
ar
X

iv
:h

ep
-t

h/
96

03
11

0v
2 

 3
0 

A
pr

 1
99

6

IP/BBSR/96-18

March 1996

hep-th/9603110

S-duality and Canonical Transformations in String Theory

Jnanadeva Maharana∗ and Harvendra Singh†

Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India

Abstract

The symmetries of the tree level string effective action are discussed.

An appropriate effective action is constructed starting from the manifestly

SL(2,R) invarint form of string effective action introduced by Schwarz and

Sen. The conserved charges are derived and generators of infinitesimal trans-

formations are obtained in the Hamiltonian formalism. Some interesting con-

sequences of the canonical transformations are explored.
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It is now recognized that dualities play a crucial role in our understandings of string

theory and field theory. The target space duality [1,2], termed as T-duality, is known to be a

symmetry of the string effective action and holds good order by order in string perturbation

theory. The S-duality allows us to relate the strong and weak coupling phases [3]. The

Olive-Montonen conjecture [4] implies that the weak coupling and strong coupling regimes

of gauge theories are connected through the duality transformation and these results were

generalized to supersymmetric cases subsequently [5]. Recently, considerable attention has

been focussed to understand various salient features of SUSY Yang-Mills theories in this

context [6].

It is well known that dilaton has a special status in string theory. On the one hand

it appears as a massless excitation of bosonic as well as superstring like other massless

excitations such as graviton, antisymmetric tensor and gauge bosons and on the other hand

the vacuum expectation value of this field is the loop expansion parameter of string theory

and eφ is identified as the string coupling constant. We recall that, in four space-time

dimensions, the dual of the antisymmetric tensor field is a pseudoscalar field, λ1, identified

with axion. Thus we can define a complex field λ = λ1 + i λ2, λ2 = e−φ, and under an

SL(2,R) transformation

λ → λ′ =
a λ + b

c λ + d
, a d − b c = 1.

In fact SL(2,R) breaks to discrete S-duality subgroup SL(2,Z) and this is expected to be an

exact symmetry of string theory. Indeed, this symmetry can only be tested nonperturba-

tively. It is well known that the equations of motion of the string effective action, with some

constraints 1, are invariant under S-duality transformations whereas the action is invariant

under T-duality and/or O(d,d) transformations.

There have been efforts to study the duality properties of σ-model string world sheet

1 The equations of motion do not remain invariant under S-duality in presence of cosmological

constant term in the string effective action in certain cases as has been discussed in [7]
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action through canonical transformations [8–11]. It is worth mentioning that the local

symmetry properties of string theories were studied by implementing suitable canonical

transformations in the frame work of BRST Hamiltonian path integral formalism [12,13].

The purpose of this article is to investigate the symmetries of the four-dimensional heterotic

string effective action and construct generators of the S-duality transformations and explore

some interesting properties of the action.

In what follows, we consider a four-dimensional string effective action derived by dimen-

sionally reducing 10-dimensional heterotic string effective action on six-dimensional torus,

T 6 [14]:

S =
∫

d4x
√
−G e−φ(RG + Gµν∂µφ∂νφ +

1

8
Tr∂µ M−1∂µM

−1

4
F i

µν (M−1)i j F j µν − 1

12
Hµνλ Hµνλ). (1)

M is defined in terms of scalar fields arising from dimensional reduction of metric, antisym-

metric tensor and 16 gauge fields ( belonging to the Cartan subalgebra of the gauge field

sector of heterotic string theory ). Note that M parametrises the coset O(6,22)
O(6)×)(22)

and φ is

the shifted dilaton. The field strengths are

Hµνλ = ∂µBνλ − 1

2
Ai

µLi jF j
νλ + cyclic perm.

F i
µν = ∂µAi

ν − ∂νAi
µ , i = 1, ..., 28,

Ai
µ are 28 gauge fields which transform as vectors under O(6,22). The action (1) is manifestly

invariant under O(6,22) global noncompact transformations given by

M→ Ω M ΩT ,

φ→ φ, gµν → gµν , Bµν → Bµν , Ai
µ → Ωi

j Aj
µ,

ΩLΩT = L, L =













0 I6 0

I6 0 0

0 0 I16













, (2)

L is the O(d,d) metric, where Id is d-dimensional identity matrix. Note that the metric

appearing in (1) is the string σ-model metric and scalar curvature, RG, is computed with
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respect to this metric. Our goal is to study S-duality properties of this four dimensional

theory; for this purpose it is more convenient to go over to the Einstein-frame metric

Gµν → gµν = e−φGµν .

We mention in passing that equations of motion obtained from the action ( derived from

(1) after above rescaling of the metric ) are invariant under S-duality and that action itself

does not respect S-duality invariance. However, one can follow Schwarz and Sen [15] and

reexpress the action in manifestly SL(2,R) invariant form by introducing an appropriate set

of gauge fields. ( From now on, we shall define the action in the Einstein frame and gµν will

stand for the Einstein metric. )

The action (1) can be rewritten in manifestly SL(2,R) invariant form as

S = S1 + S2 + S3 + S4, (3)

where Sa, a = 1, ..., 4 terms have following contents,

S1 =
∫

d4x
√
−g (R +

1

8
Tr(∂µM

−1∂µM)),

S2 =
1

4

∫

d4x
√
−g tr(∂µM−1∂µM),

S3 = −1

4

∫

d4x
√
−g F (m,α)

µν Ĝmn M−1
αβF (n,β) µν ,

S4 = −1

4

∫

d4x
√
−g F (m,α)

µν B̂mn ηαβF̃ (n,β)µν . (4)

Note that here and every where gµν denotes four-dimensional Einstein metric; space-time

indeces µ, ν = 0, ..., 3, internal indices m, n = 1, ..., 6 and SL(2,R) indices (α, β) run over

(1, 2). The moduli matrix M parametrizes the coset O(6,6)
O(6)×O(6)

, matrix M parametrizes the

coset SL(2,R)
U(1)

. F (m,α)
µν represents a SL(2,R) covariant set of gauge fields which come from the

compactification of the heterotic string on the torus and the auxiliary U(1) fields. These

set of gauge fields transform as a vector under SL(2,R) transformations. We note that the

16 abelian gauge fields of 10-dimensional heterotic string effective action have been set to

zero in the above action (3) for the sake of convenience. Now, the action (3) does not have

manifest O(d,d) invariance; however, equations of motion still exhibit O(d,d) invariance.
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We refer the reader to [15] for details of the construction of the action (3). The gauge field

strength and the matrix M are defined below,

F (m,α)
µν = ∂µA(m,α)

ν − ∂νA
(m,α)
µ , F̃ µν (m,α) =

1

2
√−g

ǫµνλσ F
(m,α)
λσ (5)

M =
1

λ2





1 λ1

λ1 |λ|2



 , λ = λ1 + iλ2, (6)

where M is a SL(2,R) matrix satisfying the constraints,

MT = M, MTηM = η, η =





0 1

−1 0



 , (7)

η being the SL(2,R) metric. As was shown in [15] the above action has explicit invariance

under the following SL(2,R) transformatioms,

M → ωT M ω, Aµ → ωT Aµ, (8)

where ω ∈ SL(2, R) matrix and satisfies ωTη ω = η. It was noted earliar that the invariance

of the action is achieved by doubling the number of gauge fields.

In what folllows, we present the transformation properties of the fields under infinitesimal

SL(2,R) group. These transformations are

ω = 1 + ǫ,

δM = ǫT M + M ǫ, δAµ = ǫT Aµ, (9)

where infinitesimal 2 × 2 matrix ǫ satisfies the constraint ǫT = η ǫ η. All other fields remain

invariant under these transformations. If Σi are the generators of SL(2,R) then we can

write,

ǫ = αi Σi, i = 1, ..., 3, (10)

αi’s being infinitesimal constant parameters. Σi have following 2× 2 matrix representation;

one can use the combination ( σ3, σ1, iσ2 );

Σ1 =





1 0

0 −1



 , Σ2 =





0 1

1 0



 , Σ3 =





0 1

−1 0



 , (11)
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which satisfy the algebra:

[Σi, Σj ] = 2fk
ij Σk, (i = 1, 2, 3)

and

Tr(ΣiΣj) = 2hij

where hij = diag(1, 1,−1) and (Σ1)2 = 1, (Σ2)2 = 1, (Σ3)2 = −1. The fk
ij ’s are the structure

constants satisfying antisymmetric property fk
ij = −fk

ji. The nonvanishing ones are

f 3
12 = 1, f 1

23 = −1, f 2
31 = −1.

These matrices also satisfy following relation,

ΣiT ηΣj = −hij η.

The action (3) being invariant under finite SL(2,R) transformations (8), also respects in-

variance under infinitesimal ones. Consequently, we are in a position to reveal the underlying

conservation laws. Let us proceed to construct “generating functions” of the infinitesimal

SL(2, R) transformations.

We note that S1, appearing in (3), remains unaffected by SL(2,R) transformations since

it involves the metric gµν . Therefore from now on, we shall not explicitly mention the action

S1 in our discussions; although the full action contains contributions of S1. We now examine

the variations of S2, S3 and S4 under (9);

Notice that any matrix P satisfying the constraint P T η P = η can be written in terms

of the generators Σi as follows,

P = p0 I2 + pi Σi, i = 1, ...3. (12)

Note that there are only three independent parameters in (12) due to the constraint on P .

While an SL(2,R)
U(1)

matrix M̄ = η M can be expressed as

M̄ = mi Σi (13)

where only two of the mi’s are independent due to the constraint m2
3 − m2

2 − m2
1 = 1 which

follows from the constraints on M in (7). Thus we can rewrite the action S2 as
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S2 = −1

2

∫

d4x
√
−g hij ∂µmi ∂

µmj , (14)

where the metric h = diag(1, 1,−1), m1 = λ1

λ2

, m2 = |λ|2−1
2λ2

and m3 = |λ|2+1
2λ2

2. Correspond-

ingly, one can deduce that the infinitesimal SL(2,R) transformation of mi is

δmk = fk
ij αi mj. (15)

Explicitly

δ













m1

m2

m3













=













0 −α3 α2

α3 0 −α1

α2 −α1 0

























m1

m2

m3













= −
3
∑

i=1

αi Γi













m1

m2

m3













, (16)

where the representation for {Γi} is;

Γ1 =













0 0 0

0 0 1

0 1 0













, Γ2 =













0 0 −1

0 0 0

−1 0 0













, Γ3 =













0 1 0

−1 0 0

0 0 0













, (17)

which are traceless and satisfy the following algebra:

[Γi, Γj] = fk
ijΓ

k

and

Tr[Γi Γj] = 2hij ,

ΓiT = h Γi h.

Action in (14) is invariant under (16).

Let us now turn to the action S3, we can write the action in the following form

2 we already know that mi’s depend on two independent fields λ1 and λ2. It is a reflection of the

fact that the matrix M parametrizes the coset SL(2,R)
U(1) .
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S3 =
∫

d4x
√
−g mi Ki, (18)

where

Ki =
1

4
F (m,α)

µν Ĝmn (Σi η)αβ F (n,β)µν . (19)

Using the SL(2,R) transformations for vector fields A(m,α)
µ we derive the transformation on

Ki to be the following;

δKi = −{
∑

k

αk (h Γk h)}ij Kj . (20)

Note that Ki = hijKj . Then the covariant Ki will transform as

δKi = −(
∑

k

αk Γk)ij Kj . (21)

Therefore, we can rewrite

S2 + S3 =
∫

d4x
√
−g

(

−1

2
hij ∂µmi ∂

µmj + mi Kj hij

)

. (22)

which is invariant under (16) and (21). It can be checked that S4 also remain invariant.

From here the canonical momentum conjugate to mi is πi = ∂0 mi, which transforms as

δπi = (α .ΓT )ij πj. (23)

We remind the reader that a classical mechanical system in the Hamiltonian phase space

formalism is described by a set of generalised coordinates {qi} and conjugate momenta {pi}.

Under infinitesimal canonical transformations they transform as

q′i = qi − α .

(

∂Φ(q)(q, p)

∂pi

)

,

p′i = pi + α .

(

∂Φ(q)(q, p)

∂qi

)

, (24)

where Φ(q) is the generator of the transformation. Thus for the case of SL(2,R), we can

construct the generators of infinitesimal transformations to be

Φk
(m)(m, π) =

∫

πj (Γk)ji mi. (25)
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Similarly, the canonical momentum conjugate to A(m,α)
µ is ( here we suppress the indices for

convenience)

πµ = ĜM−1 F 0µ + B̂ η F̃ 0µ,

and it transforms as

δπµ = −α . Σ πµ. (26)

Therefore, the corresponding generating function in the gauge field sector is given by

Φi
(A)(Aµ, πµ) = −

∫

πµ (m,α) (Σi)αβ A(m,β)
µ . (27)

We can now write down the complete generating function for canonical transformation in

the phase space of the full theory to be the sum of above two generating functions. That is

Φi = Φi
(m) + Φi

(A). (28)

Now, we shall obtain conserved charges associated with the infinitesimal SL(2,R) trans-

formations. We obtain the conserved current for the scalars mi to be

J
k,µ
(m) = mi (Γ

k)ij ∂µmj (29)

and that for gauge fields Aµ is

J
i,µ
(A) = Aν ΣiT ĜM−1 F µν . (30)

Corresponding Noether charges are

Qa
(m) =

∫

d3x
√
−g miΓ

a
ijπ

j ,

Qa
(A) =

∫

d3x
√
−g Aν ΣaT πν , (31)

respectively. They satisfy the following algebra,

{Qa
(m), mi} = Γa

ij mj ≡ (δmi)
a,

{Qa
(A), A

(m,α)
µ } = Σa

αβ A(m,β)
µ ≡ (δA(m,α)

µ )a. (32)
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At this point we can discuss some properties of the generating functional which follow

from the invariance of the classical path integral under the canonical transformations in

the Hamiltonian approach. One can write down the generating functional for correlation

functions, Z[ζi, J
µ], in the phase space,

Z[ζ, J ] =
∫

D[mi, πi, Aµ, πµ] e{i SH [m,A,π]+(source terms)} (33)

where source terms are

source terms = i

∫

(miζi + A(m,α)
µ J

µ
(m,α)), (34)

with ζi and J
µ
(mα) being the classical sources and summation over repeated indices is under-

stood. D[mi, πi, Aµ, πµ] collectively stands for the Hamiltonian phase space measure and SH

is the Hamiltonian action.

Now we adopt the procedure of Veneziano, further elaborated by Maharana and

Veneziano, to exhibit some interesting properties of the partition function [12,13]. Note that

when we implement infinitesimal canonical transformation, the variables in the Hamiltonian

phase space change according to eq.(24). The Hamiltonian action SH and field variables

appearing in source terms (34) transform accordingly which can be compensated by a shift

in the sources. On the other hand, the phase space measure remains invariant, modulo

anomaly terms. In ref. [12] and [13], this property was exploited to derive Ward identities.

It is easy to see that for the problem at hand the following shifts of the sources

δζi = −{αk Γk}ijζj, δJ
µ
(m,α) = {αkΣk}αβJ

µ
(m,β). (35)

enable us to derive a relation which is satisfied by the generating functional

Z[ζ, J ] = Z[ζ + δζ, J + δJ ]. (36)

Now following the arguments of Maharana and Veneziano we are led to

∫

d4x



− δZ

δζi(x)
(Γk)ijζj(x) +

δZ

δJ
µ
(mα)(x)

(Σk)αβJ
µ
(mβ)(x)



 αk = 0. (37)
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We mention in passing that the Hamiltonian approach is an elegant way to derive identities

like (37) which can also be obtained in the Lagrangian formulation [16]. We recall that an

equation like (37) was the starting point of the derivation of gravitational and gauge Ward

identities in ref. [12] where the infinitesimal parameter was a local one. For the case at

hand we are dealing with global symmetries and the infinitesimal parameters appearing in

(37) are independent of spacetime. Notice, however, that the relation holds for arbitrary

infinitesimal parameters and therefore, we can differentiate this equation with respect to αk

and then set αk = 0. Thus we arrive at

∫



−δZ

δζi

(Γk)ijζj +
δZ

δJ
µ
(mα)

(Σk)αβJ
µ
(mβ)



 = 0. (38)

Now we can functionally differentiate (38) with respect to the sources ζi and J
µ
(m,α) several

times and then set these sources to zero. In this process, we shall obtain interesting relations

involving correlation functions which will be analogous to the Ward identities derived in [12].

We mention that these are not the Ward identities one derives for local symmetries; but our

relations are obtained in the context of global symmetries.

To summarise, we have studied the SL(2,R), identified as the S-duality group, transfor-

mation properties of the string effective action. We start from an effective action introduced

in [15] which contains an appropriate set of gauge fields to be manifestly SL(2,R) invariant.

The actions S2 and S3 are reexpressed in a suitable form so that we can exploit the sym-

metry properties to derive eq.(38). The conserved currents are obtained and the generators

of canonical transformation responsible for infinitesimal transformations are identified. We

obtain a set of relations for correlation functions by exploiting the symmetry properties of

the effective action under canonical transformations.
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