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Abstract

Mixed type (bright-dark) soliton solutions of the integrable N-coupled nonlinear Schrödinger

(CNLS) equations with mixed signs of focusing and defocusing type nonlinearity coefficients are

obtained by using Hirota’s bilinearization method. Generally, for the mixed N-CNLS equations

the bright and dark solitons can be split up in (N − 1) ways. By analysing the collision dynamics

of these coupled bright and dark solitons systematically we point out that for N > 2, if the bright

solitons appear in at least two components, non-trivial effects like onset of intensity redistribution,

amplitude dependent phase-shift and change in relative separation distance take place in the bright

solitons during collision. However their counterparts, the dark solitons, undergo elastic collision

but experience the same amplitude dependent phase-shift as that of bright solitons. Thus in the

mixed CNLS system there co-exist shape changing collision of bright solitons and elastic collision

of dark solitons with amplitude dependent phase-shift, thereby influencing each other mutually in

an intricate way.
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I. INTRODUCTION

Solitons in coupled nonlinear Schrödinger (CNLS) equations have been the subject of in-

tense studies due to their intriguing collision properties and their robustness against external

perturbations. The study of physical and mathematical aspects of CNLS equations is of con-

siderable current interest as these equations arise in diverse areas of science like nonlinear

optics, optical communication, biophysics, Bose-Einstein condensates (BECs) and plasma

physics [1, 2, 3, 4, 5, 6]. In the context of nonlinear optics solitons arising as a result of

competing focusing type nonlinearity and anomalous dispersion (diffraction) of pulse (beam)

are called bright solitons [3] as they are well localized structures of light. The dark solitons

resulting due to compensation between defocusing type nonlinearity and normal dispersion

of pulse appear as localized intensity dips on a finite carrier wave background, and they are

more robust than bright solitons [3]. The appearance of multicomponent CNLS type equa-

tions as dynamical equations in various areas of physics [3, 4, 6] and the subsequent studies

on these systems lead to the identification of bright, dark, bright-dark, and dark-bright type

solitons [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Even though there are a number of works on

bright and dark soliton propagation and collision separately, still results are scarce for the

study on bright-dark type soliton propagation and their collision dynamics.

In the present paper we perform a study on bright-dark soliton solutions of mixed N-CNLS

equations and examine the shape changing collisions of multicomponent bright solitons in

the presence of dark components. We consider the following set of integrable mixed N-CNLS

equations (in dimensionless form)

iqj,z + qj,tt + 2
(

N
∑

l=1

σl|ql|
2
)

qj = 0, j = 1, 2, . . . , N, (1a)

where qj , j = 1, 2, . . . , N , is the complex amplitude of the jth component, the subscripts z

and t denote the partial derivatives with respect to normalized distance and retarded time

respectively, and the coefficients σl’s define the sign of the nonlinearity. For convenience and

without loss of generality, we define σl’s for this mixed case as

σl = 1 for l = 1, 2, . . . , m,

= −1 for l = m + 1, m + 2, . . . , N. (1b)
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Recent theoretical and experimental studies show that the bright solitons in the focusing

case (σl = 1, l = 1, 2, . . . , N) undergo fascinating shape changing collisions characterized

by intensity redistribution, amplitude dependent phase-shift and relative separation distance

[11, 12, 13], whereas the standard elastic collision of dark solitons occurs in the defocusing

case (σl = −1, l = 1, 2, . . . , N ) [8, 14]. Later, it has been observed in Ref. [16] that

bright-bright solitons of mixed CNLS equations (1) also undergo shape changing collision

but of different nature. Very recently, it has also been shown that the bright solitons in the

mixed CNLS system exhibit periodic energy switching during the shape changing collision

process in the presence of linear couplings [17]. Now it is of further interest to examine how

the bright solitons are influenced by dark solitons and vice-versa in this mixed CNLS system.

The main aim of this paper is to investigate the nature of bright-dark soliton solutions of

the mixed CNLS equations (1) and their collisions.

The pioneering works of Makhankov et al. [18] in the context of Bose-Hubbard model and

a few recent works [19, 20] on left-handed materials (LHMs) in nonlinear optics, suggest that

the mixed CNLS system studied in our paper could be of considerable physical significance.

Mixed 2-CNLS system can be obtained as the modified Hubbard model (Lindner-Fedyanin

system) in the long-wavelength approximation by taking into account the electron-phonon

interaction [18]. Here the two component Bose-condensate is a mixture of two “gases” with

attractive and repulsive interboson fields and the bright-dark soliton solution corresponds to

the so called drop-bubble solution. A straightforward generalization of this mixed 2-CNLS

system to an arbitrary number of fields given in Ref. [18]. Exactly this is the system which

we have considered in this paper (Eqs. (1)) where the first m components have positive

sign of nonlinearity and the remaining components possess negative sign of nonlinearity.

The mixed 2-CNLS equations also arise as governing equations for an electromagnetic field

propagation in LHMs with Kerr-type nonlinearity [19]. In fact, this case arises when the

fields in the medium experience different types of nonlinearity, leading to σ1 = −σ2 = 1

or σ2 = −σ1 = 1, corresponding to a medium of effective positive dielectric permittivity

ǫeff and effective negative magnetic permeability µeff or vice-versa. This suggests that

mixed N-CNLS equations could be a possible generalization of multiple electromagnetic fields

propagating in LHMs with suitably chosen effective permittivity and effective permeability.

Equations (1) with N = 2 can also be viewed as governing equation for two fields q1 and

q∗2 propagating in the anomalous and normal dispersion regimes, respectively (that is, the
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self-phase modulation (SPM) coefficients are positive and cross-phase modulation (XPM)

coefficients are negative in both the components). A possible physical realization of such

type of nonlinearities is multi-field propagation in a quadratic medium with inefficient phase

matching [21]. Another important physical realization of equations (1) arises in the context

of Boson-Fermion gas mixtures. For example, the dynamics of two-species condensates is

governed by mixed 2-CNLS equations for suitable choice of intraspecies (a11, a22) and inter-

species (a12, a21) scattering lengths [22]. These two-species condensates offer a wider range

of possibilities, the main one being the possibility of having a negative interspecies scat-

tering length. This possibility has been theoretically explored in the context of Feshbach

resonance management and realized experimentally for boson-fermion mixtures [23]. Thus

the interspecies interactions a12 and a21 can be tuned to be negative (attractive type) and

positive (repulsive type) scattering lengths, respectively by Feshbach resonance. It is also

possible to choose the self interactions as a11 > 0, a22 < 0 [24]. So studying N-CNLS equa-

tions (1) of mixed type will provide a better understanding on the dynamics of multi-species

condensates with suitably tuned scattering lengths. In addition, mixed 2-CNLS equations

arise in BECs involving two isotopes of the same element, for example isotopes of rubidium

(Rb87 and Rb85) [25]. In fact, multicomponent BECs support nonlinear waves which do

not exist in single component BECs such as domain-wall solitons, bright-dark solitons, etc.

Thus the mixed CNLS system which we have investigated could be of considerable physical

relevance and significance in the context of nonlinear optics and matter waves.

The plan of the paper is as follows. In Sec. II, we briefly present the Hirota’s bilin-

earization procedure for the mixed N-CNLS equations (1) to obtain exact soliton solutions.

Section III is devoted to obtain exact one and two bright-dark soliton solutions for mixed

2-CNLS, 3-CNLS and N-CNLS equations. The collision dynamics of bright-dark solitons in

mixed CNLS equations is given in Sec. IV, where we have pointed out that if the bright

solitons appear in more than one component then they undergo shape changing collisions

characterized by intensity redistribution, amplitude dependent phase-shift and change in

relative separation distance. We have also discussed the role of dark solitons on the shape

changing collisions of bright solitons and also the effect of bright solitons on the dark soliton

collisions. In Sec. V, we summarize the results of our study. Asymptotic analysis of mixed

2-CNLS and mixed 3-CNLS equations are given in Appendices A and B, respectively.

4



II. BILINEARIZATION METHOD FOR INTEGRABLE MIXED N-CNLS EQUA-

TIONS

In this section, we briefly outline the procedure to obtain m-bright − n-dark soliton so-

lution (m + n = N) of the mixed N-CNLS equations using Hirota’s bilinearization method

[26]. We denote the soliton solution of Eqs. (1) in which the bright and dark solitons are

split up in the first m components and the remaining (N − m) = n components, respec-

tively, as “mixed soliton solutions”, for brevity. To start with, let us apply the bilinearizing

transformation

qj =
g(j)

f
, j = 1, 2, . . . , m, (2a)

ql+m =
h(l)

f
, l = 1, 2, . . . , n, (2b)

to Eqs. (1), where g(j)’s and h(l)’s are arbitrary complex functions of z and t while f is a

real function. Then the set of mixed N-CNLS equations given by Eqs. (1) reduces to the

following set of bilinear equations:

D1

(

g(j) · f
)

= 0, j = 1, 2, . . . , m, (3a)

D1

(

h(l) · f
)

= 0, l = 1, 2, . . . , n, (3b)

D2(f · f) = 2

(

m
∑

j=1

g(j)g(j)∗ −
n
∑

l=1

h(l)h(l)∗

)

, (3c)

where D1 = (iDz +D2
t −λ), D2 = (D2

t −λ), ∗ denotes complex conjugate and λ is a constant

to be determined. The Hirota’s bilinear operators Dz and Dt are defined as

Dp
zD

q
t (a · b) =

(

∂

∂z
−

∂

∂z′

)p(
∂

∂t
−

∂

∂t′

)q

a(z, t)b(z′, t′)|(z = z′, t = t′). (4)

Expanding g(j)’s, h(l)’s and f formally as power series expansions in terms of a small arbitrary

real parameter χ,

g(j) = χg
(j)
1 + χ3g

(j)
3 + . . . , j = 1, 2, . . . , m, (5a)

h(l) = h
(l)
0 (1 + χ2h

(l)
2 + χ4h

(l)
4 + . . .), l = 1, 2, . . . , n, (5b)

f = 1 + χ2f2 + χ4f4 + . . . , (5c)

and solving the resultant set of equations recursively, we can obtain the explicit forms of

g(j)’s, h(l)’s and f .
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III. EXACT MIXED TYPE (BRIGHT-DARK) SOLITON SOLUTIONS OF MUL-

TICOMPONENT MIXED CNLS EQUATIONS

A significant feature of the system of integrable mixed CNLS equations (1) is that it

admits a rich structure of soliton solutions like bright, dark, bright-dark soliton type solutions

depending upon the boundary conditions. Here our focus is on bright-dark (or dark-bright)

type solutions. In order to understand the nature of such mixed soliton solutions, their

propagation and collision dynamics, we first obtain the solution for the N = 2 case. Then

by extending the analysis to arbitrary N component case in the remaining sections, we point

out that for N > 2, if the bright solitons are split up in two or more components, there

occurs shape changing collision of bright solitons which is also influenced by the presence of

dark soliton.

A. Bright-dark soliton solutions of the mixed 2-CNLS equations

a) Mixed (Bright-dark) one-soliton solution:

In this case the bright soliton appears in the q1 component and the remaining component

q2 comprises of dark soliton (or vice-versa). This case corresponds to the choice σ1 = 1 and

σ2 = −1 (or σ1 = −σ2 = −1) for which Eqs. (1) become

iq1,z + q1,tt + 2
(

|q1|
2 − |q2|

2
)

q1 = 0, (6a)

iq2,z + q2,tt + 2
(

|q1|
2 − |q2|

2
)

q2 = 0. (6b)

After restricting the power series expansion (5) as

g(1) = χg
(1)
1 , (7a)

h(1) = h
(1)
0 (1 + χ2h

(1)
2 ), (7b)

f = 1 + χ2f2, (7c)

and solving the resulting set of linear partial differential equations recursively, one can write

down the mixed one-soliton solution explicitly as

q1 =
α

(1)
1 eη1

1 + eη1+η∗

1+R
= A1k1Reiη1I sech

[

η1R +
R

2

]

, (8a)

q2 =
c1 eiζ1

[

1 −
(

k1−ib1
k∗

1+ib1

)

eη1+η∗

1+R
]

1 + eη1+η∗

1+R
, (8b)
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where

eR =
|α

(1)
1 |2

(k1 + k∗
1)

2

(

1 −
|c1|

2

|k1 − ib1|2

)−1

, A1 =

(

α
(1)
1

2k1R

)

e−
R
2 , (8c)

η1 = k1t + i(k2
1 − λ)z, k1 = k1R + ik1I , α

(1)
1 = α

(1)
1R + iα

(1)
1I , (8d)

ζ1 = −(b2
1 + λ)z + b1t, λ = 2|c1|

2, c1 = c1R + ic1I , (8e)

with the condition

|c1|
2 < |k1 − ib1|

2. (8f)

Here α
(1)
1 , k1, and c1 are arbitrary complex parameters while b1 is a real parameter. In the

above equations and in the following sections, the suffixes R and I denote the real and

imaginary parts, respectively. The above one-soliton solution is characterized by seven real

parameters α
(1)
1R, α

(1)
1I , k1R, k1I , c1R, c1I and b1 along with the constraint (8f). In the context

of nonlinear optics the quantity A1 defined through the α-parameter can be viewed as

the polarization vector of the light pulse/beam and A1k1R as the amplitude of the bright

soliton. By defining the quantities θ and φ
(1)
1 as θ = tan−1

(

α
(1)
1I /α

(1)
1R

)

and φ
(1)
1 = tan−1

(

(k1I−

b1)/k1R

)

, respectively, Eqs. (8a) and (8b) can be rewritten as

q1 =

√

k2
1R − |c1|2cos2φ

(1)
1 eiθsech

[

k1R(t − 2k1Iz) +
R

2

]

× eik1I t+i(k2
1R

−k2
1I
−2|c1|2)z, (9a)

q2 = −c1e
iζ1

(

cosφ
(1)
1 tanh

[

k1R(t − 2k1Iz) +
R

2

]

+ isinφ
(1)
1

)

. (9b)

Now the condition (8f) becomes k2
1R > |c1|

2cos2φ
(1)
1 . It can be inferred from Eq. (9a) that

the intensity of the bright soliton increases with a decrease in the magnitude of the dark

soliton parameter c1 as shown in Fig. 1. (all the quantities in this and rest of the figures

are dimensionless). This is a consequence of the particular type of cross phase modulation

coupling given in Eq. (6). Note that the α-parameter influences only the central position of

the bright and dark solitons and not the intensities. However, it can be inferred from Eq.

(9a) that the α-parameters appear in the complex phase [eiθ] of the amplitude part.

b) Mixed two-soliton solution:

The mixed two-soliton solution can be obtained by terminating the power series expansion
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(5) as

g(1) = χg
(1)
1 + χ3g

(1)
3 , (10a)

h(1) = h
(1)
0 (1 + χ2h

(1)
2 + χ4h

(1)
4 ), (10b)

f = 1 + χ2f2 + χ4f4. (10c)

After solving the resulting bilinear equations recursively, the explicit two-soliton solution is

obtained as

q1 =
1

D

(

α
(1)
1 eη1 + α

(1)
2 eη2 + eη1+η∗

1+η2+δ11 + eη2+η∗

2+η1+δ21
)

, (11a)

q2 =
1

D

[

c1 eiζ1
(

1 + eη1+η∗

1+Q
(1)
11 + eη1+η∗

2+Q
(1)
12 + eη2+η∗

1+Q
(1)
21 + eη2+η∗

2+Q
(1)
22

+eη1+η∗

1+η2+η∗

2+Q
(1)
3

)]

, (11b)

where

D = 1 + eη1+η∗

1+R1 + eη1+η∗

2+δ0 + eη2+η∗

1+δ∗0 + eη2+η∗

2+R2

+eη1+η∗

1+η2+η∗

2+R3 (11c)

and

ηj = kjt + i(k2
j − 2|c1|

2)z, j = 1, 2. (11d)

In the above α
(1)
1 , α

(1)
2 , k1, k2 and c1 are complex parameters and b1 is a real parameter (see

below). Introducing the quantity

µij =
α

(1)
i α

(1)
j

∗

(ki + k∗
j )

2

[

1 −
|c1|

2

(ki − ib1)(k
∗
j + ib1)

]−1

, i, j = 1, 2, (12a)

the various other parameters in the expression (11) are defined as follows:

eR1 = µ11, eR2 = µ22, eδ0 = µ12, eδ∗0 = µ21, (12b)

eδ11 =
(k2 − k1)

2

α
(1)∗
1

[

1 +
|c1|

2

(k1 − ib1)(k2 − ib1)

]

µ11µ21, (12c)

eδ21 =
(k2 − k1)

2

α
(1)∗
2

[

1 +
|c1|

2

(k1 − ib1)(k2 − ib1)

]

µ22µ12, (12d)

eQ
(1)
ij = −

(ki − ib1)

(k∗
j + ib1)

µij , i, j = 1, 2, eQ
(1)
3 =

[

(k1 − ib1)(k2 − ib1)

(k∗
1 + ib1)(k

∗
2 + ib1)

]

eR3 , (12e)

and

eR3 =

(

µ11µ12µ21µ22

|α
(1)
1 α

(1)
2 |2

)

|k1 − k2|
2

∣

∣

∣

∣

1 +
|c1|

2

(k1 − ib1)(k2 − ib1)

∣

∣

∣

∣

2

. (12f)
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The above two-soliton solution (11) is restricted by the conditions k2
jR+(kjI−b1)

2 > |c1|
2, j =

1, 2, as in the case of one-soliton solution. The two-soliton solution (11) is characterized by

eleven real parameters α
(1)
1R, α

(1)
2R, α

(1)
1I , α

(1)
2I , k1R, k1I , k2R, k2I , c1R, c1I and b1 .

B. Bright-dark soliton solutions of the mixed 3-CNLS equations

Let us consider the set of mixed 3-CNLS equations which corresponds to Eq. (1) with

N = 3. In its explicit form the set of mixed 3-CNLS equations reads as

iq1,z + q1,tt + 2
(

σ1|q1|
2 + σ2|q2|

2 + σ3|q3|
2
)

q1 = 0, (13a)

iq2,z + q2,tt + 2
(

σ1|q1|
2 + σ2|q2|

2 + σ3|q3|
2
)

q2 = 0, (13b)

iq3,z + q3,tt + 2
(

σ1|q1|
2 + σ2|q2|

2 + σ3|q3|
2
)

q3 = 0. (13c)

In the above, the nonlinearity coefficients σj ’s, j = 1, 2, 3 take the values either σ1 = σ2 =

+1, and σ3 = −1 or σ1 = +1 and σ2 = σ3 = −1. In Eqns. (13), in the context of BECs the

components q1, q2 and q3 either denote the condensates of three isotopes of the same element

(for example Rb isotopes) [25] or the hyperfine spin states of spinor BECs [27]. This set of

equations admits the following two distinct types of mixed soliton solutions.

(i) 2-bright − 1-dark soliton solution:

In this case the bright solitons are separated out into two of the three components and the

dark soliton appears in the remaining component (with the choice, σ1 = σ2 = 1, and σ3 =

−1).

(ii) 1-bright − 2-dark soliton solution:

In this type of solution the dark solitons appear in two components and the remaining

component comprises of the bright soliton (with the choice, σ1 = 1 and σ2 = σ3 = −1).

The procedure of obtaining these soliton solutions is similar to that of the mixed 2-CNLS

equations.

1. 2-bright − 1-dark soliton solution

We present below the explicit forms of the obtained one- and two-soliton solutions.

a) Mixed one-soliton solution:

The mixed one-soliton solution, in which two bright solitons appear in the first two com-
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ponents and the dark one appears in third component, is obtained by Hirota’s method as

qj =
α

(j)
1 eη1

1 + eη1+η∗

1+R
, j = 1, 2, (14a)

= Ajk1Reiη1I sech
[

η1R +
R

2

]

, (14b)

q3 =
c1 eiζ1

[

1 −
(

k1−ib1
k∗

1+ib1

)

eη1+η∗

1+R
]

1 + eη1+η∗

1+R
, (14c)

where

eR =

∑2
j=1(α

(j)
1 α

(j)∗
1 )

(k1 + k∗
1)

2

(

1 −
|c1|

2

|k1 − ib1|2

)−1

, (14d)

Aj =

(

α
(j)
1

2k1R

)

e−
R
2 ≡

√

k2
1R − |c1|2cos2φ

(1)
1

k1R





α
(j)
1

√

(|α
(1)
1 |2 + |α

(2)
1 |2)



 , j = 1, 2. (14e)

Here the quantities η1 and ζ1 are as defined in Eq. (8d) and (8e), respectively. Aj’s defined

through the αj and c1 parameters represent the polarization of the bright components.

For the dark component, the parameter b1 denotes the direction of the background and

c1 gives its amplitude. The one-soliton solution is characterized by nine real parameters

α
(1)
1R, α

(1)
1I , α

(2)
1R, α

(2)
1I , k1R, k1I , c1R, c1I , and b1 and is restricted by the condition |c1|

2 < |k1 −

ib1|
2. Now the role of α-parameters can be realized explicitly in the amplitude (intensity)

of bright components and also through the non-trivial phase of all the components. This

is shown in Fig. 2. In fact this has important consequences in the collision process as will

be illustrated in the following sections. Thus the dark soliton part influences the bright

part through the parameters c1 and b1 whereas the bright solitons influence the dark soliton

phase (central position) through the α - parameters.

b) Two-soliton solution:

Following the Hirota’s bilinearization method as in the case of N = 2, here we obtain the
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two-soliton solution as

qj =
1

D

(

α
(j)
1 eη1 + α

(j)
2 eη2 + eη1+η∗

1+η2+δ1j + eη2+η∗

2+η1+δ2j

)

, j = 1, 2, (15a)

q3 =
1

D

[

c1 eiζ1
(

1 + eη1+η∗

1+Q
(1)
11 + eη1+η∗

2+Q
(1)
12 + eη2+η∗

1+Q
(1)
21 + eη2+η∗

2+Q
(1)
22

+eη1+η∗

1+η2+η∗

2+Q
(1)
3

)]

, (15b)

eδ1j = (k2 − k1)µ11µ21(α
(j)
2 χ21 − α

(j)
1 χ11), (15c)

eδ2j = (k2 − k1)µ12µ22(α
(j)
2 χ22 − α

(j)
1 χ12), (15d)

eR3 = |k1 − k2|
2µ11µ12µ21µ22(χ12χ21 − χ11χ22), j = 1, 2, (15e)

where µil’s are now redefined as

µil =
1

(ki + k∗
l )χil

, (15f)

χil =
(ki + k∗

l )
∑2

j=1(α
(j)
i α

(j)∗
l )

(

1 −
|c1|

2

(ki − ib1)(k∗
l + ib1)

)

, i, l = 1, 2. (15g)

The form of D is given as in Eq. (11c) and the expressions for eQ
(1)
11 , eQ

(1)
12 , eQ

(1)
21 , eQ

(1)
22

and eQ
(1)
3 take the form as given in Eq. (12e) with the above redefinition of the µil’s.

α
(j)
iR , α

(j)
iI , kiR, kiI , i, j = 1, 2, c1R, c1I and b1 are the fifteen real parameters which characterize

the above solution. The nature of this two-soliton solution will be discussed in Sec. IVB.

2. 1-bright − 2-dark soliton solution

Next we consider the case where the bright soliton appears in the q1 component and the

two dark solitons are found in the remaining two components (q2, q3). This gives us the

possibility of introducing two background fields c1e
iζ1 and c2e

iζ2 .

a) Mixed one-soliton solution:

The corresponding one-soliton solution obtained by using Hirota’s method is

q1 =
α

(1)
1 eη1

1 + eη1+η∗

1+R
, (16a)

= A1k1Reiη1I sech

[

η1R +
R

2

]

, (16b)

ql+1 =

cl eiζl

[

1 −

(

k1 − ibl

k∗
1 + ibl

)

eη1+η∗

1+R

]

1 + eη1+η∗

1+R
, l = 1, 2, (16c)

11



where

η1 = k1t + i(k2
1 − λ)z, ζl = −(b2

l + λ)z + blt, λ = 2(|c1|
2 + |c2|

2), l = 1, 2.

eR =
|α

(1)
1 |2

(k1 + k∗
1)

2

[

1 −
|c1|

2

|k1 − ib1|2
−

|c2|
2

|k1 − ib2|2

]−1

, (16d)

A1 =

(

α
(1)
1

2k1R

)

e−
R
2 . (16e)

Now the one-soliton solution is characterized by ten real parameters, α
(1)
1R, α

(1)
1I , k1R, k1I ,

c1R, c1I , c2R, c2I , b1 and b2 .

b) Two-soliton solution:

As in the previous section, here also we obtain the two-soliton solution as

q1 =
1

D

(

α
(1)
1 eη1 + α

(1)
2 eη2 + eη1+η∗

1+η2+δ11 + eη2+η∗

2+η1+δ21
)

, (17a)

ql+1 =
1

D

[

cl eiζl

(

1 + eη1+η∗

1+Q
(l)
11 + eη1+η∗

2+Q
(l)
12 + eη2+η∗

1+Q
(l)
21

+eη2+η∗

2+Q
(l)
22 + eη1+η∗

1+η2+η∗

2+Q
(l)
3

)]

, l = 1, 2, (17b)

where

eδ11 = (k2 − k1)
2µ11µ21

α
(1)
1

∗ ρ, eδ21 = (k2 − k1)
2 µ12µ22

α
(1)
2

∗ ρ. (17c)

In Eqs. (17a) and (17b), the form of D, eQ
(l)
ij and eQ

(l)
3 are same as in Eqs. (11c) and (12e)

with i, j, l = 1, 2. Also, the quantities eR3 , µil and ρ are redefined as

eR3 = |k1 − k2|
2µ11µ12µ21µ22

|α
(1)
1 α

(1)
2 |2

|ρ|2, (17d)

µil =
α

(1)
i α

(1)
l

∗

(ki + k∗
l )

2

[

1 −
2
∑

v=1

|cv|
2

(ki − ibv)(k
∗
l + ibv)

]−1

, i, l = 1, 2 (17e)

and

ρ =

[

1 +

2
∑

v=1

|cv|
2

(k1 − ibv)(k2 − ibv)

]

. (17f)

The two-soliton solution is characterized by fourteen real parameters. Again we will study

the nature of this solution in Sec. IVB.

C. N-soliton solutions

The above procedure of obtaining soliton solutions can be extended to three- and N-

soliton solutions with some effort, though the analysis is cumbersome. In this work, we

12



restrict our analysis to the two soliton solution only as the N-soliton collisions represented

by N-soliton solution in general take place pair-wise in soliton theory. Work is in progress

in this direction and the results will be published separately.

D. Bright-dark soliton solutions of mixed N-CNLS case

After obtaining the two and three component mixed soliton solutions, the next natural

step is to generalize the results to arbitrary N component case, where N = m + n. For this

purpose, we consider the case where the bright solitons appear in the first m components

and the dark solitons appear in the remaining n (≡ (N −m)) components. So the resulting

mixed soliton solution can be denoted as m-bright−n-dark type soliton solution, as pointed

out in Sec. II.

1. m-bright−n-dark soliton solution

a) One-soliton solution:

The mixed one-soliton solution of the mixed N-CNLS case is found as

qj =
α

(j)
1 eη1

1 + eη1+η∗

1+R
, (18a)

= Ajk1Reiη1I sech
[

η1R +
R

2

]

, j = 1, 2, . . . , m, (18b)

ql+m =
cl eiζl

[

1 −
(

k1−ibl

k∗

1+ibl

)

eη1+η∗

1+R
]

1 + eη1+η∗

1+R
, l = 1, 2, . . . , n, (18c)

where

eR =

∑m
j=1(α

(j)
1 α

(j)∗
1 )

(k1 + k∗
1)

2

(

1 −
n
∑

l=1

|cl|
2

|k1 − ibl|2

)−1

, (18d)

Aj =

(

α
(j)
1

2k1R

)

e−
R
2 . (18e)

Here

ηj = kjt + i(k2
j − λ)z, ζl = −(b2

l + λ)z + blt, λ = 2
n
∑

l=1

|cl|
2, (18f)

j = 1, 2, . . . , m, and l = 1, 2, . . . , n.

The one-soliton solution is characterized by (2m + 3n + 2) number of real parameters,

α
(j)
1R, α

(j)
1I , k1R, k1I , clR, clI , bl, j = 1, 2, . . . , m, l = 1, 2, . . . , n with the condition |cl|

2 <

13



|k1 − ibl|
2, l = 1, 2, . . . , n.

b)Two-soliton solution:

Generalization of the mixed two-soliton solution presented in the previous subsections for

N = 2 and N = 3 cases yields the following m-bright−n-dark two-soliton solution of Eqs.

(1) with arbitrary N :

qj =
1

D

(

α
(j)
1 eη1 + α

(j)
2 eη2 + eη1+η∗

1+η2+δ1j + eη2+η∗

2+η1+δ2j

)

,

j = 1, 2, . . . , m, (19a)

ql+m =
1

D

[

cl eiζl

(

1 + eη1+η∗

1+Q
(l)
11 + eη1+η∗

2+Q
(l)
12 + eη2+η∗

1+Q
(l)
21

+eη2+η∗

2+Q
(l)
22 + eη1+η∗

1+η2+η∗

2+Q
(l)
3

)]

, l = 1, 2, . . . , n. (19b)

Here the denominator D is given by Eq. (11c). The quantities eR1 , eR2 , eδ0 , and eδ∗0 are as

defined in Eq. (12b) but with the following redefinitions

eQ
(l)
ij = −

(ki − ibl)

(k∗
j + ibl)

µij, i, j = 1, 2, eQ
(l)
3 =

[

(k1 − ibl)(k2 − ibl)

(k∗
1 + ibl)(k

∗
2 + ibl)

]

eR3 , (19c)

eδ1j = (k2 − k1)µ11µ21(α
(j)
2 χ21 − α

(j)
1 χ11), j = 1, 2, . . . , m,

eδ2j = (k2 − k1)µ12µ22(α
(j)
2 χ22 − α

(j)
1 χ12),

eR3 = |k1 − k2|
2µ11µ12µ21µ22[χ12χ21 − χ11χ22], (19d)

µip =
1

(ki + k∗
p)χip

and

χip =
(ki + k∗

p)
∑m

j=1(α
(j)
i α

(j)∗
p )

(

1 −
n
∑

l=1

|cl|
2

(ki − ibl)(k∗
p + ibl)

)

, i, p = 1, 2. (19e)

The number of real parameters which characterize the two-soliton solution is (4m+3n+4).

IV. SHAPE CHANGING COLLISIONS OF MIXED SOLITONS

The fascinating property of the bright solitons of the integrable N-CNLS system with

focusing type nonlinearity is that they exhibit shape changing collisions characterized by

intensity redistribution, amplitude dependent phase-shift and relative separation distances

[12, 13, 16], which can then be used to construct collision based logic gates for optical

computation [28, 29]. In this and in the following sections we analyze such collision dynamics

of bright solitons in the presence of dark solitons in the mixed 2-CNLS and 3-CNLS equations
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and also its effect on the propagation and collision of dark solitons. In this regard, we perform

an asymptotic analysis of the two-soliton solutions for mixed 2-CNLS and 3-CNLS equations.

A. Asymptotic analysis of mixed two-soliton solution of mixed 2-CNLS equations

To start with, we consider the collision properties associated with the mixed two-soliton

solution (11) of the mixed 2-CNLS equations (6). Following this we carry out the analysis

for mixed 3-CNLS equations. Without loss of generality, we take kjR > 0 and k1I > k2I ,

kj = kjR + ikjI , j = 1, 2, and obtain the asymptotic forms of two colliding solitons (say S1

and S2). Similar analysis can be carried out for other choices of kjR and kjI also. Using the

expression (11) for the bright-dark two soliton solution of the mixed 2-CNLS system (6), we

carry out a detailed asymptotic analysis in Appendix A for the two soliton collision process.

Based on this analysis we identify the following:

1. The role of dark soliton on bright soliton collision:

The amplitudes of the two solitons S1 and S2 before (after) interaction are given by

A1−
1 k1R (A1+

1 k1R) and A2−
1 k2R (A2+

1 k2R), respectively, in the q1 component. Forms of Aj±
1 , j =

1, 2, are given in Appendix A (see Eqs. (A1c), (A2c), (A3c) and (A4c)). By rewriting these

forms one can show that the intensities of solitons before and after interaction are same

(elastic), (i.e.) |Aj−
1 | = |Aj+

1 |, j = 1, 2, even though the complex amplitudes differ in phase.

Also, the appearance of the background parameter ‘c1’ in the expression for the bright soliton

amplitudes before and after collision (see Eqs. (A1c), (A2c), (A3c) and (A4c)]) shows that

this parameter influences the bright soliton amplitudes throughout the collision.

Typical bright-dark soliton collision in the mixed 2-CNLS system is shown in Fig. 3 for the

parametric choices k1 = 1 + i, k2 = 2 − i, |c1| = 0.56, b1 = 0.2, α
(1)
1 = 1, α

(1)
2 = 1 + i. For

better understanding, first we plot the intensity profiles showing the bright soliton elastic

collision scenario in the absence of dark soliton parameter (c1 = 0), at z = −4 and z = 4 .

This is shown in Fig. 4(a). Then the same bright soliton collision is plotted for the above

parametric choices as in Fig. 3 at z = −4 and z = 4, that is in the presence of the dark

component, in Fig. 4(b). From these two figures, we observe that due to the presence of

dark soliton the amplitudes of the colliding bright solitons are reduced by the same amount
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throughout the collision.

The two colliding solitons S1 and S2 suffer phase-shifts Φ1 and Φ2, respectively in both the

bright and dark components. These phase-shifts for the bright and dark solitons are given

by the expression

Φ1 = −Φ2 =

(

R3 − R2 − R1

2

)

,

=
1

2
log

(

|k1 − k2|
2

(k1 + k∗
2)

2(k2 + k∗
1)

2

[

1 + |c1|2
P1P2

][

1 + |c1|2
P ∗

1 P ∗

2

]

[

1 − |c1|2
P2P ∗

1

][

1 − |c1|2
P1P ∗

2

]

)

, (20a)

where P1 = k1−ib1 and P2 = k2−ib1. Note that the phase-shifts appearing here (Eq. (20a))

and in the following (see Eqs. (23a) and (26)) are real quantities as the terms appearing

in the argument of log function are products of complex conjugates. The role of dark

component comes into picture through this phase-shift due to the explicit appearance of the

background parameters (c1, b1). Notice that in the absence of the dark component (c1 = 0),

the phase-shift Φ1 reduces to the standard phase-shift experienced by colliding solitons in

scalar nonlinear Schrödinger equations (NLS). Also, it is important to notice that the α-

parameters have no effect on the phase-shift in the mixed 2-CNLS case. However, this is not

true in the case of mixed N-CNLS case for more than two components (N > 2) as will be

shown in the following sections. The relative separation distances between the two colliding

solitons before interaction

t−12 =
R3k1R − R1(k1R + k2R)

2k1Rk2R
(20b)

and after interaction

t+12 =
R2(k1R + k2R) − R3k2R

2k1Rk2R
(20c)

also remain unaffected by α-parameters.

2. The role of bright soliton on dark soliton collision:

The asymptotic expressions [Eqs. (A1b), (A2b), (A3b) and (A4b)] reveal the fact that

the collision among dark solitons is elastic as the intensities of colliding solitons remain the

same before and after interaction. From Fig. 3 it can be observed that the bright component

parameter ‘α’ has no influence at all either in the amplitude or in the phase-shift of the dark
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soliton during collision. Thus the inclusion of α-parameters in the bright soliton solution

(see Eq. (11)) does not affect dark soliton collisions.

B. Asymptotic analysis of mixed two-soliton solution of mixed 3-CNLS equations

The next natural step is to study the collision process in the mixed 3-CNLS equations and

one can generalize the results to the N-CNLS equations with arbitrary N . The asymptotic

expressions of the solitons corresponding to the N = 3 case are presented in Appendix

B. This 3-CNLS system admits two distinct types of solution as mentioned in Sec. IIIB.

First let us consider the 2-bright−1-dark soliton collision and the 1-bright−2-dark soliton

collision.

1. 2-Bright−1-Dark Soliton Collision:

We analyze two important physical quantities, namely (i) intensity and (ii) phase-shift

of both bright and dark solitons.

(i) Intensities of bright and dark solitons:

Analysing Eqs. (B1c), (B2c), (B3c) and (B4c), we find that the amplitudes (intensities)

of bright solitons before and after interaction are different. In fact, the intensities of the

colliding bright solitons before and after interactions can be related through the expression

|Al+
j |2 = |T l

j |
2|Al−

j |2, j, l = 1, 2, (21)

where the superscripts l± represent the solitons designated as S1 and S2, at z → ±∞. The

transition intensities are identified from the Appendix B as

|T 1
j |

2 =
|1 − κ2(α

(j)
2 /α

(j)
1 )|2

|1 − κ1κ2|
, (22a)

|T 2
j |

2 =
|1 − κ1κ2|

|1 − κ1(α
(j)
2 /α

(j)
1 )|2

, j = 1, 2, (22b)

κ1 =
χ11

χ21
, κ2 =

χ22

χ12
, (22c)

χil =
(ki + k∗

l )
∑2

j=1(α
(j)
i α

(j)∗
l )

[

1 −
|c1|

2

(ki − ib1)(k∗
l + ib1)

]

, i, l = 1, 2. (22d)

Note that the transition amplitudes T l
j ’s now are also functions of dark soliton parameters

c1 and b1. On the other hand, from Eqs. (B1b), (B2b), (B3b) and (B4b) we find that the
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intensities of dark solitons remain unchanged due to the collision process.

(ii)Phase-shift of bright and dark solitons:

The amplitude dependent phase-shift Φ1

(

= R3−R2−R1

2

)

for soliton S1 can be expressed in

the present case as

Φ1 =
1

2
log





|k1 − k2|
2

(k1 + k∗
2)(k2 + k∗

1)



1 − U





(k1 + k∗
1)(k2 + k∗

2)

(k1 + k∗
2)(k2 + k∗

1)

[

1 − |c1|2
P1P ∗

1

][

1 − |c1|2
P2P ∗

2

]

[

1 − |c1|2
P1P ∗

2

][

1 − |c1|2
P2P ∗

1

]











 ,

(23a)

where

U =
(α

(1)
1 α

(1)∗
2 + α

(2)
1 α

(2)∗
2 )(α

(1)
2 α

(1)∗
1 + α

(2)
2 α

(2)∗
1 )

(|α
(1)
1 |2 + |α

(2)
1 |2)(|α

(1)
2 |2 + |α

(2)
2 |2)

. (23b)

Note that the soliton S2 experiences an exactly opposite phase-shift Φ2 (= −Φ1). The above

phase-shift in turn results in the following change in relative separation distance between

the solitons before and after collision,

∆t12 = t−12 − t+12 =
(k1R + k2R)

k1Rk2R

Φ1. (24)

The expression for Φ1 is given in Eq. (23a) clearly indicates that now the phase-shift depends

on α-parameters as well as c1. Thus the phase-shift and ultimately the relative separation

distance between the solitons can be altered during a two-soliton collision process for a given

combination of kj, c1 and b1, by just varying the α parameters and as a whole the combined

soliton profile gets altered.

This kind of collision scenario is shown in Fig. 5. The corresponding intensity plots show

that the bright solitons undergo shape changing collisions characterized by intensity redistri-

bution, amplitude dependent phase-shift and relative separation distance for the parametric

choice k1 = 1 + i, k2 = 2 − i, b1 = 0.2, |c1| = 0.56, α
(1)
1 = 1, α

(2)
1 = (32 + i80)/89, α

(1)
2 =

1, α
(2)
2 = 1. The solitons (say S1 and S2) are well separated before and after collision in both

the components q1 and q2. In the q1 component the intensity of soliton S1 gets suppressed

while that of soliton S2 is enhanced after interaction, whereas in the q2 component it gets

reversed. Such shape changing collisions occur for
α

(1)
1

α
(1)
2

6=
α

(2)
1

α
(2)
2

, which is quite general. But

when we choose
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

, the two solitons exhibit elastic collision. It is instructive to note

that although the dark solitons appear in the q3 component, they indirectly influence the

shape changing collisions through the carrier wave background parameters c1 and b1. From
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the asymptotic analysis it follows that these background parameters influence the intensities

of the colliding bright solitons before and after collision by different amounts through their

explicit appearance in the transition intensities (see Eq. (22)). However the nature of the

collision is unaltered. We present below a detailed discussion to get a clear picture about

the influence of dark solitons on bright soliton collision and vice-versa.

(a) Effect of dark soliton on the intensity of bright soliton:

For a better understanding, we present the shape changing collision of bright solitons (i) in

the absence of dark component, that is c1 = 0, in Fig. 6 and (ii) in the presence of dark

component, that is c1 6= 0, in Fig. 7 for the above mentioned parametric choices. From these

figures we observe that, in the presence of dark component, the intensities of solitons S1 in

the q1 component is decreased (increased) before(after) collision (as compared with Fig. 6),

but not by the same amount. Thus the effect of the dark component on the intensity of

the bright soliton before its collision is different from the effect on the intensity after the

collision. But in the q2 component there occurs decrement of intensity in both the solitons

before and after collision due to the presence of dark soliton. This confirms the fact that the

presence of dark solitons indeed influences the cross phase coupling between the two com-

ponents q1 and q2 which in turn affects the energy redistribution between those components

as observed from figures.

However, the nature of collision, that is enhancement (suppression) in S1 and suppression

(enhancement) in S2 in q1(q2) component during shape changing collision process, is still

preserved. We also notice that in the case of standard elastic collision process resulting for

the choice
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

, the role of the c1 parameter on the amplitudes of colliding bright

solitons before and after collision is same. This is shown in Fig. 8 and Fig. 9, for c1 = 0

and c1 6= 0 respectively. From the figures we observe that the intensities of bright solitons

before and after collision are affected by the dark component by the same amount.

(b) Collision behaviour of dark solitons in the presence of bright solitons:

The intensities of dark solitons in the q3 component are unaffected during the collision in the

presence of the bright solitons in the q1 and q2 components. This is obvious from the analytic

expressions (B1b), (B2b), (B3b) and (B4b). This type of collision scenario is shown in the

third figure of Fig. 5 (see also Fig. 7). The analysis presented in Appendix B reveals the

fact that the α parameters do affect the interaction of dark solitons through the shift in cen-

tral position of the solitons which ultimately changes the separation distance between them
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after collision. This phase-shift and the resulting change in the relative separation distance

between the solitons can be obtained from Eq. (23a) and Eq. (24), respectively. In fact,

the change in relative separation distance becomes more significant and displays interesting

propagation and collision dynamics of solitons when the soliton velocities are moderately

different and kjR’s are equal. For illustrative purpose, we consider the propagation of such

composite two dark solitons arising for the choice k1 = 0.6−i, k2 = 0.6−0.5i, b1 = 0.2, |c1| =

0.56, α
(1)
1 = 1, α

(2)
1 = i, α

(1)
2 = (22/55) − 45i, α

(2)
2 = 1 in Fig. 10, at z = −5 and z = 5. The

analytic expression corresponding to the above choice

(

k1R = k2R,
α

(1)
1

α
(1)
2

6=
α

(2)
1

α
(2)
2

)

is given by

q3 = c1e
iζ1





e
Q3
2 cosh(A + Q3

2
) + e

Q11+Q22
2 cosh(B + Q22−Q11

2
) + e

Q12+Q21
2 cos(C + Q21−Q12

2
)

e
R3
2 cosh(A + R3

2
) + e

R1+R2
2 cosh(B + R2−R1

2
) + e

δ∗0+δ0
2 cos(C +

δ∗0−δ0
2

)



 ,

(25a)

where

A = 2k1R[t − z(k1I + k2I)], (25b)

B = 2k1R[z(k1I − k2I)], (25c)

C = (k2I − k1I)t + (k2
1I − k2

2I)z. (25d)

Such a soliton solution can be viewed as soliton complex [30, 31] and all the parameters in

Eq. (25a) are defined in Eq. (15). Fig. 10(a) shows that the dark soliton complex varies

its profile during propagation within a finite distance. This is a consequence of change

in the relative separation distance due to the presence of α-parameters. However for the

same choice of kj’s, b1, and c1 but with
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

, the dark soliton complex does not

vary its profile after propagation through the same distance. This is shown in Fig. 10(b).

This kind of behaviour is a striking feature of multisoliton complexes [30, 31]. The bright

counterparts of this dark soliton also form bright soliton complexes of variable shape and

such bright soliton complexes in CNLS equations with focusing nonlinearity are discussed

in Refs. [13, 30, 31, 32]. Work is in progress on such bright-dark multisoliton complexes.
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2. 1-Bright−2-Dark Soliton Collision:

Two soliton solution given by Eq. (17) describes the collision of solitons in which bright

soliton collision takes place in the q1 component and the dark soliton collision occurs in

the q2 and q3 components. The asymptotic expressions for the colliding solitons before and

after collision are given in Appendix B. Equations (B5), (B6), (B7) and (B8) show that

the intensities of bright solitons before and after collisions are same , (i.e.) |Al−
1 | = |Al+

1 |,

l = 1, 2. Similarly the intensities of the dark solitons are also unaltered after collision. This

indicates that the bright as well as the dark solitons undergo elastic collision. However there

occurs a dark soliton parameter dependent phase-shift due to collision. The phase-shift of

soliton S1 in both the bright and dark components is given by

Φ1 =

(

R3 − R2 − R1

2

)

,

=
1

2
log







|k1 − k2|
2

(k1 + k∗
2)

2(k2 + k∗
1)

2

∣

∣

∣
1 +

∑2
v=1

|cv|2
(k1−ibv)(k2−ibv)

∣

∣

∣

2

∣

∣

∣
1 −

∑2
v=1

|cv|2
(k1−ibv)(k2−ibv)

∣

∣

∣

2






. (26)

Similarly soliton S2 undergoes a phase-shift Φ2 = −Φ1. The dark component parameters

c1, c2, b1 and b2 influence the phase-shift whereas the bright component parameter α does

not alter the phase-shift.

The above asymptotic analysis of two soliton solution of 2-CNLS and 3-CNLS can be

extended straight forwardly to N-CNLS equations, with arbitrary N. By generalizing the

above study we also point out that for mixed N-CNLS equations (1), the bright and dark

solitons can be split up in (N −1) ways, starting from (N-1)-bright−1-dark soliton solution,

(N-2)-bright−2-dark soliton solution, up to 1-bright−(N-1)-dark soliton solution. We also

arrive at an important conclusion that for m-bright−n-dark two-soliton solution, where

m + n = N , the shape changing collision of bright solitons takes place only when m ≥ 2.

V. CONCLUSION

To conclude, we have obtained the explicit mixed type (bright-dark) soliton solutions

for the multicomponent mixed coupled nonlinear Schrödinger equations using Hirota’s bilin-

earization method. In particular, we have shown that these coupled bright and dark solitons

possess rich structure and become more general than individual bright/dark solitons. Next,
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our analysis of their collision behaviour reveals the fact that there exist elastic collisions of

bright as well as dark solitons for the two component case. We observe that for this case the

bright solitons are affected uniformly by the dark solitons. The bright soliton parameters

α’s have no effect on the phase-shift whereas it is influenced by the dark soliton parameters

c1 and b1. The important observation of this study is that for more than two components,

if the bright solitons appear in at least two components, then those bright solitons undergo

shape changing collisions characterized by intensity redistribution, amplitude dependent

phase-shift and relative separation distances, but their counterpart (dark solitons) exhibits

only elastic collisions but with amplitude dependent phase-shift. This identification can

find potential applications in optical as well as matter wave switching devices where the

switching is performed through shape changing collision of solitons. Further, in contrast to

the N component Manakov system here the phase-shift of bright as well as dark solitons is

characterized by dark soliton parameters c1 and b1 in addition to the α parameters. Also,

we observe that the dark soliton parameter c1 influences the intensity of bright solitons by

different amount when the bright soliton parameters α’s are such that
α

(1)
1

α
(1)
2

6=
α

(2)
1

α
(2)
2

while their

amplitudes are affected by dark solitons by the same amount, for
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

. One more no-

ticeable observation is that the dark solitons vary their profiles depending on α parameters

during propagation as in multisoliton complexes [31, 32]. The various results obtained from

the study will give further insight into the bright-dark paired solitons, soliton complexes

formation, collision in Boson-Fermion mixtures and in nonlinear left-handed materials and

their applications in switching devices.
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APPENDIX A: ASYMPTOTIC ANALYSIS OF BRIGHT-DARK TWO-

SOLITON SOLUTION OF MIXED 2-CNLS EQUATIONS

In the limit z → ±∞ the two-soliton solution (11) takes the following asymptotic forms

for the choice k1R, k2R > 0 and k1I > k2I . For other choices of ki’s, i = 1, 2, similar analysis

can be made.

a) Before collision (limit z → −∞):

(i) Soliton 1 (η1R ≃ 0, η2R → −∞):

q1 ≃ A1−
1 k1Reiη1I sech

(

η1R +
R1

2

)

, (A1a)

q2 ≃ −c1 ei(ζ1+φ
(1)
1 )

[

cosφ
(1)
1 tanh

(

η1R +
R1

2

)

+ isinφ
(1)
1

]

, (A1b)

where

A1−
1 =

(

α
(1)
1

α
(1)∗
1

)
1
2 1

k1R

√

k2
1R − |c1|2cos2φ

(1)
1 , (A1c)

φ
(1)
1 = tan−1

(

k1I − b1

k1R

)

. (A1d)

(ii) Soliton 2 (η2R ≃ 0, η1R → ∞):

q1 ≃ A2−
1 k2Reiη2I sech

(

η2R +
(R3 − R1)

2

)

, (A2a)

q2 ≃ c1 ei(ζ1+φ
(1)
2 ) (k1 − ib1)

(k∗
1 + ib1)

[

cosφ
(1)
2 tanh

(

η2R +
(R3 − R1)

2

)

+ isinφ
(1)
2

]

, (A2b)

where

A2−
1 =

(

α
(1)
2

α
(1)∗
2

) 1
2 1

k2R

√

k2
2R − |c1|2cos2φ

(1)
2

(

X

X∗

)

(A2c)

and

φ
(1)
2 = tan−1

(

k2I − b1

k2R

)

. (A2d)

In the above expressions,

X = (k1 − k2)(k1 + k∗
2)(k

∗
1 + ib1)([(k1 − ib1)(k

∗
2 + ib1) − |c1|

2][(k1 − ib1)(k2 − ib1) + |c1|
2])

1
2 .
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b) After collision (limit z → ∞):

(i) Soliton 1 (η1R ≃ 0, η2R → ∞):

q1 ≃ A1+
1 k1Reiη1I sech

(

η1R +
(R3 − R2)

2

)

, (A3a)

q2 ≃ c1 ei(ζ1+φ
(1)
1 ) (k2 − ib1)

(k∗
2 + ib1)

[

cosφ
(1)
1 tanh

(

η1R +
(R3 − R2)

2

)

+ isinφ
(1)
1

]

, (A3b)

where

A1+
1 =

(

α
(1)
1

α
(1)∗
1

)
1
2 1

k1R

√

k2
1R − |c1|2cos2φ

(1)
1

(

Y

Y ∗

)

. (A3c)

Here

Y = (k1 − k2)(k2 + k∗
1)(k

∗
2 + ib1)([(k1 − ib1)(k2 − ib1) + |c1|

2][(k∗
1 + ib1)(k2 − ib1) − |c1|

2])
1
2 .

(ii) Soliton 2 (η2R ≃ 0, η1R → −∞):

q1 ≃ A2+
1 k2Reiη2I sech

(

η2R +
R2

2

)

, (A4a)

q2 ≃ −c1 ei(ζ1+φ
(1)
2 )

[

cosφ
(1)
2 tanh

(

η2R +
R2

2

)

+ isinφ
(1)
2

]

, (A4b)

where

A2+
1 =

(

α
(1)
2

α
(1)∗
2

) 1
2 1

k2R

√

k2
2R − |c1|2cos2φ

(1)
2 . (A4c)

Note that in the above expressions though Al+
j 6= Al−

j , j, l = 1, 2, |Al+
j | = |Al−

j | and thereby

confirming that no intensity redistribution occurs in the case of bright soliton and also for

dark soliton (see Eqs. (A1b), (A2b), (A3b) and (A4b)). The phase-shift Φ1 (Φ2) of soliton

S1 (S2) in the bright and dark component obtained from the above asymptotic expressions

is given by Eq. (20a).

APPENDIX B: ASYMPTOTIC ANALYSIS OF BRIGHT-DARK TWO-SOLITON

SOLUTION OF MIXED 3-CNLS EQUATIONS

1. 2-bright−1-dark soliton solution

Here also we assume k1R, k2R > 0 and k1I > k2I , then the two soliton (2-bright−1-dark)

solution (15) takes the following forms asymptotically (z → ±∞).

a) Before collision (limit z → −∞):
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(i) Soliton 1 (η1R ≃ 0, η2R → −∞):











q1

q2











≃











A1−
1

A1−
2











k1Rsech

(

η1R +
R1

2

)

eiη1I , (B1a)

q3 ≃ −c1 ei(ζ1+φ
(1)
1 )

[

cosφ
(1)
1 tanh

(

η1R +
R1

2

)

+ isinφ
(1)
1

]

, (B1b)

where










A1−
1

A1−
2











≃











α
(1)
1

α
(2)
1











√

k2
1R − |c1|2cos2φ

(1)
1

k1R

(

|α
(1)
1 |2 + |α

(2)
1 |2

)
1
2

. (B1c)

(ii) Soliton 2 (η2R ≃ 0, η1R → ∞):











q1

q2











≃











A2−
1

A2−
2











k2Rsech

(

η2R +
(R3 − R1)

2

)

eiη2I , (B2a)

q3 ≃ c1 ei(ζ1+φ
(1)
2 ) (k1 − ib1)

(k∗
1 + ib1)

[

cosφ
(1)
2 tanh

(

η2R +
(R3 − R1)

2

)

+ isinφ
(1)
2

]

,

(B2b)

where











A2−
1

A2−
2











≃















α
(1)
2

(

1−(α
(1)
1 /α

(1)
2 )κ1√

1−κ1κ2

)

α
(2)
2

(

1−(α
(2)
1 /α

(2)
2 )κ1√

1−κ1κ2

)



















(k2 − k1)|k1 + k∗
2|

(k2 + k∗
1)|k1 − k2|

√

k2
2R − |c1|2cos2φ

(1)
2

k2R

(

|α
(1)
2 |2 + |α

(2)
2 |2

)
1
2



 .(B2c)

b) After collision (limit z → ∞):

(i) Soliton 1 (η1R ≃ 0, η2R → ∞):











q1

q2











≃











A1+
1

A1+
2











k1Rsech

(

η1R +
(R3 − R2)

2

)

eiη1I , (B3a)

q3 ≃ c1 ei(ζ1+φ
(1)
1 ) (k2 − ib1)

(k∗
2 + ib1)

[

cosφ
(1)
1 tanh

(

η1R +
(R3 − R2)

2

)

+ isinφ
(1)
1

]

,

(B3b)
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where











A1+
1

A1+
2











≃















α
(1)
1

(

1−(α
(1)
2 /α

(1)
1 )κ2√

1−κ1κ2

)

α
(2)
1

(

1−(α
(2)
2 /α

(2)
1 )κ2√

1−κ1κ2

)



















(k1 − k2)|k1 + k∗
2|

(k1 + k∗
2)|k1 − k2|

√

k2
1R − |c1|2cos2φ

(1)
1

k1R

(

|α
(1)
1 |2 + |α

(2)
1 |2

)
1
2



 .(B3c)

(ii) Soliton 2 (η2R ≃ 0, η1R → −∞):











q1

q2











≃











A2+
1

A2+
2











k2Rsech

(

η2R +
R2

2

)

eiη2I , (B4a)

q3 ≃ −c1 ei(ζ1+φ
(1)
2 )

[

cosφ
(1)
2 tanh

(

η2R +
R2

2

)

+ isinφ
(1)
2

]

, (B4b)

where










A2+
1

A2+
2











≃











α
(1)
2

α
(2)
2











√

k2
2R − |c1|2cos2φ

(1)
2

k2R

(

|α
(1)
2 |2 + |α

(2)
2 |2

) 1
2

. (B4c)

In the above equations φ
(1)
1 and φ

(1)
2 are defined in Eqs. (A1d) and (A2d), respectively.

Note that Al+
j 6= Al−

j , and also in general the intensities |Al+
j |2 6= |Al−

j |2, j, l = 1, 2, except

when
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

. The explicit relation between the intensities before and after collision is

given by Eq. (22) in the text. The phase-shifts Φ1 and Φ2 suffered by solitons S1 and S2,

respectively are given in Eq. (23a).

2. 1-bright−2-dark soliton solution

Considering the 1-bright−2-dark two soliton solution (17), the analysis in the asymptotic

limits can be performed as follows (with k1R, k2R > 0 and k1I>k2I).

a) Before collision (limit z → −∞):

(i) Soliton 1 (η1R ≃ 0, η2R → −∞):

q1 ≃ A1−
1 k1Reiη1I sech

(

η1R +
R1

2

)

, (B5a)

qj+1 ≃ −cj ei(ζj+φ
(j)
1 )

[

cosφ
(j)
1 tanh

(

η1R +
R1

2

)

+ isinφ
(j)
1

]

, j = 1, 2, (B5b)
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where

A1−
1 =

(

α
(1)
1

α
(1)∗
1

)
1
2 1

k1R

√

k2
1R −

(

|c1|2cos2φ
(1)
1 + |c2|2cos2φ

(2)
1

)

, (B5c)

φ
(j)
1 = tan−1

(

k1I − bj

k1R

)

. (B5d)

(ii) Soliton 2 (η2R ≃ 0, η1R → ∞):

q1 ≃ A2−
1 k2Reiη2I sech

(

η2R +
(R3 − R1)

2

)

, (B6a)

qj+1 ≃ cj ei(ζj+φ
(j)
2 ) (k1 − ibj)

(k∗
1 + ibj)

[

cosφ
(j)
2 tanh

(

η2R +
(R3 − R1)

2

)

+ isinφ
(j)
2

]

,

j = 1, 2, (B6b)

where

A2−
1 = A2+

1

(

Q1Q2

Q∗
1Q

∗
2

)

, φ
(j)
2 = tan−1

(

k2I − bj

k2R

)

, (B6c)

Q1 = (k1 − k2)

[

1 +
|c2

1|

(k1 − ib1)(k2 − ib1)
+

|c2
2|

(k1 − ib2)(k2 − ib2)

]1/2

, (B6d)

Q2 = (k1 + k∗
2)

[

1 −
|c2

1|

(k1 − ib1)(k
∗
2 + ib1)

+
|c2

2|

(k1 − ib2)(k
∗
2 + ib2)

]1/2

. (B6e)

Here A2+
1 is defined in Eq. (B8c) given below.

b) After collision (limit z → ∞):

(i) Soliton 1 (η1R ≃ 0, η2R → ∞):

q1 ≃ A1+
1 k1Reiη1I sech

(

η1R +
(R3 − R2)

2

)

, (B7a)

qj+1 ≃ cj ei(ζj+φ
(j)
1 ) (k2 − ibj)

(k∗
2 + ibj)

[

cosφ
(j)
1 tanh

(

η1R +
(R3 − R2)

2

)

+ isinφ
(j)
1

]

,

j = 1, 2, (B7b)

where

A1+
1 = A1−

1

(

Q1Q
∗
2

Q∗
1Q2

)

. (B7c)

(ii) Soliton 2 (η2R ≃ 0, η1R → −∞):

q1 ≃ A2+
1 k2Reiη2I sech

(

η2R +
R2

2

)

, (B8a)

qj+1 ≃ −cj ei(ζj+φ
(j)
2 )

[

cosφ
(j)
2 tanh

(

η2R +
R2

2

)

+ isinφ
(j)
2

]

, j = 1, 2, (B8b)

where

A2+
1 =

(

α
(1)
2

α
(1)∗
2

)
1
2 1

k2R

√

k2
2R −

(

|c1|2cos2φ
(1)
2 + |c2|2cos2φ

(2)
2

)

. (B8c)
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Note that in the above expressions |Al+
1 | = |Al−

1 |, l = 1, 2, and thereby confirming that no

intensity redistribution occurs in the case of bright soliton, and also for dark solitons [see

Eqs. (B5b), (B6b), (B7b) and (B8b)].
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FIG. 1: Intensity plots of one-soliton of the mixed CNLS equations with N = 2 for different

values of the background parameter c1 for a fixed value of z. Note that the intensity of the bright

soliton increases as the depth of the dark soliton decreases. The other parameters are chosen as

k1 = 1 + i, α
(1)
1 = 1, b1 = 0.2.
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FIG. 2: Intensity plots of one-soliton of the mixed CNLS equations with N = 3 for different

values of the α parameters for a fixed value of z. (a) α
(1)
1 = 0.2 + 0.01i, α

(2)
1 = 0.5 + 0.05i, (b)

α
(1)
1 = 1+ i, α

(2)
1 = 2+ i and (c) α

(1)
1 = 13−13i, α

(2)
1 = 17+0.3i. The role of α parameters are seen

both in the intensity and phase of the bright soliton while it affects the phase (central position) of

the dark soliton. The parameters c1, b1, and k1 are chosen as |c1| = 0.56, b1 = 0.2, k1 = 1 + i.
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FIG. 3: Elastic collision of (bright-dark) two-solitons in the mixed CNLS system for the N = 2

case. The parameters are chosen as given in the text.
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FIG. 4: Intensity profiles of two colliding bright solitons of the mixed CNLS equations with N = 2,

before (z=-4) and after (z=4) collision: (a) in the absence of dark component (c1 = 0 in Eq. (11));

(b) in the presence of dark component (c1 6= 0 in Eq. (11)). The figure is plotted for special choice

of parameters (as given in the text) with |c1| = 0.56. Note the elastic nature of the collision.
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FIG. 5: Shape changing collision of two-solitons in the mixed CNLS system for the N = 3 case.

The parameters are as given in the text.

34



FIG. 6: Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS

equations with N = 3 in the absence of dark component, (c1 = 0) with
α

(1)
1

α
(1)
2

6=
α

(2)
1

α
(2)
2

. (a) z=-4 and

(b) z=4, given by the specific choice of parameters as given in the text.
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FIG. 7: Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS

equations with N = 3 in the presence of dark component (c1 6= 0) with
α

(1)
1

α
(1)
2

6=
α

(2)
1

α
(2)
2

. (a) z=-4 and

(b) z=4, given by the specific choice of parameters as given in the text.
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FIG. 8: Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS

equations with N = 3 in the absence of dark component (c1 = 0), for
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

. (a) z=-4 and (b)

z=4. The parameters are chosen as given in the text.
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FIG. 9: Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS

equations with N = 3 in the presence of dark component (c1 6= 0), for
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

. (a) z=-4 and

(b) z=4. The parameters are chosen as in the text.
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FIG. 10: Intensity profiles showing the propagation of two dark solitons in mixed CNLS system,

before (z=-5) and after (z=5) collision: (a) for the special choice of parameters (as given in the text)

with
α

(1)
1

α
(1)
2

6=
α

(2)
1

α
(2)
2

; (b) for the special choice of parameters (as given in the text) with
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

.
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