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Event–related desynchronization in diffusively coupled oscillator models
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We seek explanation for the neurophysiological phenomenon of event related desynchronization
(ERD) by using models of diffusively coupled nonlinear oscillators. We demonstrate that when the
strength of the event is sufficient, ERD is found to emerge and the accomplishment of a behav-
ioral/functional task is determined by the nature of the desynchronized state. We illustrate the
phenomenon for the case of limit cycle and chaotic systems. We numerically demonstrate the oc-
currence of ERD and provide analytical explanation. We also discuss possible applications of the
observed phenomenon in real physical systems other than the brain.
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Brain oscillations at different frequency bands
(gamma, theta, beta, alpha, delta waves and so on) are
one of the most crucial mechanisms that control higher
level information processing, motor control and large
scale integration. Event–related oscillatory responses of
the brain are characterized by means of Event–related
desynchronization/synchronization (ERD/ERS) of neu-
ronal oscillations as observed in Electroencephalogram
(EEG) or Magnetoencephalogram (MEG). ERD causes
a relative decrease in the intensity while ERS causes an
increase in the intensity of a specific frequency band.
Both ERS and ERD are important in deciding the ac-
complishment of a behavioral/functional task [1]. Exam-
ples include increase in alpha (10-12 Hz) intensity during
auditory memory encoding with its suppression during
memory retrieval and voluntary movement resulting in a
circumscribed desynchronization in the upper alpha and
lower theta bands [1].

Recently, Attention-Deficit/Hyperactivity Disorder
(ADHD) is found to be associated with ERD in the alpha
band (8-12 Hz) and ERS in the beta band (15-30 Hz) [2].
Dramatic decrease in delta band (1-4 Hz) intensity and
an increase in theta (4-8 Hz) intensity is reported to be
a signature of transition from deep to light anesthesia [3]
(see Fig. 1). During light anesthesia sensory (external)
stimuli from the other parts of the body perturb the syn-
chronized delta oscillations thereby causing desynchro-
nization in the delta band as shown in Fig. 1 (left) af-
ter the transition time. The desynchronized group of
neurons contribute to the emergence of theta band os-
cillations with relatively lesser intensity than those of
the delta band oscillations. A model to simulate this
experimental observation concluded that some neuronal
oscillators desynchronize from the thalamus population
(delta band) and synchronize with the cortical popula-
tion (theta band) for this transition to occur [4]. Both
ERS/ERD occur due to incoming signals that represent
the awaiting task, which may be a motor function, mem-
ory tasking or signals from auditory and/or visual cor-
tex that need recognition. Task-specific experimental
observations have been made in this direction [1] and
task/brain wave - specific detailed models have been pro-
posed for ERD/ERS [5]; however a more general phe-

FIG. 1: (Color online) Experimental observation of dramatic
diminution of EEG-delta intensity (left) and emergence of
EEG-theta intensity (right) during transition from deep to
light anesthesia, the transition time is around 40 mins [3].
Note the substantial difference in the intensities of the delta
and theta oscillations. Reproduced from Musizza et al. [3],
with permission.

nomenological explanation/macroscopic model of the dy-
namics of ERD is still lacking. We provide here such a
dynamical model to this understanding which is very cru-
cial for unfolding the complexity manifold of the brain.

In this Letter, motivated by the phenomenon of ERD,
we analyze a system of diffusively coupled population
of oscillators subject to an event. Here, by event we
mean a dynamic signal from outside the system or may
be from a different region in the same system that is
characteristically different from the rest of the system.
Such a system may be represented by

Ẋj = F(Xj , ǫj) +
A

N

N
∑

k=1

(Xk − Xj) + BY (1)

for j = 1, 2, . . . , N . Here N represents the size of the
system and we take N = 1000 for all our numerical sim-
ulations. The state vector of the jth element is repre-
sented by Xj . A is the strength of the coupling be-
tween the oscillators. Y represents the state vector of
the dynamic event which is assumed to evolve according
to Ẏ = G(Y, ǫe) and B is the unidirectional coupling
strength of the event. Here ǫe represents the parame-
ters of the external system. Typical examples include
signals to the brain representing a functional event from
the extremities, stimulated microwave current driving a
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FIG. 2: The occurrence of ERD in a system of coupled Rössler
oscillators. Here A = 0.7, a = 0.1, b = 0.5, c = 4 and
ae = 0.1, be = 0.1 and ce = 9. (top) B = 0.1, (mid) B = 0.18
and (bottom) B = 0.23.

system of spin torque nano–oscillators, polariton conden-
sates in semiconductor micro-cavities that interact both
among themselves and with the reservoir, quantum co-
herence of condensates and so on [6]. It is well known
that for B = 0, sufficient coupling strength A > Ac

causes synchronization in the system leading to Xj = X,
j = 1, 2, . . . , N . In this state all the oscillators behave
as one. Now on increasing the strength of the exter-
nal stimulus (the event) one would expect the synchro-
nized system, which behaves as a single oscillator, to syn-
chronize with the external stimulus. So far, most of the
studies have confirmed that, for increasing the stimulus
strength B, all the oscillators in the system follow certain
route/bifurcation patterns to enter into synchronization
with the external stimulus [7].

However the surprising observation which we report
here is that, not all but some of the oscillators in the
system separate themselves from the synchronized state
and either become desynchronized or synchronized (with
an entrainment frequency different from that of the main
group) before the whole system of oscillators enter into
synchronization with the external stimulus. This inter-
mediate state is crucial for the accomplishment of func-
tional/behavioral tasks in the case of brain, where it
becomes necessary that the oscillations at certain fre-
quencies be suppressed (desynchronized) and those at
certain other frequencies be enhanced (synchronized) for
proper functioning, information processing and cognition
via temporal coding. In the case of spin torque nano–
oscillators (STNOs), it is generally preferred that all the
oscillators are forced to oscillate in synchrony so that
the resultant microwave power is larger compared to the
power emitted by a single oscillator; hence the interme-
diate desychronization should be avoided [8].

We first demonstrate the occurrence of ERD as ob-
served in a system of coupled Rössler oscillators described
by

ẋj = −ωjyj − zj + Bxe,

ẏj = ωjxj + ayj +
A

N

N
∑

k=1

(yk − yj),

żj = b + zj(xj − c), (2)

which is subject to an external stimulus xe. Here ωj are
the natural frequencies of the oscillators distributed uni-
formly between 0 and 1. The system parameters of the
coupled Rössler oscillators are chosen so that the oscil-
lators are in the periodic regime, while that of the ex-
termal oscillator are chosen so that it is in the chaotic
regime. Coupling with the external oscillator can be in
any one of the three components or all the components
and the form of the external stimulus is immaterial (pe-
riodic, aperiodic, chaotic, etc.) for ERD to be observed.

ERD is depicted in Fig. 2 where the time evolution
of the x component of all the oscillators in the system
are plotted. We begin with a state of synchronization
due to the coupling parameter A, when there is no ex-
ternal force, B = 0. In this state all the oscillators are
synchronized completely both in amplitude and phase
[9]. Now, for a small strength of the external forcing
B = 0.1, the amplitude synchronization in the system is
disturbed (Fig. 2 (top)) while the oscillators still remain
phase–locked and hence the time evolution of the state
vectors form an evolving band instead of a single evolving
line. On increasing B further, desynchronization occurs
in both the amplitude and phase, where some oscillators
separate themselves from the synchronized group and be-
come desynchronized (Fig. 2 (mid)). Further increase in
B brings back synchronization in the system where all
the oscillators once again synchronize (Fig. 2 (bottom)).
Therefore, the state with which we began was a state
of complete synchronization in a specific frequency band
that corresponds to a particular functional/behavioral
task. In the case of the motivating experiment [3], this
is the state of deep anæsthesia corresponding to syn-
chronization in the δ frequency band. However, as the
strength of the external stimulus (say, the need to code
information) increases and when the need to accomplish
this task arises (sufficient strength of B), the intensity of
the previously synchronized frequency band is reduced
(which is termed as ERD) by desynchronization of few
oscillators from the original frequency. The desynchro-
nized group of oscillators either remains desynchronized
(in order to make way for the accomplishment of the
incoming task) or synchronizes to a new different fre-
quency (in order to accomplish a different task). During
the transition from deep to light anæsthesia in the exper-
iment [3], the strength of the incoming sensory signals to
the brain increases until it becomes sufficiently strong
enough to break synchronization in the δ frequency and
engage some of those neuronal oscillators in the θ band
for the accomplishment of coding of information leading
to consciousness.

The same phenomenon can also be observed in a sys-
tem of diffusively coupled Stuart-Landau (SL) oscillators,
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FIG. 3: The occurrence of ERD in a system of globally cou-
pled SL oscillators. Left panel shows the time evolution of
x of all the oscillators. Right panel depicts the correspond-
ing phase portraits on (xi, yi) plane. Here A = 1.1, c = 1.5,
ce = 2, ωe = 1.5 and (top) B = 0.01, (mid) B = 0.08, (bot-
tom) B = 0.35.

described by

żj = (a + iωj − (1 + ic)|zj|2)zj +
A

N

N
∑

i=1

zi − zj + Bze.(3)

Here c is the nonisochronicity parameter, a is the Hopf
bifurcation parameter and zj = xj + iyj is the complex
amplitude of the jth oscillator with natural frequency
ωj . ze is another (external) SL oscillator. For more de-
tailed studies about synchronization in populations of SL
oscillators one may refer to [10, 11].

Here also ERD occurs similar to the Rössler case, but
the separated group of oscillators form a synchronized
cluster which can be either periodic or quasi-periodic.
The case of quasi-periodic clustering is shown in Fig.
3. The left and the right panels show the time evolu-
tion of the state vector x of all the oscillators and the
corresponding phase portrait on the (xi, yi) plane, re-
spectively. The mid panel clearly shows the ERD phe-
nomenon where the separated group oscillates in a quasi-
periodic manner. Eventhough the separated group of os-
cillators are also synchronized within themselves, we will
refer to the overall state as being desynchronized since
from the point of view of the entire system, this is desyn-
chronization. Desynchronization in the brain is very vi-
tal not only for task accomplishment but also in cases of
pathologies like Parkinson’s disease. A successful method
has been proposed in [10] to deal with desynchronization
in cases of neurological pathologies using delayed feed-
back. The model discussed in this Letter is also appli-
cable to deal with pathological desynchronization and,
in addition, provides a phenomenological explanation for
ERD.

In order to quantify the intensity (which is determined
by the number of oscillators that are oscillating in syn-
chrony) of phase synchronization we define the quantity

I =< | ¯eiθj | >, where θj = tan−1(yj/xj) is the phase of

the jth oscillator. Here the bar represents average over all
oscillators in the population and the angle brackets rep-
resent time average. The value of I varies between 0 and
1 representing respectively the states of complete desyn-
chronization and complete synchronization. In between
these two values, for partial synchronization, I takes a
value depending upon the size of the major synchronized
cluster; the more oscillators that are oscillating in syn-
chrony the more will be the value of I. ERD occurs for
those values of the stimulus strength B when the inten-
sity I takes a value less than 1. We use the intensity
of phase synchronization to characterize the occurrence
of ERD because, eventhough amplitude synchronization
is disturbed for small values of B, ERD occurs at those
(sufficient) values of B when both amplitude and phase
synchronizations are lost. Therefore monitoring the in-
tensity of phase synchronization will facilitate monitor-
ing the occurrence of ERD. Fig. 4 (Left)) shows that
there exists a critical strength of the external stimulus
for ERD to occur. It may also be noted that the ERD
occurs for a finite window of the stimulus strength which
depends upon the coupling strength A. When the cou-
pling strength is just enough to synchronize the system,
say A = 1.1 as shown in Fig. 4 (Left)), ERD is observed
for a wider range of the stimulus strength as compared
to stronger coupling strengths, say A = 1.3 and A = 1.5.

In both the above systems, numerical simulations show
that the separated group comprises of few oscillators
(say N2) compared to the size of the major synchronized
group (say N1). Therefore the size ratio of the two clus-
ter state is r : 1 − r(= N1/N : N2/N) and r >> 0
(∼ 1) in the desynchronized state. For the case of SL
oscillators, the dynamics of the large group is given by
u̇ ≈ ((a + iω) − (1 + ic)|u|2)u + Beiωet. In order to
analytically explain the occurrence of desynchronization,
we assume that the major synchronized group is com-
pletely synchronized with the external force ze = eiωet,
while the small group is not. This assumption yields
ω = ωe + c and a = 1 − B. Now, the dynamics of
the small group can be approximated in the form ẇ =
((a+ Â+ ic)− (1+ ic)|w|2)w+ Â+B, where w = ve−iωet

and Â = rA. The occurrence of desynchronization can be
understood from the fixed points of this equation. One
of the fixed points, w1 = 1, is stable which corresponds
to complete synchronization of the population, that is
u = v [12]. The other two fixed points (w2 and w3) that
determine the stability of the desynchronized state exist
for B < BI = (1 + c2)(

√
1 + c2 − 1)/(2c2)− Â, where BI

is a saddle-node bifurcation point.

From the linear stability analysis we find that the de-
terminant of the Jacobian matrix is always negative (pos-
itive) for w2 (w3). Therefore the fixed point w2 turns
out to be a saddle. The other fixed point w3 is either
an unstable node or a focus for |c| < 1. When |c| > 1
and B > BII , the fixed point w3 is either a stable node
or a focus; here BII is a Hopf bifurcation point given
by BII = (1 + c2)/(

√

4 + (1 + c2)2 + 2) − Â which is
determined from the condition tr(Jw3

) = 0. The desyn-
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FIG. 4: (Left) Change in the intensity I due to ERD for the
SL system for various values of the coupling strength. (Right)
B − |c| phase diagram. BI and BII are the analytically ob-
tained saddle-node and Hopf bifurcation boundaries respec-
tively. The boundary BIII is obtained numerically by solving
the evolution equation for w given in the text.

chronized solution does not occur for a value of B, say
B < BIII , and only synchronized solutions are stable.
At this point, both the saddle and the Hopf bifurcation
points merge and disappear. Fig. 4 (Right) gives the
bifurcation boundaries where the BIII boundary is ob-
tained numerically by solving the evolution equation for
w. For given values of parameters, desynchronized so-
lutions exist in the region between BI and BIII . This
is in agreement with our numerical observations. Sim-

ilar analytical treatment for the case of Rössler system
can be provided using the idea of co-evolving ampltudes
and phases [13] of the synchronized and desynchronized
groups.

To conclude, we demonstrate that systems of diffu-
sively coupled nonlinear oscillators subject to external
stimulus typically act as conceptual models that explain
ERD. We explain the dramatic diminution of δ wave in-
tensity during the transition from deep to light anæs-
thesia in a physiological experiment using this model.
Although we have used systems of coupled Rössler and
SL oscillators for illustration, this phenomenon is com-
mon in all kinds of diffusively coupled models. Models
discussed in this Letter can account for the desynchro-
nization phenomenon due to external stimulus (while all
the oscillators in the system are synchronized due to cou-
pling strength in the absence of external stimulus) in
systems of STNOs, polariton condensates, neuronal net-
works, Bose–Einstein condensates, Josephson junction
arrays and lasers and so on.
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