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Globally clustered chimera states in delay–coupled populations
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We have identified the existence of globally clustered chimera states in delay coupled oscillator
populations and find that these states can breathe periodically, aperiodically and become unstable
depending upon the value of coupling delay. We also find that the coupling delay induces fre-
quency suppression in the desynchronized group. We provide numerical evidence and theoretical
explanations for the above results and discuss possible applications of the observed phenomena.
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The existence of chimera states (states characterized
by the separation of identical oscillator groups into syn-
chronized and desynchronized subgroups) in coupled os-
cillator populations came as a surprise in the study of
synchronization phenomenon in complex systems. Since
its discovery [1, 2], various theoretical and numerical de-
velopments have been reported on the stability of chimera
states and their existence in systems with varied struc-
tures [2, 3], including time delay [4]. By and large, syn-
chronization in coupled oscillator systems has been ana-
lytically and numerically investigated in a rigorous man-
ner over the past years [5, 6]. Possible routes to global
synchronization and methods to control synhronization
have also been proposed [7, 8]. However, complete un-
derstanding of the effects induced by coupling delay in
synchronization of coupled oscillator systems is still an
open problem. The consideration of delayed coupling
is vital for modeling real life systems. For example, in
a network of neuronal populations, there is certainly a
significant delay in propagation of signals. In addition
there can also be synaptic and dendritic delays. Other
examples include, finite reaction time of chemicals, finite
transfer time associated with the basic mechanisms that
regulate gene transcription and mRNA translation.

In this paper, we demonstrate that coupling delay can
induce globally clustered chimera (GCC) states in sys-
tems having more than one coupled identical oscillator
(sub) populations. By a GCC state, here we mean a state
where the system, which has more than one (sub) popu-
lation, splits into two different groups, one synchronized
and the other desynchronized, each group comprising of
oscillators from both the populations (note that this is
in contrast to the chimera state where one of the popu-
lations is synchronized while the other is desynchronized
[2]). The system under study is a system of two pop-
ulations of identical oscillators coupled through a finite
delay, represented by the following equation of motion

θ̇i
(1,2)

= ω −
A

N

N∑
j=1

f(θ
(1,2)
i (t) − θ

(1,2)
j (t − τ1))

∓
B

N

N∑
j=1

h(θ
(1,2)
i (t) − θ

(2,1)
j (t − τ2)). (1)

A typical example of such a system is the two groups of
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FIG. 1: (Color online) Occurrence of (stable) GCC in system
(1) as explained in the text. Top panel: Global clustering phe-
nomenon - synchronized and desynchronized (frequency sup-
pressed) groups have oscillators from both the populations.
Bottom panel: One of the populations is synchronized and
the other is desynchronized (frequency suppressed). Green
(light gray) and red (dark gray) lines represent oscillators
in the first and the second populations, respectively. Here
{f, h} = {sin(θ), cos(θ)}, τ1 = nτ2 = nτ with n = 1 (top
panel) A = 1.2, B = 1 and τ = 2, (bottom panel) A = 1.6,
B = 1 and τ = 1.

interacting neurons in the brain such as those in the cor-
tex and the thalamus [9]. Here ω is the natural frequency
of the oscillators in the populations and it is the same for
all oscillators in both the populations making all of them
identical. However, the two populations are distinguished
by the initial distribution of their phases; the phases are
uniformly distributed between 0 and π for the first pop-
ulation and between π and 2π for the second population.
A and B refer to coupling strengths within and between
populations, respectively. The functions f and h are 2π–
periodic that describe the coupling. N refers to the size
of the populations. The complex mean field parameters

X(1,2) + iY (1,2) = r(1,2)eiψ
(1,2)

= 1
N

∑N

j=1 eiθ
(1,2)
j , charac-

terize synchronization within a population but not global
clustering. τ1 and τ2 quantify coupling delay within and
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FIG. 2: Illustration of a breathing GCC state with A = 0.3,
B = 0.2, n = 1, {f, h} = {sin(θ), sin(θ)} and initial con-
dition close to the GCC state. Grey and black lines repre-
sent the long and short–periodic breather with τ = 3.6 and
τ = 4, respectively. Order parameter rDS and the correspond-
ing phases θDS

i (see text) are plotted against time in the top
and bottom panels, respectively.

between populations, respectively.

The investigation is motivated by the numerical discov-
ery of the existence of GCC states in a system of two iden-
tical populations that are delay–coupled and are given by
Eq. (1) (see Fig. 1). We found that coupling delay can
induce splitting of identical delay–coupled populations
into desynchronized frequency suppressed (vanishing os-
cillating frequencies) clusters and synchronized clusters.
This splitting can occur either within the populations
or between the populations. The former represents the
chimera and the latter is the GCC, as noted earlier. Fur-
ther, the GCC state need not be stable but it can either
breathe or can be unstable as will be discussed later.

For illustrative purpose, we simulate system (1) using
Runge–Kutta fourth order routine with a time step of
0.01 (the results are not affected by decreasing the time
step below 0.01). For all the numerical plots shown, we
allow a transient time of 2000 units and take N = 32
(the results have been verified to be independent of the
size of the system) and τ1 = nτ2 = nτ , where n is an ar-
bitrary constant. We further found that the GCC need
not be stable but can breathe depending upon the value
of the coupling delay. Since the coherence parameter
r quantifies synchronization within a population, it can
also be used to quantify a breathing or unstable chimera.
However, as mentioned earlier, global clustering cannot
be quantified using this order parameter. Therefore, in
order to quantify a breathing GCC numerically, after al-
lowing the transients, we identify those oscillators whose
θis are equal for all times and neglect them so as to end
up with the desynchronized group (that comprises oscil-
lators from both the populations, whose size is NDS) and
calculate its order parameter as

rDSeiψ
DS

=
1

NDS

NDS∑
j=1

eiθ
DS
j , (2)
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FIG. 3: Top panel: Aperiodic breathing GCC with τ = 5
and NDS = 17; Bottom panel: Unstable breathing GCC
with τ = 4 and NDS = 12, (left) order parameter rDS and
(right) the corresponding phases θDS

i of the desynchronized
group. Here A = 0.6, B = 0.3, n = 1, N = 32 and
{f, h} = {sin(θ), cos(θ)}.

where NDS = 2N − NS. This order parameter rDS can
be used to quantify both the chimera and GCC states
and also valid for cases where there exists more than one
synchronized cluster. Such multi-cluster states also occur
for model (1), the details of which will be published else-
where. While a GCC is breathing, one of the groups is
completely synchronized while the desynchronized group
continuously fluctuates. Fig. 2 illustrates breathing GCC
where we plot the order parameters rDS for two different
values of τ in the top panel. The grey line represents a
long period breather for τ = 3.6 where switching occurs
between frequency suppressed synchronized state and the
desynchronized state. Increasing τ further to 4 results in
a short period breather (the black line) where the desyn-
chronized state oscillates similar to the previous case but
in a faster manner.

The GCC can also be unstable where the oscillators
in the desynchronized group remain desynchronized for
a while after which this state loses its stability and all the
oscillators lock to one phase. Thus at this stage the GCC
loses stability and a two clustered synchronized state be-
comes stable. Therefore, finally the system goes from a
GCC to a state with two separate synchronized clusters.
This phenomenon is depicted in Fig. 3, where for a suffi-
ciently large value of τ the GCC breathes in an aperiodic
manner (top panel). On decreasing τ , this breather loses
stability and the desynchronized group entrains itself to a
synchronized state (bottom panel). The regions of occur-
rence of these phenomena in the phase plane, obtained
numerically corresponding to Fig. 3, is shown in Fig. 4.
The black line is the stable limit cycle attractor of the
synchronized group (which is always the same whatever
the value of the entrainment frequency of the synchro-
nized group is). The grey region represents the aperiodic
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breather. The GCC is unstable while in the white region
between these two; a GCC in this white region is at-
tracted to the limit cycle and a stable synchronized state
is established (as shown in Fig. 3 (bottom panel)). A
GCC in the innermost white region is always stable. The
sizes of all these regions change with respect to system
parameters.

Thus we find that, for a given set of system parame-
ters, increasing/decreasing (depending on the values of
the parameters A, B and τ , since the behaviour repeats
itself periodically as will be discussed later under Fig. 5)
the coupling delay parameter τ results in the following
sequence of GCC dynamics: stable GCC, long–period
breather, short–period breather, aperiodic breather and
unstable GCC leading to global synchronization. Further
increase in τ from the global synchronization state leads
to a stable GCC by following the above mentioned route
in the reverse order.

If we are able to discriminate the regions of stabil-
ity of the synchronized and the desynchronized states,
we will be able to expect the occurrence of GCC near
these boundaries with reference to the numerical ob-
servations. This expectation also depends on the fact
that the stability of the GCC state changes periodi-
cally with respect to τ incorporating regions of syn-
chronization and desynchronization. In order to gain a
better understanding of the numerically observed phe-
nomena, we analyze system (1) in the continuum limit
N → ∞. We write down the continuity equation [5]
for the density of phases ρ and then express ρ and
{f, h} as Fourier expansions, ρ =

∑
∞

k=−∞
ρke

ikθ and

{f, h} =
∑

∞

k=−∞
{f, h}ke

ikθ . Now by considering only
the non-trivial kth Fourier mode we arrive at the eigen
value of that mode λk = Āe−λkτ1 ± B̄e−λkτ2 − iω0 which
characterizes the stability of the desynchronized state.
Here Ā = ikfkA, B̄ = ikhkB and ω0 = k(ω−Af0∓Bh0).
Assuming λk = −iβ/τ , one can find the kth stability re-
gion in a parametric form as

B = ±kA
|fk| cos(nβ − αf )

|hk| cos(β − αh)
; τ = β/[k(ω0

+A|fk| sin(nβ − αf ) ± B|hk| sin(β − αh)]
−1, (3)

where {f, h}k = −i|{f, h}k|e
iα{f,h} and τ1 = nτ2 = nτ .

The overall stability of the desynchronized state is deter-
mined by the overlap of these domains for all the modes.

Now it is also of importance to investigate the stability
of the synchronized state for which we consider the solu-

tion to the synchronization state θ
(1,2)
i = Ωt. With this

solution, system (1) becomes Ω = ω−Af(nΩτ)∓Bh(Ωτ).
Along with this relation, the condition Af ′(nΩτ) ±
Bh′(Ωτ) > 0 should also be satisfied in order that the
synchronized state is stable. This provides the stability
regime

B =
∓Af ′(nβ)

h′(β)
; τ =

β

ω − Af(nβ) ∓ Bh(β)
, (4)

where β = Ωτ . The parametric forms (3) and (4) sepa-
rate the desynchronization and synchronization regimes.

FIG. 4: Phase portraits showing the limit cycle of the syn-
chronized state (the black line) and a breathing GCC (grey
region). The white region between these two represents un-
stable GCC. The innermost white region represents a sta-
ble GCC. Parameter values correspond to Fig. 3. Here
X = r cosψ and Y = r sinψ, where r and ψ are the mean-field
parameters.

A homogeneous perturbation θ
(1,2)
i = Ωt+∆θ pertain-

ing to the case when all the phases remain equal while
their rotation becomes nonuniform in time to the syn-
chronization regimes leads to the following equation for
stability ∆θ̇ = −(Af ′(nβ)±Bh′(β))∆θ+Af ′(nβ)∆θnτ∓
Bh′(β)∆θτ . The stability condition for n = 1 is [10]

∫
∞

t0

[Af ′(β) ± Bh′(β) − |Af ′(β) ∓ Bh′(β)|]dt = ∞. (5)

The stability of the global synchronization state is de-
termined by the integrand in this condition. From equa-
tions (3)-(5) it becomes evident that the stability of the
synchronized/desynchronized state switches periodically
between stable and unstable states depending on the
signs of A and B, since h and f are 2π periodic. This
is obvious from Fig. 5, where on increasing τ , regions
of synchronization and desynchronization alternate each
other. This is in agreement with the numerical analysis
as pointed out earlier and hence forms a theoretical ba-
sis. The GCC state can be expected near the stability
boundaries shown in Fig. 5. This is evident from the
numerical results depicted in Figs. 1 and 3.

The knowledge about synchrony control methods is
very important because synchronization is desirable som-
times as in neuronal networks while they support cog-
nition via temporal coding [9, 11] and in the case of
lasers and Josephson junction arrays [12]. However, syn-
chronization can also be dangerous in cases like epileptic
seizures [13], Parkinson’s tremor [14], or pedestrians on
the Millennium Bridge [6]. For example, in [9] a thala-
mocortical model of asymmetrically interacting neuronal
populations has been proposed to simulate the state of
emergence from deep to light anæsthesia. The model
results revealed the fact that successful coding of infor-
mation and consciousness is achieved by the occuurrence
of global synchronization between the thalamus and the
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FIG. 5: (Color online) Stability regions as obtained from
theory with {f, h} = {sin(θ), cos(θ)}. I. Desynchronization,
II. Synchronization of the populations individually and III.
Global synchronization regions. ◦: according to (3), +: ac-
cording to (4) and dotted line: according to (5). The black
and grey symbols correspond respectively to the + and signs
in equations (3)-(5). Note that the boundaries obtained by
the stability analysis on the incoherent (◦) and the synchro-
nization (+) regimes are exactly one and the same. The red
symbols are the locations of the GCC as from the numerical
examples in Figs. 1 and 3. •, × and ⊤ represent the stable,
unstable and the breathing GCC respectively.

cortex. Further, it was eludicated that consciousness
and cognition are kept away during deep anæsthesia be-
cause of the lack of phase locking between the cortex and
the thalamus. This is one example of a situation where

global clustering/synchronization and hence controlling
the same prove to be very crucial. There are various
methods to control synchronization (even its rate and
velocity). However if we could handle it all with one
parameter, it makes life much easier.

In summary, a new type of globally clustered chimera
states have been identified in delay coupled populations –
a system of two identical, delay–coupled populations split
into two groups, one synchronized and the other desyn-
chronized, each group having a fraction of oscillators from
both the populations. We have found that this state need
not be stable always but can breathe periodically, aperi-
odically or become unstable, depending upon the value of
coupling delay. A modified version of the order parame-
ter is introduced in order to capture these phenomena. In
the presence of coupling delay, frequency suppression is
induced in the desynchronized group. We have also pro-
vided analytical explanations of the observed effects on
the basis of linear stability theory. The illustrative model
presented here can be considered as a phenomenological
model of oscillatory neural networks. Since coupling de-
lay induces globally clustered chimera, this can prove to
be a mechanism for temporal coding of information and
cognition and also for memory storage in the nervous
system.
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