = 4, the corresponding four dimensional type IIB string effective action in the

Einstein frame takes the following form:
_ 1 1 7 - 1
5y = / A2/ =g [R 9 MO M+ <0, Tog R 0g A+ 20, 9"

1 1 -
_ngnF(g)mF(g)W’n - E(Ay/zgmpgnqaulg%n/\/l&“lgpq (25)

jn%

1 X m, v I v
_Z(A)1/2g prumMHup - E(A)l/zng)\MHu g
Here g = (det g,,,), where g, is the four dimensional Einstein metric and R is the scalar
curvature associated with g,,,. M is an SL(2, R) matrix defined as
2 —2¢ -
ME<X+6 X>e¢ (26)
X 1

where y is the R-R scalar and ¢ = ¢+ % log A, ¢ being the NS-NS scalar, the four dimen-
sional dilaton and A? = (det G,ny), Gmn being the scalars coming from the dimensional
reduction of the ten dimensional string metric. g, = € Gy, and (A)? = (det gon)-

E@m = 9,A®m — 8,,A;(f’)m, where Aff’)m is the gauge field resulting from the dimen-

N2
(1) ,
sional reduction of the string metric. B,,, = g’(’;’)‘ , where BY) ~ for i = 1,2
are the moduli coming from the dimensional reduction of the NS-NS and R-R anti-
H® . . .
symmetric tensor fields. H,, ., = < Hg?’:): , where H(), = F{i), — B F&™ and
F L(Lf)m = 9,A0 — a,,Aszn, with Aff)m being the gauge fields resulting from the dimen-

sional reduction of the NS-NS and R-R sector antisymmetric tensor fields. Finally,

H(2) MY

) . . ,
Hyun = ( s ), HY = ((%B,EZ/\) - Fﬁ)mAE\ZZﬂ + cyc. in ,ul/)\). The action (25) can
2N



be easily seen to be invariant under the following global SL(2, R) transformation [13,14]:

M = AMAT, B — (AT By

Al _ BY _
<A52%1> = Am — (A 1)TAum? (Bﬁ?)) =B, — (A 1)TBW
9w — s Gun — Gmn»  and AP o ABMm (27)
where A = CCL 2 ), is the SL(2, R) transformation matrix and a, b, ¢ and d are

constants satisfying ad — bc = 1.

We shall consider a truncated action, rather than the full action (25). Let us, from
now on, set Hﬁ?A =0, Aff’)m =0, Gn = O, A =1, BY =0 and all the components
of A;(},)n and A;(f,)n to zero except one (we call the non-zero components of the gauge fields
as A() and A[?) with the corresponding field-strength () = 9,A{) — 9, A(), then the

action (25) reduces to:
1 1 . _
/ d*zv/—g {R + Ztr DM M + gau log Ao log A

(A)%f;Mﬁﬂ (28)

1 1
- p o mn -
+48Hgmn8 g 1

Here M is as given in (26) with ¢ replaced by ¢ since we have set A = 1. Fuw

Il
/N
3.3
INX =
N—————

The action (28) is invariant under the global SL(2, R) transformation:

(1)
M — AMAT, (i@)) = A, —» (AHTA,
o
9w — Gw  ad  Gmn = Gmn (29)

Note that type IIB string effective action (28) reduces precisely to the action (3) considered
by GHS, when the R-R fields are set to zero. We would like to exploit this SL(2, R)
invariance to rotate the magnetically charged black hole solution of GHS to a more general
black hole solution of type II string theory in D = 4. In order to describe the complete
black hole solution, we have to specify the asymptotic values of the dilaton ¢ and R-R
scalar y. Under the transformation (29), the complex scalar field A = x +ie™® and the

gauge field Aff) transform as follows,

aX+b
SRS W (30)
AP — Al — Al
AP = —pAWY 4 qAP (31)

8



Note from (9) that the only non-zero component of the field-strength F}; (1) is Fz(:? = (@sinf
and so, upto the gauge transformation the only non-zero component of the gauge field Af})
is Agl) = —(@Q cosf. Let us first construct the black hole solution for the simplest choice
of Ao =i (i.e. for ¢y = xo = 0), where the subscript ‘zero’ represent the asymptotic value
of scalars in M and this black hole carries only NS-NS charge. Here ) can be argued
to be quantized in some basic units. Although the actions (25) and (28) are invariant
under SL(2,R) transformations, in the quantized theory, the remnant, robust symmetry is
expected to be SL(2,Z) and elements of A are integers satisfying the constraint det A = 1.
Thus starting from a black hole with a given ) and Ay = i, we can obtain a black hole

which carries both type of charges. The relevant transformation matrix has the following

yE+ag \ 20

where ¢; and ¢y are two integers and still A\g = i. Note here that we have used the fact
1

Q¥
QW : : L
A (2) | eventhough the gauge fields themselves transform as given in (29). This is in

form:

that the charges ) associated with the gauge fields Af}) and Aff) transform as

contrary to the usual Maxwell theory where both the gauge fields and the charges should
transform in the same way. This difference can be understood by looking at the gauge

field kinetic term in our action (28). The equation of motion in this case has the form
Y, (MF) = g (33)

It is clear from (33) that the charges would transform contragradiently with respect to
the gauge fields under the SL(2, Z) transformation [18] as happened in our case. Once we
have derived the form of A, we can easily calculate the gauge field components and the

complex scalar from (31) and (30) as follows:

AV = —gQcos (34)

iR (11— f?) =2 M

iR (1 — f2)+2qM

 ae[R2(- - 4M2} +2iMR (1 - %) (¢ + ) 35)
4 M? + g3 R? (1 — f2)°

We note from (35) that asymptotically R (1 — f?) — 2M and therfore A — i as r — oo.

A =

Let us now generalize our construction for an arbitrary vacuum modulus Ag. In this

case we replace the charge () with an arbitrary value a(q, 4,) = 1(512 0) Q Alf 1) will be

9



determined later. We take the SL(2, R) transformation matrix as
—¢0/2 $0/2 .
B B e Xo€ cosa —sina

A=Ay = < 0 e0/2 ) ( sina cosa )
< e~ %0 CoS & + Xo sina —e % sina + o cos a ) o0/ (36)

sin «v cos «
Here A, is the most general SL(2, R) matrix which preserves the vacuum modulus Ay = i
and A; is the SL(2, R) matrix which transforms it to an arbitrary value A = A¢. « is
an arbitrary parameter which will be fixed from the charge quantization condition. Now
since we have A, we can find the magnetic charges associated with the gauge fields Agl)
and Agz) as

Q(l) — (e_¢0/2 coso + Xoe Sll’l a) A(lh#lz Q
QB = e?/%gin al 12 )@ (37)

(91,92

Using the charge quantization condition, we get from (37),

Sin o = _¢O/2A qi/q22
cosoy = €¢O/2 ((h - q2X0) A(_qiv/;z) (38)

where ¢, g2 are integers. A, 4) can be evaluated if we use sin? a4 cos? o = 1, as follows,

Ay = €@+ (1 — qaxo)’ e

= (@1, 2)M;! (“) (39)

q2

where M, = 0 X 1 e?. We note that the expression for A, 4) is SL(2,
0
1/2

Z) invariant and therfore the charges of the black holes a (g, 4,) = A/, @ are also given
by SL(2, Z) covariant expressions. With the A in (36), we write below the transformed

gauge fields,

AP = =7 (g1 — g2x0) Q cos B
Aéz) = —e % (qQ|)\|2 - quo) Q cosf (40)

which can be written compactly as,

A(l) - q
( Azz) ) = -M;! < q; )Qcos@ (41)

10



Also, the value of the transformed complex scalar field is:
iqre” R (1 — f?) + 2M (q1x0 — ¢2|Mo]?)
igee= R (1 — f2) +2M (1 — g2X0)
AM2e X0 (g g0) + Qugoe 2 (R2 (1= £2)" = 4AM?) +i2M R (1 = f2) e 20 Ay, )
AM? (g1 — qaxo)” + q3e~20 R2 (1 — f2)°

(42)

It can be checked that asymptotically as r — oo, R(1 — f2) — 2M and so, A\ — X¢. From

(42) we obtain
2 _
AMPR? (1= f2) e o2 (43)
3
[4M2 (a1 — 42x0)” + gBe 7 R2 (1 — f2)2}

So, starting from the magnetically charged black hole solution of GHS, we have con-

e 2 =

structed an SL(2, Z) multiplet of magnetically charged black hole solution of type II
string theory given by the field configurations (19) and (40-43). Note that in (19) @ is
now replaced by A%ﬁ q2)Q. The black hole solutions in this case are characterized by two
integers corresponding to the magnetic charges associated with the two gauge fields of
the NS-NS and R-R sectors. Since the canonical metric does not transform under the
SL(2, R) transformation the transition between the black hole and the “naked” singular-
ity occurs at the same point (Q? = 8M2e~2%) as discussed earlier. However, we can no
longer express the metric nicely in terms of the new dilaton charge as was done in Eq.(22).
Therefore, we note that in the extremal case, mass of the black hole should also be given
by Mg, ,4) = A M and the black holes will be BPS saturated.

(q1,92)
Since

Mgy.0) = \/ =2 + (¢1 — qaxo)’ e M (44)

masses satisfy the following relation when y = 0,

2
2
(M(QquZ) + M(m,pz)) ~ Mgy 4p1,g24p2)

2
= 2M? { {(plche% +pagae™®) + (prg2 — pzéh)Q] — (@™ +p2Q26_¢°)}

> 0 (45)

1/2

As M is a real, positive number (45) gives a triangle inequality among the masses which
we write below:

M(th,qz) + M(phPZ) > M(Ql-l-pl,th—l-m) (46>

11



The equality holds when pigs = p2qy i.e. when p; = nq; and p; = nge, with n being
an integer. Therefore, when ¢, ¢ are relatively prime integers, the inequality prevents
the black holes to decay into black holes of lower masses. So, because of the ‘mass gap’
relation (46), the extremal black holes are stable. Furthermore, note that since charges
also satisfy the same relation (44) like the masses, when ¢; and ¢, are relatively prime
the charge conservation can not be satisfied if the black holes decay [25]. Finally, we note
from (19) that even in the case of type II black hole solution the area of the event horizon
vanishes in the extremal limit, like what happened for the heterotic string case of GHS,
causing the surface to be singular.

To summarize, we first argued that the magnetically charged black hole solution GHS
derived in the context of D = 4 heterotic string theory can also be interpreted as black hole
solution of D = 4 type IIB theory such that the gauge field appears due to compactification
of the NS-NS antisymmetric field (of D = 10 action) with all R-R fields set to zero. It
has been demonstrated that the low energy effective action of type IIB string theory
compactified on torus possesses an SL(2, Z) invariance if the D = 10 theory is endowed
with the same symmetry. By exploiting this symmetry of type IIB string theory, we have
constructed an infinite family of magnetically charged black hole solutions in D = 4. Black
hole solutions in string theory having electric, magnetic and both charges associated with
the gauge fields originating from the dimensional reduction of the various heterotic string
states as well as the NS-NS sector states of type II string theory have been constructed
before. The solutions we have constructed in this paper are characterized by two integers
corresponding to the charges associated with both NS-NS sector and R-R sector gauge
fields. We have shown that in the extremal limit, when these two integers (¢, ¢2) are
relatively prime, the black holes are stable as they are prevented from decaying due to
the inequality (46). In this context, we are tempted to interprete the BPS saturated
(¢1,q2) black holes as marginal bound states of ¢; NS-NS black holes and ¢2 R-R black
holes analogous to the arguments due to Witten [26] for the string solutions of Schwarz
[18]. The class of black hole solutions obtained here have zero area of event horizon. It
is well known that in order to construct D = 4 extremal black holes, with nonzero area,
one must have four nonzero charges (corresponding to the number of 1-D-branes, the
number of 5-D-branes, the number of solitonic 5-branes or Kaluza-Klein monopoles and
the Kaluza-Klein charges) as has been discussed by several authors [12] in the context of

intersecting D-brane approach [27]. In our case, the solutions are characterized by only

12



two charges. However, the computation of entropy for the type of black holes, presented

here, can be carried out by using the concept of “stretched horizon” [28]. It will also

be interesting to construct other classes of black hole solutions in type IIB string theory

by implementing the electric-magnetic duality transformations, for example, the dyonic

black holes for which the area is known not to vanish.
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