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ABSTRACT

The ten dimensional type IIA string effective action with cosmological constant

term is dimensionally reduced on a d-dimensional torus to derive lower dimen-

sional effective action. The symmetries of the reduced effective action are ex-

amined. It is shown that the resulting six dimensional theory does not remain

invariant under SO(4, 4) symmetry whereas the reduced action, in the absence

of the cosmological constant respects the symmetry as was shown by Sen and

Vafa. New class of black hole solutions are obtained in five and four dimensions

in the presence of cosmological constant. For the six dimensional theory, a four

brane solution is presented.
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Recently, considerable progress has been made in our understanding of the nonperturba-

tive features of superstring theories [1-3]. It is now realised that the five consistent super-

string theories might be envisioned as various phases of a single unique theory [4]. Dualities

play a cardinal role in revealing the intimate connections between different string theories in

diverse spacetime dimensions and provide deeper insight into string theory dynamics. We

recall that the predictions of T-duality are subject to tests in the perturbative frame work ;

whereas, the predictions and tests of S-duality are beyond the realms of perturbation theory

[5]. The p-branes, which appear as classical solutions of the string effective action, have been

instrumental in our understanding of various duality conjectures in string theory [6]. The

RR p-branes are interpreted as D-p-branes of type II theories [7]. The type IIA string admits

even D-branes, p = 0, 2, 4, 6 and type IIB theory, on the other hand, has the odd ones, i.e.

p = 1, 3, 5 with the identification that −1-brane is the instanton of the theory. Furthermore,

for 10-dimensional spacetime, dual of a p-brane is the (6− p) brane and consequently, those

p-branes with p ≤ 6, have duals with p ≥ 0. Thus, for D = 10, the 8-brane and 7-brane

appearing in type IIA and type IIB string theories respectively have special roles different

from the other branes alluded to above.

A p-brane couples to (p + 1)-form potential; therefore, the 8-brane will couple to the

potential A9 whose corresponding field strength is the ten form F10. In standard type IIA

supergravity, the presence of the potential A9 is rather obscure. From the perspective of

type IIA string theory, we know that the theory admits 8-D-brane [7,8]. Notice that the

equations of motion arising from the kinetic energy term F 2
10 only give rise to a conservation

law and the presence of this term does not introduce any new dynamical degree of freedom.

However, the effect of this additional term amounts to introduction of cosmological constant,

when we introduce the Poicare dual of ten form field strength instead. In this context it is

worthwhile to mention that it had been realised several years ago that the introduction of

a four-form field strength in four spacetime dimensions amounts to having a cosmological

constant term in that supergravity theory [9]. Romans [10], subsequently, constructed the

massive ten dimensional type IIA supergravity theory and a complete construction was given

in ref.11.

The study of type IIA superstring effective action in the presence of F10, or alternatively

the theory with cosmological constant has drawn attention of several authors [12-15] in the

recent past and it has been argued that the cosmological constant takes only quantized values.

We mention in passing, another interesting feature of the presence of cosmological constant

in the four dimensional heterotic string effective action. It was shown that the equations

of motion are not invariant under S-duality transformations in the presence of cosmological

constant [16], whereas the equations of motion do respect the symmetry when the constant is

set to zero. Then, a weaker form of the naturalness criterion, due to ’t Hooft [17], was invoked
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to argue that the cosmological constant should remain small since when it required to vanish

there is enhancement of symmetry at the level of equations of motion, derived from string

effective action. We recall that the usual Einstein-Hilbert action does not have any enhanced

symmetry in the absence of the cosmological constant as was recognised by ’t Hooft, when he

introduced the idea of naturalness [17]. Since we expect string theory to provide answers to

deep questions in quantum gravity, it is hoped that the cosmological constant problem will

be solved by string theory. Recently, Witten has proposed a resolution of the cosmological

constant problem [18]. The starting point is to envisage three dimensional theory with a

string vacuum, with unbroken supersymmetry and dilaton whose exponential is related to the

string coupling constant, gs. In the weak coupling regime, the string perturbation theory is

valid and cosmological constant vanishes due to unbroken supersymmetry. When one passes

to the strong coupling limit, gs → ∞, the resulting theory is a Poincare invariant theory in

3 + 1 dimensions. The cosmological constant remains zero in this four dimensional theory

since it continues to take vanishing value for all gs. We speculate that the stringy symmetries

might provide a clue for the resolution of the cosmological constant problem (see discussions

below).

It is well known, for the massless theory, that type IIA compactified on S1 with radius

R is T-dual to type IIB compactified on another circle with reciprocal radius [19]. Thus the

issue of compactification of massive type IIA theory to D = 9 has been addressed in the

context of its T-duality to type IIB theory. It has been argued that the ten dimensional type

IIB theory, when compactified according to the generalised Scherk-Schwarz [20] prescription,

yield a massive theory in 9 dimensions and then one can explore the T-duality. Moreover,

there have been attempts to obtain various brane solutions in type IIA, IIB and M-theory [21-

24] and relate these solutions in lower dimensions by adopting sequential steps in dimensional

reductions.

The purpose of this article is to present dimensionally reduced string effective action for

massive type IIA superstring action when we compactify it on a d-dimensional torus. We

investigate the symmetry properties of the reduced effective action. In particular, we show

that the six dimensional effective action for the case of the massive theory does not respect

the SO(4, 4) symmetry of the corresponding six dimensional massless theory. Furthermore,

we find new black hole solutions in five and four space time dimensions from the reduced

effective action in the presence of cosmological constant term, and we also present four-brane

solutions in six dimensions.

The bosonic part of massive type IIA supergravity action, in ten dimensions, is of interest

to us. The action was introduced by Romans [10] and we write an action in the string frame

metric
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Sm =
∫

d10x
√−g

[

e−2Φ
(

Rg + 4 ∂µΦ∂µΦ − 1

2 · 3!
HµνλH

µνλ

)

− 1

2 · 2!
FµνF

µν − 1

2 · 4!
GµνλρG

µνλρ − 1

2
m2

]

, (1)

where Φ is the dilaton field, gµν is the string σ−model metric and m is the mass parameter.

This action can be identified as the low energy limit of the type IIA string theory with m2

playing the role of cosmological constant. The NS-NS and R-R field strengths are defined as

follows:

Fµν = ∂[µAν] +mfµν ,

Hµνλ = ∂µBνλ + cyclic permutations,

Gµνλρ = ∂[µCνλρ] + 2A[µHνλρ] + 2m gµνλρ, (2)

where coefficients of the mass parameter terms are fµν = Bµν and gµνλρ = B[µνBλρ]. The

notation [µν · · ·] implies the antisymmetrization of the indices. Note that the field strengths

have mass dependent terms and are the generalisations of their massless counterparts. The

advantage of writing massive type IIA action as in (1) is that the action for the massless

theory can be obtained by taking the limit m → 0. The action has the invariance under

massive ‘Stückelberg’ gauge transformations

δAµ = −mΛµ

δBµν = ∂µΛν − ∂νΛµ

δCµνλ = −2m(ΛµBνλ + cyclic perms.). (3)

The above action has N = 2 supersymmetry even though it involves mass terms. The

constant mass term in the R-R sector of the theory which has the interpretation of the

cosmological constant can also be envisaged as the dual of 10-form filed strength alluded to

earlier. Therefore, in ten dimensions, the appearance of m2 terms provides a clue for the

presence of an 8-brane in type IIA theory with the hindsight.

Let us consider compactification of the ten dimensional effective action, in presence of

the cosmological constant term, on a d-dimensional torus. We adopt the prescription of

Schwarz and one of the authors (JM)[25]. The coordinates of D-dimensional spacetime are

denoted by xµ, whereas the rest which make the internal dimensions, the d-dimensional

torus, are denoted as xα. In our notational conventions, we denote ten-dimensional fields

with hats over the fields as well as over the tensor indices (Φ̂, ĝµ̂ν̂ , etc.), while reserve the

quantities without hats for D-dimensional ones. Furthermore, we assume that the fields are

independent of the “internal” coordinates, xα. The ten dimensional vielbein can be expressed
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in the following form êr̂
µ̂ =





er
µ A

(1)β
µ Ea

β

0 Ea
α



 and “spacetime” metric gµν = er
µηrse

s
ν , “internal”

metric Gαβ = Ea
αδabE

b
β.

Thus, the ten dimensional metric components will be expressed in terms of the D-

dimensional metric, gauge fields and scalars.

ĝµν = gµν + A(1)α
µ A(1)β

ν Gαβ , A(1)
µα = ĝµα, Gαβ = ĝαβ, (4)

Similarly for the antisymmetric tensor field, coming from the NS-NS sector, the decomposi-

tions are

A(2)
µα = B̂µα − A(1)β

µ bαβ , bαβ = B̂αβ ,

B(1)
µν = B̂µν −A

(1)α
[µ A

(2)
ν]α − A(1)α

µ A(1)β
ν bαβ , (5)

and the R-R fields can be decomposed as follows:

cαβγ = Ĉαβγ, aα = Âα

A
(3)
µαβ = Ĉµαβ − A(1)δ

µ cαβδ,

B(2)
µνα = Ĉµνα + A

(1)δ
[µ Ĉν]δα + A(1)δ1

µ A(1)δ2
ν cδ1δ2α

Cµνλ = Ĉµνλ − (A(1)δ
µ Ĉδνλ + cyclic perms. in µ, ν, λ),

+(A(1)δ1
µ A(1)δ2

ν Ĉδ1δ2λ + cyclic perms in µ, ν, λ),

−A(1)δ1
µ A(1)δ2

ν A
(1)δ3
λ cδ1δ2δ3

A(4)
µα = Âµ − A(1)δ

µ aδ. (6)

Recall that the scalars are constructed in the ten dimensional theory by contracting the hat

indices of various tensors. In order to obtain tensors with unhatted indices, i.e. tensors in

D-dimensions we adopt the following prescription:

Hµν..αβ.. = Oµ̂
µOν̂

ν · · · Ĥµ̂ν̂..αβ.. (7)

where, Oµ̂
µ = er

µ êµ̂
r and Ĥµ̂ν̂..αβ.. is a tensor in ten dimensions. Thus scalars constructed

out of contraction of ten dimensional indices, as is the case with kinetic energy terms in the

action, can be expressed in the following form in terms of scalars constructed out of various

tensors in D-dimensions, obtained through the dimensional reduction procedure,

Ĥµ̂ν̂..Ĥµ̂ν̂.. = Hµν..Hµν.. + nHµν..αHµν..α +
n(n− 1)

2!
Hµν..αβHµν..αβ + · · · + Hαβ..Hαβ.., (8)

for the n−form field strength. Following (7) NS-NS field strengths are obtained as below,

H(1)
µνρ = ∂[µBνρ] − F

(1)δ
[µν A

(2)
ρ]δ,

Hµνα = F (2)
µνα − F (1)δ

µν bαδ

Hµαβ = ∂µbαβ . (9)
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where F (i)
µν = ∂[µ A

(i)
ν] . The Chern-Simon (CS) term in eq.(2), Â ∧ Ĥ, will give

[CS]µαβγ = − (aα∂µbβγ + cyclic perms. of α, β, γ) ,

[CS]µναβ = A
(4)
[µ ∂ν]bαβ +

{

aα(F
(2)
µνβ − bβδF

(1)δ
µν ) − (α ↔ β)

}

[CS]µνρα = A
(4)
[µ

(

F
(2)
νρ]α − F

(1)δ
νρ] bαδ

)

− aαH
(1)
µνρ

[CS]µνρσ = A
(4)
[µ H

(1)
νρσ]. (10)

Then RR field strengths reduce as given below,

Gαβγδ = 2m b[αβbγδ]

Gµαβγ = ∂µcαβγ + 2[CS]µαβγ + 2m A
(2)
µ[αbβγ]

Gµναβ = ∂[µA
(3)
ν]αβ + F (1)δ

µν cδαβ + 2[CS]µναβ + 2m
(

B(1)
µν bαβ − (A(2)

µαA
(2)
νβ − {α↔ β)}

)

Gµνρα = ∂[µB
(2)
νρ]α − F

(1)δ
[µν A

(3)
ρ]δα + 2[CS]µνρα + 2mB

(1)
[µνA

(2)
ρ]α

Gµνρσ = ∂[µCνρσ] + F
(1)δ
[µν B

(2)
ρσ]δ + 2[CS]µνρσ + 2mB

(1)
[µνB

(1)
ρσ]

Fαβ = mbαβ

Fµα = ∂µaα +mA(2)
µα

Fµν = F (4)
µν + F (1)δ

µν aδ +mB(1)
µν . (11)

Now, to consider a specific case, let us look at the reduced effective action in six spacetime

dimensions. We utilise the identity (8) and use various definitions from eqs.(9) and (11) to

write down the six-dimensional massive IIA action,

∫

d6x
√−g

[

e−2φ[ R + 4∂µφ∂
µφ− 1

12
H

(1)
µνλH

(1)µνλ +
1

8
Tr∂µM

−1∂µM − 1

4
F (i)

µνM
−1
ij F

(j)µν ]

−
√
G{ 1

2 · 2!

(

(F (4)
µν + F (1)δ

µν aδ +mB(1)
µν )2 + 2(∂µaα +mA(2)

µα)2 + (m bαβ)2
)

+
1

2 · 4!
[(∂[µCνρσ] + F

(1)δ
[µν B

(2)
ρσ]δ + 2A

(4)
[µ H

(1)
νρσ] + 2mB

(1)
[µνB

(1)
ρσ])

2

+4(∂[µB
(2)
νρ]α − F

(1)δ
[µν A

(3)
ρ]δα + 2A

(4)
[µ

(

F
(2)
νρ]α − F

(1)δ
νρ] bαδ

)

− 2aαH
(1)
µνρ

+2mB
(1)
[µνA

(2)
ρ]α)2

+6(F
(3)
µναβ + F (1)δ

µν cδαβ + 2A
(4)
[µ ∂ν]bαβ + 2

{

aα(F
(2)
µνβ − bβδF

(1)δ
µν ) − (α ↔ β)

}

+2m
{

B(1)
µν bαβ + A

(2)
µ[αA

(2)
β]ν

}

)2

+4(∂µcαβγ − 2 (aα∂µbβγ + cyclic perms. of α, β, γ)

+2m A
(2)
µ[αbβγ])

2 + (2m b[αβbγδ])
2] +

1

2
m2}

]

, (12)
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where φ = Φ̂ − 1
2
lnG is shifted dilaton field and the scalars coming from Gαβ and bαβ have

been combined to form the symmetric 8 × 8 matrix

M = ηM−1η =





G−1 −G−1b

bG−1 G− bG−1b



 , η =





0 I4

I4 0



 (13)

where η is O(4, 4) metric and I4 is 4-dimensional identity matrix. We mention in passing

that, if we had chosen to consider compactification on the d-dimensional torus, T d, then the

corresponding 2d × 2d symmetric M-matrix will appear, defined in terms of scalars coming

from the NS-NS sector and the metric η for O(d, d) group with off diagonal identity matrix

Id has to be introduced. Let us recall how various fields appear in the six dimensional action

(12), after the compactification. In the NS-NS sector we have dilaton field, φ, graviton, gµν ,

tensor field, B(1)
µν , eight vector fields, coming from ten dimensional metric and two index

antisymmetric tensor fields after compactification and sixteen scalar fields, ĝαβ and B̂αβ ,

appearing in matrix M which parameterize the coset O(4,4)
O(4)×O(4)

. On the other hand in the

R-R sector there are eight scalars from Âα and Ĉαβγ, seven vectors from Âµ and Ĉµαβ, four

2-rank potentials from Ĉµνα and one 3-rank potential Cµνλ. Let us recapitulate the symmetry

of the six dimensional effective action for the case when m = 0 following the works of Sen

and Vafa [26]. It was shown in ref.26 that the action is invariant under SO(4, 4) symmetry

after the transformation properties of scalar, vector, and tensor fields were defined. In fact

the equations of motion are invariant under a larger noncompact symmetry group SO(5, 5).

On this occasion, the massless case, one can combine dual of 3-rank tensor field Cµνλ with

seven other RR vector fields to form 8-dimensional spinorial representation, ψa
µ(1 ≤ a ≤ 8),

of SO(4, 4). Similarly, 3-form field strengths Gµνλα can be taken to be (anti)self-dual to

form another 8-dimensional spinorial representation, ψa
µνλ. Note that eight RR-scalars do

also transform under one of these spinor representation. The afore mentioned symmetry of

massless six-dimensional theory was exploited in [26] to generate type II dual pairs. However,

one can explicitly check that in the case of dimensionally reduced massive theory, the action

is no longer invariant under the above noncompact symmetry group.

The above action (12) is invariant under the following set of Stückelberg transformations

(although it is tedius calculation),

δA(4)
µ = −m Λµ,

δaα = −m λα,

δbαβ = 0,

δA(1)δ
µ = 0, δA(2)

µα = ∂µλα,

δB(1)
µν = ∂[µΛν] + F (1)δ

µν λδ,

δcαβγ = −2m λ[αbβγ],

7



δA
(3)
µαβ = −2m (Λµbαβ + A

(2)
µ[αλβ]),

δB(2)
µνα = −2m (Λ[µA

(2)
ν]α + λαB

(1)
µν ),

δCµνρ = −2m Λ[µB
(1)
νρ]. (14)

Here, Λµ and λα are vector and scalar gauge functions respectively. Note that in (14)

RR-scalars do also transform under Stückelberg transformations in lower dimensions.

Next, we present black hole solutions in five and four dimensions. While looking for black

hole solutions, we keep only dilaton and the two form field strengths in the action (12) and

set the other scalar and tensor fields to zero. First we consider, the following D-dimensional

action (in Einstein frame)

Sm =
∫

dDx
√−g

[

(Rg −
4

D − 2
∂µφ∂

µφ− 1

2 · 2!
e

−4
D−2

φFµνF
µν − 2λe

4
D−2

φ)

− 1

2 · 2!
e

2(D−4)
D−2

φFRµνF
µν
R − 1

2
m2e

2D

D−2
φ], (15)

We have added the term, λe
4

(D−2)
φ, to the action and the presence of this term can be

interpreted as a dilatonic potential which owes its origin from the NS-NS sector and might

appear due to some nonperturbative effects. The m2 piece comes from the massive ten

dimensional action (1) after compactification. In eq.(15) the gauge field strengths Fµν and

FRµν come from the NS-NS and RR sectors respectively.

The equations of motion are

▽µ ▽µ φ+
1

8
e−

4
D−2

φF 2 − D − 4

16
e

2(D−4)
D−2

φF 2
R − λe

4
D−2

φ − m2D

8
e

2D

D−2
φ = 0,

(Rµν −
1

2
gµνR) − 4

D − 2
(∂µφ∂νφ− 1

2
gµν(∂φ)2) − 1

4
e−

4
D−2

φ(2FµλF
λ
ν − 1

2
gµνF

2)

−1

4
e

2(D−4)
D−2

φ(2FRµλF
λ
Rν −

1

2
gµνF

2
R) +

1

2
gµν(2λe

4
D−2

φ +
1

2
m2e

2D

D−2
φ) = 0,

∂µe
−4

D−2F µν = 0,

∂µe
2(D−4)

D−2
φF

µν
R = 0. (16)

We seek maximally symmetric black holes solutions [28] and we choose constant dilaton

backgrounds φ = φc with the metric ansatz

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
D−2, (17)

where ǫD−2 and dΩ2
D−2 are the volume element and metric on unit SD−2, respectively. Our

first example is a black hole with the following choice of backgrounds: F = 0, FR =

0, with λ < 0; the solution (17) is Schwarzschild-Anti-deSitter(SAdS) space with

e2φc =
8

5

|λ|
m2

8



f(r) = 1 − 2M

r2
+

|λ|
10

[

8|λ|
5m2

] 2
3

r2 (18)

Note that the black hole solution is asymptotically an AdS space with effective cosmological

constant Λ = 2|λ|
5

[

8|λ|
5m2

] 2
3 .

The second example corresponds to the backgrounds: F 6= 0, FR 6= 0 and λ < 0 , with

the constraint

Q2
R

m2

2
=

8

5
Q2|λ|, (19)

is satisfied and the charges are defined as

Q =
1

2π2

∫

S3
∗e− 4

3
φF, QR =

1

2π2

∫

S3
∗e 2

3
φFR. (20)

The solution is the Reissner-Nordstrom-AntideSitter(R-N-AdS) black hole in 5-dimensions

e2φh =
1

2

Q2
R

Q2

f(r) = [1 − (
r+

r
)2][1 − (

r−

r
)2] +

|λ|
10

[

8|λ|
5m2

] 2
3

r2

∗e− 4
3
φF = Qǫ3, ∗e 2

3
φFR = QRǫ3,

r2
± = M ± (M2 − e2

2
)

1
2 , (21)

where M is a parameter, analog of mass (notice that the space is not asymptotically flat)

and e = 1
2

[

Q2
R

2
Q2

]
1
3

is related to the product of the two charges QR and Q defined through

eq.(20). It follows from eqs. (19) and (21) the string coupling at the black hole horizon

is given by the ratio of the two charges QR and Q, and thus can be adjusted to be small

through the judicious choice of the ratio of the two charges. Note that the spacetime in

(21) is not asymptotically flat but has the curvature equal to 5Λ. We see from eq.(21) that

near extremal blackhole solution can be obtained in the limit when λ goes to zero and the

two horizons come very close to each other, i.e., r+ ∼ r−. Moreover, for λ = 0, m = 0

above solution in (21) reduces to the Strominger-Vafa’s five-dimensional extremal black hole

solution [27] as expected.

We find a black hole solution in four dimensions for the case when only the 2-form

RR-field strength is nonzero and as is well known for D = 4, the gauge field couples to

gravity conformally. The black hole solution of the type (17) in four dimensions exists when

F = 0, FR 6= 0, λ < 0. The solution is R-N-AdS with

e2φh =
2|λ|
m2

,

9



f(r) = (1 − 2M

r
+
Q2

R

r2
) +

[

λ2

3m2

]

r2,

∗FR = QRǫ2, (22)

where QR = 1
4π

∫

S2 ∗FR.

Next we turn our attentions to obtain 4-brane solutions in six-dimensional model with

cosmological constant term in the RR sector, i.e. we set λ = 0 in this case. We choose

the background field configurations in (12) so that except dilaton and moduli matrix M are

nonvanishing and the resulting action takes the following form,

Sm =
∫

d6x
√−g

[

e−2φ

(

R + 4∂µφ∂
µφ+

1

8
Tr∂µM

−1∂µM

)

−
√
G

(

1

2 · 2!
(m bαβ)2 +

1

2 · 3!
(mb[αβbγδ])

2 +
1

2
m2

) ]

, (23)

Note that with the introduction of mass term, m, in the ten dimensional effective action (1),

the reduced action, with the specific choice of the backgrounds, gets a piece which amounts

to introducing a potential term involving the moduli Gαβ and bαβ , α, β = 6, 7, 8, 9. We seek

for a four-brane solution around bαβ = 0 and, in the Einstein frame, (gE
µν = e−φgµν) the

4-brane solution is

ds2
E = U

1
4 [−dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4] + U

5
4dy2,

e−
2
3
φ = U

1
2 , U = ±m|y − y0|,

Gαβ = δαβ e
2
3
φ, bαβ = 0, (24)

these background configurations satisfy all the equations of motion derived from (23). This

is a domain wall solution with a kink singularity (delta-function) at y = y0. The solution is

not asymptotically flat, however, for the choice, U = |y− y0| at large distances, eφ vanishes.

This solution can be oxidised to obtain 8-brane solution in ten dimensions.

To summarize our results: We considered ten dimensional effective action of type IIA

theory in the presence of cosmological constant term which arises as the dual of the ten

dimensional field strength coming from the RR sector. The action is dimensionally reduced

on a d-dimensional torus with the assumption that the fields do not depend on internal

coordinates. The gauge invariance properties of the reduced action is investigated and the

transformation properties of the fields in the NS-NS and RR sectors are derived in the

presence of the cosmological constant term. One of the interesting result is noticed in the

six dimensional theory. It is found, that in the case of the massive theory, in the presence of

this cosmological constant term, the SO(4, 4) invariance is lost; whereas the massless theory

respects this symmetry. Thus, the cosmological constant coming from the RR sector, in

this case, breaks the T-duality symmetry: SO(4, 4). Moreover, it is quite evident that, for

10



the six dimensional massive theory, the equations of motion do not respect the SO(5, 5)

symmetry unlike the masless case [26]. We recall that when one considers a four dimensional

heterotic string theory and introduces a cosmological constant (in this case assumed to

come from NS-NS sector as central charge deficeit), the equations of motion do not respect

the S-duality invariance, as was discussed in ref.16. We presented, in this note, classical

solutions of the effective action. In five dimensions we find black hole solutions in the

presence of cosmological constants. It is possible to get near extremal solutions for the

choice of small values of cosmological constant parameter, λ. In this context, we would like

to point out that our black holes are anti-de Sitter type and these solutions do not correspond

to asymptotically flat case. Therefore, one has to define the Hawking temperature with some

care. There have been attempts to understand thermodynamic properties of black holes with

(negative) cosmological constant term [29]. Brown, Creighton and Mann [30] identify the

thermodynamic internal energy of such a black hole and equate the entropy to 1
4

of the area

of the black hole event horizon. The temperature on the boundary can be defined through

thermodynamic relation between these two quantities, such that the black hole temperature,

TH , is κH

2π
times the redshift factor [31] for temperature in stationary gravitational field. The

desired relation is

2πT (R) =
κH

N (R)
(25)

where κH is the surface gravity at the horizon of the black hole and N (R) =
√−gtt, is

the lapse function. The temperature, accordingly, depends on the location of the boundary.

We have mentioned earlier that a massive type IIB effective action can be obtained in

nine dimensions from the ten dimensional type IIB theory through generalised dimensional

reduction due to Scherk and Schwarz. One can adopt the toroidal compactification for

that nine dimensional theory to obtain reduced effective action in a way similar to the one

presented recently [32] and explore various symmetries in the massive theory.

We conclude this note with some speculations about the cosmological constant problem

and how the string symmetries might resolve it. We recall that for the four dimensional

string effective action, the equations of motion are not invariant under S-duality when the

cosmological constant is nonzero. In the present case, we find that starting from the ten

dimensional type IIA theory, with the cosmological constant, when we consider the six

dimensional theory after dimensional reduction, the SO(4, 4) symmetry is broken. If we

turn the argument around, the SO(4, 4), a T-duality symmetry, if required to be a good

symmetry, will force us to set the cosmological constant to zero. Of course, we are talking of

toroidal compactification of type IIA to six dimension here and in the case of four dimensional

theory it was the heterotic string effective action [16]. Nevertheless, it is quite amusing that

in the two different cases, the constant is required to vanish (the symmetry requirements are

11



different too). Therefore, it is quite tempting to conjecture that the web of string dualities

will impose strong constraints on the four dimensional theory to tell us why the cosmological

constant is vanishingly small.
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