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Abstract

The evolution of a closed bosonic string is envisaged in the time-dependent back-

ground of its massless modes. A duality transformation is implemented on the spatial

component of string coordinates to obtain a dual string. It is shown that the evolu-

tion equations are manifestly O(d, d) invariant. The tree level string effective actions

for the original and the dual string theory are shown to be equivalent.
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It is now recognized that spacetime duality1 plays an important role in under-

standing several aspects of string theory. One of the consequences of R-duality is that

the dynamics of a string on a circle of radius R is equivalent to that of another string

on a circle of radius 1
R (in suitable units). The idea of duality has also been used in a

wider context2,3 and it is conjectured that this symmetry might be maintained to all

orders in string perturbation theory.4 Furthermore, duality has been applied to study

string cosmology5−7 and used to obtain new black hole solutions.7

Recently the concept of scale factor duality6 (SFD) has been introduced as a

symmetry group of classical string equations of motion, derived from a low energy

string effective action. One of the salient features of SFD is that it does not require

compactification of the target space. Moreover, this transformation relates differ-

ent time-dependent background configurations of string theory. There is an intimate

connection between Narain’s8 construction of inequivalent static compactification and

the O(d, d) transformations on background fields, which rotate time-dependent back-

grounds (solutions of equations of motion) into other ones which are not necessarily

equivalent. Subsequently, several cosmological9 and black hole solutions10 have been

obtained through the implementation of O(d, d) transformations and their general-

izations. It has been observed that the roles of the canonical momentum P and X ′

are interchanged under duality (this amounts to interchange of winding number and

momentum zero modes) when constant background fields are suitably transformed

along with P ↔ X ′. The Hamiltonian remains invariant under duality.

The purpose of this note is to investigate the evolutions of a closed bosonic string

in a background in which background of its massless excitations (graviton, gµν , an-

tisymmetric tensor, Bµν , and dilaton φ) are time-dependent. It is shown that the

evolution equations of the string in a time-dependent background have a hidden

O(d, d) symmetry; d is the number of space dimensions. The space-time dimensions

is D = d + 1. We introduce a duality transformation on string coordinates to define

a dual Lagrangian. Then a larger manifold is constructed to include string coordi-

nates and their dual coordinates. The equations of motion are derived in a manifestly

O(d, d) invariant manner. It is worthwhile to mention that although the equations
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of motion are manifestly O(d, d) invariant the Lagrangian is not. We may recall that

a similar situation also arises in the context of the discussion of noncompact hidden

symmetries in supergravity theories,11 where the equations of motion are manifestly

invariant under these hidden symmetries whereas the action is not.

It is argued that the vanishing β-function equations of the original string theory

are the same as those of the dual string theory, since the tree level string effective

action for both the theories are the same when the background are time-dependent

(but not space-dependent)

The two-dimensional sigma model Lagrangian that we consider is

L̄ =
1

2

√
−γγab∂aX

µ∂bX
νgµν +

1

2
ǫab∂aX

µ∂bX
νBµν ,

+ LD , (1)

where γab is the world sheet metric; ǫab the antisymmetric tensor, such that ǫ01 =

1, µ, ν are D-dimensional target space indices and a, b are world sheet indices respec-

tively. LD describes the coupling of a dilaton background with string, whose explicit

form will be discussed later. All the background fields gµν , Bµν and φ are allowed

to depend on the time coordinate X0 only. It is convenient to bring gµν and Bµν

to the following special form by implementing general coordinate transformation and

Abelian gauge transformation respectively.

gµν =

[

−1 0

0 Gij(t)

]

and Bµν =

[

0 0

0 Bij(t)

]

, (2)

i, j = 1, d are indices of the spatial coordinates. Then the Lagrangian L̄ can be

re-expressed as

L̄ = −1

2

√
−γγab∂aX

0∂bX
0 +

1

2

√
−γγab∂aX

i∂bX
jGij

+
1

2
ǫab∂aX

i∂bX
jBij + LD . (3)
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The equations of motion,

∂L̄

∂Xµ
− ∂a

∂L̄

∂∂aXµ
= 0 , (4)

take the following form for the spatial components of the string coordinates {X i}:

∂aAa
i = 0 , (5)

with

Aa
i ≡ ∂L̄

∂∂aX i
=

√
−γγab∂bX

jGij + ǫab∂bX
jBij , (6)

since there is no explicit X i dependence in L̄. However, the equation of motion for

the X0 coordinate is much more complicated.

1

2

√
−γγab∂aX

i∂bX
j ∂

∂X0
Gij +

1

2
ǫab∂aX

i∂bX
j ∂

∂X0
Bij

+∂a(
√
−γγab∂bX

0) +
∂LD

∂X0
− ∂a

(

∂LD

∂∂aX0

)

= 0 . (7)

Note that (7) contains terms with derivatives with respect to X0. Therefore, it cannot

be written in the form of eq. (5). In the BRST quantization of string theory it is

necessary to introduce ghost fields in the gauge fixed action. In this framework in

stead of the usual dilaton coupling

∫

d2σ
√
−γR(2)φ(X) , (8)

the dilation is coupled to the ghost current12,13 (when ON gauge fixing is adopted).

LD =
1

2

∫

d2σ[∂̄φ(X)b++c+ + ∂φb−−c−] , (9)

where φ is the dilaton and b±± and c± are the ghost fields. Notice that since we assume

that φ depends on X0 only, ∂̄φ(X) = ∂
∂X0 φ(X0)∂̄X0 and ∂φ(X) = ∂

∂X0 φ(X0)∂X0.
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In what follows we shall utilize the property of L̄ given by (1) that the equations of

motion for {X i} is a divergence (5). Thus we are led to construct a new Lagrangian,

L1, in the first order formalism where we deal with {X i} coordinates. Introducing a

field ui
a, we write

L1 = −1

2

√
−γγabui

au
j
bGij −

1

2
ǫabui

au
j
bBij

+∂aX
i(
√
−γγabu

j
bGij + ǫabu

j
bBij) . (10)

The ui
a variation of L1 gives

∂L1

∂ui
a

= (∂bX
j − u

j
b)(

√
−γγabGij + ǫabBij) = 0 , (11)

as the ui
a equations of motion since L1 does not contain any derivative of the field;

whereas ∂aX
i variation gives

∂L1

∂∂aX i
=

√
−γγabu

j
bGij + ǫabu

j
bBij , (12)

with the equations of motion ∂a

(

∂L1

∂∂aXi

)

= 0. If we solve for ∂aX
i = ui

a from (10)

and substitute in (8), we receive the expression for Aa
i , eq. (5) and the equations of

motion for {X i}.

Let us consider another first order Lagrangian L2 with a variables Yi, and an

auxiliary field (again denoted by ui
a)

L2 =
1

2

√
−γγabui

au
j
bGij +

1

2
ǫabui

au
j
bBij

+ǫab∂aYiu
j
b . (13)

Variation of L2 with respect to ui
a gives the relation

ǫab∂bYi =
√
−γγabu

j
bGij + ǫabu

j
bBij , (14)
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and the Yi equation of motion is

∂a

(

∂L2

∂∂aYi

)

= ∂a

(

ǫabui
b

)

= 0 . (15)

Solving for ua
i in terms of Yi in (14) gives us

ui
a =

1√−γ
γabǫ

bc
A

ij∂cYj + F
ij∂aYj , (16)

where A = B−1(GB−1 − BG−1)−1 and F = −G−1(GB−1 − BG−1)−1 are symmet-

ric and antisymmetric time-dependent matrices respectively as is evident from the

symmetry properties of backgrounds G and B.

The equations of motion derived from L1 suggests that we can unite ua
i = ǫab∂bYi

locally; whereas the Yi equation of motion derived from L2 allows us to write ∂L2

∂∂aYi

=

ǫab∂bX
i. Thus the ∂aX

i and ∂aYi variations of L1 and L2 (after substituting the

auxiliary fields) locally take the form

ǫab∂bYi =
∂L1

∂∂aX i
=

√
−γγab∂bX

jGij + ǫab∂bX
jBij (17)

ǫab∂bX
i =

∂L2

∂∂aYi
=

√
−γγab∂bYjA

ij + ǫab∂bYjF
ij . (18)

As always happens with such dual reformulation, the field equations derived for the

string coordinates {X i} are the Bianchi identities for the dual variables {Yi}, whereas

the equation of motion for {Yi} are the Bianchi identities for {X i}. Moreover, the

matrices A and F play the role of metric and antisymmetric tensor field for the dual

string coordinates. It follows from (17) and (18) that the canonical momenta {Pi} of

{X i} are identified with Y ′
i whereas those of {Yi} are with {X ′i}. We may recall that,

for constant background fields, the role of P and X ′ are interchanged under duality.

In order to reveal the hidden symmetries associated with the equations of motion, we

enlarge the manifold where X i and Yi are treated as independent coordinates (this is
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analogous to the phase space in a Hamiltonian formulation of dynamics). Let us first

rewrite equations (17) and (18) as

√
−γǫabγ

bc∂cX
i = Gij∂aYi − GijBjk∂aX

k (19)

√
−γǫabγ

bc∂cYi = (A−1)ij∂aX
j − (A−1)ijF

jk∂aYk . (20)

Let W denote the 2d coordinates {X i, Yi} collectively; then eqs. (19) and (20) can

be written in a compact form as the single equation

Mη∂aW =
√
−γǫabγ

bc∂cW , (21)

where the symmetric 2d × 2d matrix

M =

(

G−1 −G−1B

BG−1 G − BG−1B

)

(22)

is the same one as appears in the discussion of the duality properties of string effective

action,9 and

η =

(

0 1

1 0

)

, (23)

is the O(d, d) metric, 1 being d × d unit matrix. It is easy to check that

MηM = η and ηMη = M
−1 . (24)

Thus we conclude that M ǫ O(d, d). Equation (21) can be rewritten as

ǫab∂bW = ηM−1√−γγab∂bW

leading to the manifest O(d, d) invariant integrability equation

∂a(ηM
−1√−γγab∂bW ) = 0 . (25)

We note that the equations of motion are invariant under O(d, d) transformations

although the action is not invariant under duality transformation. This is one of the
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characteristics of hidden symmetries associated with duality transformations as has

been emphasized by Gaillard and Zumino.11

Let us turn our attention to the conformal invariance of these theories and the

equations of motion satisfied by the background fields. The Hamiltonian associated

with L1 together with the contributions of the X0 coordinates and the dilaton term

is

H =
1

2
(P0 + X

′0)2 +
1

2
(P X ′)M(P X ′)T + HD , (26)

where the first term is the contribution of the X0 coordinates, P0 being momentum

conjugate to X0 whereas {Pi} are the conjugate momentum of {X i} and M is the

matrix defined in eq. (22). HD is the Hamiltonian associated with the dilaton cou-

pling to the string.13 The other constraint, which generates σ-reparametrization, can

be written as

P0X
′0 +

1

2
(P X ′)η(P X ′)T . (27)

If we now demand conformal invariance of the theory we derive the equations of

motion for the background fields which ensure the vanishing of the associated β-

functions. These conditions can also be derived from the variation of the tree level

string effective action. Indeed, such an effective action has been obtained in a compact

form for time-dependent background fields by Meissner and Veneziano9

SE =

∫

dte−ϕ[Λ + ϕ̇2 +
1

8
Tr(∂tMη∂tMη)] , (28)

where ϕ = φ − ℓn
√

det G, is the shifted dilaton, G is as defined in eq. (2), and Λ is

the cosmological term proportional to (D - 26) that appears for a noncritical bosonic

string. M and η are defined in eqs. (22) and (23).

Let us now implement the duality transformation. Note that the X0 coordinate

and HD remain unaffected since {X i} transform to {Yi} under duality. Thus the
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generator of σ-reparametrization transformation has the form

P0X
′0 +

1

2
(P̃ Y ′)η(P̃ Y ′)T , (29)

and the dual Hamiltonian is

H̃ =
1

2
(P0 + X

′0)2 +
1

2
(P̃ Y ′)M̃(P̃ Y ′)T + HD , (30)

where {P̃ i} are conjugate momenta of {Yi}. M̃ can be computed to be

M̃ =

[

G − BG−1B BG−1

−G−1B G−1

]

= M
−1 . (31)

It is easy to write down the Meissner-Veneziano9 effective action for the dual theory

with M̃ and it reads (ϕ remains unchanged)

S̃E =

∫

dte−ϕ

[

Λ + ϕ̇2 +
1

8
Tr(∂tM̃η∂tM̃η) . (32)

It follows from the properties of M eq. (24) and η2 = 1 that

S̃E = SE . (33)

Therefore, the tree level string effective actions for the two theories are the same.

It is natural to ask what symmetries the string evolution equations will exhibit if

the background fields depend on some of the spatial coordinates in addition to time.

For example, one could envisage a situation where background fields are independent

of coordinates Xα, α = 1, ..m, m < D − 1. It has been shown by Sen,14 in the

framework of string field theory, that the string effective action in this case has an

O(m) ⊗ O(m) symmetry. However, in our approach, it is not easy to demonstrate

such invariance properties of the string equations of motion, since it is not possible to

transform the metric and antisymmetric tensor to a simple form as in eq. (2) in the

general case. It might be possible to show the invariance of the string equations of

motion by introducing a more general duality transformation than the one used here.
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To summarize: we considered a closed bosonic string in the time-dependent back-

ground of its massless modes. A duality transformation involving only spatial string

coordinates was utilized to obtain a new Lagrangian. Then it was shown that the

string evolution equations are O(d, d) invariant. It was argued that the tree level

string effective action and the dual effective action are equivalent. Therefore, the β-

functions associated with the original string theory and the dual theory are identical

at least to lowest order in α′.
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