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Chimera and globally clustered chimera: Impact of time delay
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Following a short report of our preliminary results [Phys. Rev. E 79, 055203(R) (2009)], we
present a more detailed study of the effects of coupling delay in diffusively coupled phase oscillator
populations. We find that coupling delay induces chimera and globally clustered chimera (GCC)
states in delay coupled populations. We show the existence of multi-clustered states that act as
link between the chimera and the GCC states. A stable GCC state goes through a variety of GCC
states, namely periodic, aperiodic, long– and short–period breathers and becomes unstable GCC
leading to global synchronization in the system, on increasing time delay. We provide numerical
evidence and theoretical explanations for the above results and discuss possible applications of the
observed phenomena.

PACS numbers: 05.45.Xt, 2.30.Ks, 89.75.-k, 87.85.dq

I. INTRODUCTION

Kuramoto, Battogokh and Shima discovered [1–3]
an interesting spatiotemporal pattern which was later
named chimera by Abrams and Strogatz [4, 5]. The
name chimera, which literally refers to something that
is composed of seemingly incompatible or incongruous
parts, was coined for this phenomenon because a group of
identical oscillators splits into two groups of completely
different character. Since its discovery [1, 2, 4], vari-
ous theoretical and numerical developments have been
reported on the stability of chimera states and their ex-
istence in systems with varied structures [4, 6], including
time delay [7]. It is clear that the chimera state cannot be
attributed to partial synchronization. The occurrence of
partial synchronization in a population of non-identical
oscillators is not surprising. On the other hand, if an
identical group of oscillators splits into synchronized and
desynchronized groups, it is called chimera. Therefore,
the discovery of chimera came as a surprise in the study
of synchronization phenomenon in complex systems.

By and large, synchronization in coupled oscillator sys-
tems has been analytically and numerically investigated
in a rigorous manner over the past years [9, 10]. Possible
routes to global synchronization and methods to control
synchronization have also been proposed [11, 12]. How-
ever, complete understanding of the effects induced by
coupling delay in synchronization of coupled oscillator
systems is still an open problem. It is well known that
time delay occurs in real physical systems. For example,
in a network of neuronal populations, there is certainly
a significant delay in propagation of signals. In addition
there can also be synaptic and dendritic delays. Other
examples include finite reaction times of chemicals and fi-
nite transfer times associated with the basic mechanisms
that regulate gene transcription and mRNA translation.

The nature of coupling in coupled oscillator systems
has been conventionally considered as instantaneous dur-
ing earlier studies. One of the main reasons for this as-
sumption is that it substantially simplifies the analysis of
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FIG. 1: (Color online) Occurrence of stable chimera and GCC
states in system (1). Black and green (grey) lines represent os-
cillators in the first and the second populations, respectively.
Here {f, h} = {sin(θ), cos(θ)}, τ1 = nτ2 = nτ with n = 0,
A = 0.4, B = 0.6 and τ = 2 for the chimera and τ = 4 for the
GCC.

the system. In addition, such an approximation is more
often physically justified. However, the fact is that the
consideration of time delay is vital for modeling real life
systems. Furthermore, as we will demonstrate in this pa-
per, certain interesting dynamical phenomena in complex
systems are characteristic of time delay and they will not
occur in systems without time delay. Since the intro-
duction of time delay increases the effective dimension of
the system, one can expect certain complex phenomena
to be explained in a better way in models of real physical
systems when delay is included.

In this paper, following our Rapid Communication [13],
we present a more detailed discussion of the effects of
coupling delay in inducing chimera and globally clus-
tered chimera (GCC) states in systems of coupled iden-
tical oscillator populations. By a GCC state, here we
mean a state where the system splits into two different
groups, one synchronized and the other desynchronized,
each group comprised of oscillators from both the popu-
lations. Since a global clustering (mixing) of oscillators
from both the populations occur in this case, we call this
state a GCC. This is different from the chimera state

http://arxiv.org/abs/1003.4345v1
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FIG. 2: Schematic representation of system (1) with N = 3
comprised of two populations of all–to–all coupled oscillators;
the oscillators within each population are identical. Here solid
lines represent coupling within a population (with strength
A) and dotted lines represent coupling between populations
(with strength B).

where one of the populations is synchronized while the
other is desynchronized [4] (See Fig. 1 for an illustration.
Fuller details are given in Sec. II). In addition, we find
the existence of multi–clustered chimera and GCC states
that are induced by time delay. In the multi–clustered
states there are more than one synchronized groups (that
contain oscillators from the same population in the case
of chimera and from different populations in the case of
GCC) and the rest of the oscillators in the populations
are desynchronized. We present a detailed possible ana-
lytical explanation for the numerically observed phenom-
ena.
The paper is organized as follows: In Sec. II we explain

the numerical methods and analysis carried out. We also
explain the numerical method to calculate the modified
order parameter. In Sec. III, we discuss the breathing
and unstable nature of the chimera and GCC states and
explain the different types of breathers that occur in the
system under study. We discuss the existence of multi-
clustered states in Sec. IV. Sec. V provides analytical
evidence and support of the numerical results discussed
in the paper. We discuss possible applications of the
chimera and GCC states in real physical systems in Sec.
VI. Finally in Sec. VII we summarize the results of the
paper.

II. NUMERICAL STUDIES

Let us consider a system of two populations of identical
oscillators coupled through a finite delay, represented by
the following equation of motion

θ̇i
(1,2)

= ω −
A

N

N
∑

j=1

f(θ
(1,2)
i (t)− θ

(1,2)
j (t− τ1))

−
B

N

N
∑

j=1

h(θ
(1,2)
i (t)− θ

(2,1)
j (t− τ2)),

i = 1, 2, . . . , N. (1)

Here ω is the natural frequency of the oscillators in the
populations and it is the same for all the oscillators in
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FIG. 3: Schematic representation of phase portraits of the
states of synchronization in system (1). (a) Individual syn-
chronization in both the populations, (b) chimera, (c) GCC,
(d) multi-clustered GCC, and (e) global synchronization.
Open circles represent synchronized group of oscillators and
the closed circles represent the desynchronized oscillators.

both the populations making all of them identical. How-
ever, in order to differentiate one population from the
other we set the initial distribution of the phases of the
first population to be uniformly distributed between 0
and π and that of the second population to be uniformly
distributed between π and 2π. The coupling strengths
are quantified by the parameters A and B that refer to
coupling strengths within and between populations, re-
spectively. The functions f and h are 2π–periodic that
describe the coupling. N refers to the size of the popula-
tions. A schematic representation of this system is given
in Fig. 2.

Synchronization within a population can be charac-
terized by using the complex mean field parameters

X(1,2) + iY (1,2) = r(1,2)eiψ
(1,2)

= 1
N

∑N

j=1 e
iθ

(1,2)
j . Here

r = (1/N)
√

(
∑

j cos θj)
2 + (

∑

j sin θj)
2 is also called the

coherence parameter which measures the synchronization
within a population. When r = 1, there is complete syn-
chronization in the system since in this state the phases
of all the oscillators are the same. When r takes values
in between 0 and 1 there is either desynchronization or
clustering in the population. In general, when r takes a
constant value, the corresponding state is a stable state,
and when r varies with time, the state is either a breather
or an unstable state. However, synchronization between
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FIG. 4: Transition from (a) stable GCC through (b) periodic
breather to (c) unstable GCC upon increasing the value of τ
as (a) τ = 0.85, (b) τ = 1.01 and (c) τ = 1.25 for {f, h} =
{sin(θ), sin(θ)}. Here n = 0, A = 0.7 and B = 0.4. Time
evolution of θDS

i are plotted. Black and grey lines represent
oscillators in the first and second populations respectively. In
this and the following numerical figures, we show only the
desynchronized oscillators and the synchronized ones are not
shown.

populations and global clustering cannot be character-
ized using these mean field parameters, since they repre-
sent average phases of the oscillators within a population.
τ1 and τ2 quantify coupling delay within and between
populations, respectively. A typical example of such a
system is the two groups of interacting neurons in the
brain such as those in the cortex (say population 1) and
the thalamus (say population 2) [14]. Another example
of such a system is two layers (or columns) of interact-
ing spin torque nano-oscillators, that need to be synchro-
nized in order to generate coherent microwave power [18].

The occurrence of various synchronization states in
system (1) is schematically represented in Fig. 3. Panel
(a) represents a state of individual synchronization in the
two populations where r(1) = 1 and r(2) = 1. However in
this state the entrainment phases are different. Panel (b)
is a chimera state where r(1) = 1 and r(2) < 1. Panels
(c) and (d) represent the GCC and the multi-clustered
GCC, respectively, where r(1) < 1 and r(2) < 1 for both
the cases. Panel (e) represents a global synchronization
state where r(1) = 1 and r(2) = 1, but the entrainment
phases are equal unlike the case of individual synchro-
nization (panel (a)).

We numerically simulated Eq. (1) and discovered a
motivating phenomenon of the existence of GCC states
(note that system (1) consists of two populations of iden-
tical oscillators) as shown in Fig. 1, and reported briefly
in [13]. Interestingly enough we found that the cou-
pling delay induces such phenomena where the system
of identical delay–coupled populations splits into desyn-
chronized and synchronized groups. This splitting can
occur either within the populations or between the pop-
ulations, depending upon the value of time delay for a
given set of control parameters. The former represents
the chimera and the latter is the GCC, as noted earlier.
Further, both the chimera and the GCC states need not
be stable but they can either breathe or can be unstable
as will be discussed later in Sec. III.

A. Numerical considerations

For all the numerical simulations we use Runge–Kutta
fourth order routine with a time step of 0.01 and we
have also confirmed that the results are not affected by
decreasing the time step below 0.01. All the numerical
figures depicted in this article are plotted after allowing a
transient time of at least 2000 units, to reduce the likeli-
hood of the presence of transients that may be mistaken
for a dynamical behaviour. Actually, we have eliminated
the first 2000 time steps before seeing the results and then
the numerical plots are shown for small windows (100
or 200 time steps) towards the end of a simulation that
lasted for 30000 time units. In addition, we fix N = 32
for numerical illustrations, although we have verified that
the results are independent of the size of the system (for
some details for N = 64, see Sec. III, Fig. 6, and the
corresponding discussion). We also fix τ1 = nτ2 = nτ ,
where 0 ≤ n ≤ 1. This condition pertains to the logic
that the coupling delay within a population is always less
than the coupling delay between the populations.

Since we also found that the chimera and GCC states
need not be stable but can breathe depending upon the
value of the coupling delay (details are given in the fol-
lowing sections), we need to characterize such breathers.
The mean field (coherence parameter) r quantifies syn-
chronization within a population and therefore it can
be used to quantify a breathing or unstable chimera.
On the other hand, as mentioned earlier, global cluster-
ing/synchronization cannot be quantified using this or-
der parameter. Hence, in order to quantify a breathing
GCC numerically, after allowing the transients, we sepa-
rate out the synchronzied group from the desynchronized
one. Note that, both the synchronized and desynchro-
nized groups have oscillators from both the populations.

We set a condition that θi|t=mT = θj |t=mT , for all i, j
(here T denotes a particular time and m = 0, 1, 2, . . .
denotes discrete time steps of the numerical integration).
The numerical equivalence for the above condition is upto
6 decimals in our calculation. Those oscillators which
satisfy this condition are synchronized and remain syn-
chronized for all times and are neglected so that we end
up with the desynchronized group (that comprises oscil-
lators from both the populations). While calculating the
modified order parameter, we have to specify the mini-
mum size of the synchronized group, that is we can choose
how reasonably big a synchronized group can be. For ex-
ample, if there are only two oscillators that have equal
phases for all times, they cannot be considered as a group
(given the large N) and hence we have to specify a min-
imum number of oscillators that satisfy the condition in
order to be called as a synchronized group; the rest are
considered as desynchronized oscillators. In our calcula-
tions for N = 32 andN = 64, we have taken this minimal
value as 5.

Let the size of the desynchronized group be NDS. Now
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FIG. 5: Illustration of typical long (grey) and short (black)
periodic breathers of the chimera ((a) and (b)) and GCC
((c) and (d)) states for A = 0.3, B = 0.2, n = 1, {f, h} =
{sin(θ), sin(θ)}. Here for chimera τ = 2.3 (long period) and
τ = 2.9 (short period). For the GCC, τ = 3.6 (long period)

and τ = 4 (short period). The order parameters r(2) and rDS,

and the corresponding phases θ
(2)
i

and θDS
i are plotted against

time for chimera and GCC, respectively.

we can calculate the order parameter of this group as

rDSeiψ
DS

=
1

NDS

NDS
∑

j=1

eiθ
DS
j , (2)

where NDS = 2N −NS. This order parameter rDS can be
used to quantify both the chimera and GCC states and
is also valid for cases where there exists more than one
synchronized cluster. Such multi-cluster states also oc-
cur for model (1) which is discussed in Sec. IV. Thus we
define a cluster by imposing the condition mentioned in
the previous paragraph, and identify the number of oscil-
lators with the same phase, say θi,j = Φj , i = 1, 2, . . .m,
where m is the size of cluster j. This process can be re-
peated for any number of clusters and each cluster can
be characterized by the order parameter rn and the mean
phase ψn. While specifying the size of clusters in multi-
clustered GCC states, they have to be chosen to be rel-
atively lower than the size of a synchronized group in a
GCC state (where there is only one cluster).

III. BREATHER AND UNSTABLE STATES

While a chimera or GCC is in the breather state, the
phase of the synchronized group remains unaffected, but
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FIG. 6: Illustration of breathing chimera for two different
values of the system size N to demonstrate that the results are
unchanged with N . Here {f, h} = {sin(θ), cos(θ)}, A = 0.5,
B = 0.3, n = 1 and τ = 1.9. N = 32 for (a) and (b) N = 64
for (c) and (d).

those of the desynchronized group fluctuate. The order
parameter of the desynchronized group also fluctuates
accordingly. The time delay parameter τ affects the sta-
bility of the chimera and the GCC states. Typical il-
lustration of the occurrence of stable, breathing and un-
stable GCCs are shown in Fig. 4 where the time evo-
lution of the phases of oscillators in the desynchronized
group are plotted. For n = 0, A = 0.7, B = 0.4 and
{f, h} = {sin(θ), sin(θ)}, when τ = 0.85 (Fig. 4 (a)), the
GCC state is stable. The desynchronized group of oscilla-
tors remain desynchronized, asymtotically. On increasing
τ to 1.01 (Fig. 4 (b)), we find that the GCC state loses its
stability and ends up in what is called a breathing GCC
state. In this state, the phase of the oscillators switches
between synchronized (frequency suppressed) and desyn-
chronized states. This breather illustrated in Fig. 4 (b)
is a periodic breather as the switching process occurs pe-
riodically. Upon increasing τ further to 1.25 (Fig. 4 (c)),
one can visualize the example of an unstable GCC, where
a desynchronized state loses its stability and a synchro-
nized state becomes stable.
There are different types of breathers in chimera and

GCC states, namely periodic, aperiodic and unstable
breathers (see Figs. 5 and 7). Typical short and long
periodic breathers, defined in a relative sense, are illus-
trated in Fig. 5, for both the chimera and the GCC
state. For the chimera, we plot the time evolution of
the order parameter r(2) and the corresponding phases

θ
(2)
i of the second population (since the first population
is synchronized) in Fig. 5 (a) and (b), for two different
values of τ . For the GCC the order parameters rDS and
the corresponding phases θDS

i are plotted for two differ-
ent values of τ in Fig. 5 (c) and (d). For given values of
system parameters, when τ = 2.3 we have a long period
chimera breather. Upon increasing τ to 2.9 we have a
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FIG. 7: Illustration of aperiodic and unstable chimera
((a)–(d)) and GCC ((e)–(h)) breathers for {f, h} =
{sin(θ), cos(θ)}, A = 0.6, B = 0.3, n = 1. Here τ = 1.8
for (a) and (b) (aperiodic chimera), τ = 2.3 for (c) and (d)
(unstable chimera), τ = 5 for (e) and (f) (aperiodic GCC)
and τ = 4 for (g) and (h) (unstable GCC).

short period chimera breather. Long and short period
GCC breathers occur on further increasing τ to 3.6 and
4, respectively. For the specific cases of the breathers
illustrated in Fig. 5, the desynchronized group switches
between the states of frequency suppressed synchroniza-
tion and desynchronization, corresponding to r(2),DS = 1
and r(2),DS < 1, respectively. In Fig. 6, we have illus-
trated that the results are unchanged with the size of
the system by plotting periodically breathing chimeras
for two different values of N . In Fig. 6 (a) and (b) we
have plotted the time evolution of the order parameter r
and the time evolution of the phases of the second popu-
lation, respectively, for N = 32 and in Fig. 6 (c) and (d)
we have plotted the same for N = 64.

Breathers need not be periodic; they can also be ape-
riodic. See Fig. 7 for the illustration of a aperiodically
breathing chimera and GCC states, where switching be-
tween different desynchronized states (the corresponding
r(2) or rDS oscillates between 0 and < 1) occurs in an ape-
riodic manner. Plotted in (a) and (c) are the order pa-
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FIG. 8: Phase portraits showing the limit cycle of the synchro-
nized population/group (the black line) and desynchronized
population/group (grey region). (a) stable chimera/GCC
state (b) breathing chimera/GCC state and (c) unstable
chimera/GCC. Here X = r cosψ and Y = r sinψ, where r
and ψ are the mean-field parameters.

rameters of the desynchronized population (r(2)) for the
chimera and in (b) and (d) are the corresponding time
evolution of the phases. Similarly, in (e) and (g) the order
parameters of the desynchronized group (rDS) (obtained
by neglecting the synchronized group, as explained ear-
lier) are plotted with the corresponding time evolution of
the phases in (f) and (h) that show aperiodic desynchro-
nization windows. The chimera and GCC states also be-
come unstable depending on the value of the time delay
parameter, where the oscillators in the desynchronized
population/group remain desynchronized for a while, af-
ter which this state loses its stability and all the oscilla-
tors lock to one phase, that is, the desynchronized pop-
ulation/group becomes synchronized among themselves.
The unstable chimera is shown in Figs. 7 (c) and (d) and
the unstable GCC is shown in (g) and (h) (after allowing
2000 time units for the transients to pass, as mentioned in
Sec. II A). As a consequence of the chimera or GCC state
losing its stability, a two clustered synchronized state be-
comes stable. That is, when the chimera state becomes
unstable, the individual synchronization state (as shown
in Fig. 3 (a)) becomes stable, while for the unstable
GCC, a state comprising of two groups of oscillators that
are locked at two different phases becomes stable. The
breather and unstable chimera/GCC states are not tran-
sient effects. As we have already mentioned in Sec. II A,
we have eliminated 2000 time steps before seeing the re-
sults and the numerical plots are shown for 100 or 200
time step windows towards the end of a simulation that
lasted for 30000 time units. We also waited further more
to see if aperiodic breathers collapse, but we find them
to be steady dynamical states.

The representation of stable, breathing and unstable
chimera/GCC in the phase plane is shown in Fig. 8.
The black line in Fig. 8 is the stable limit cycle attractor
of the synchronized population/group. This is always the
same unit circle irrespective of the value of the entrain-
ment frequency of the synchronized population/group.
The grey region represents the desynchronized popula-
tion/group which is stable in (a), breathing in (b) and
becomes unstable in (c) of Fig. 8.



6

IV. MULTI-CLUSTER STATES

Multi-clustering is a phenomenon that commonly oc-
curs while studying synchronization dynamics. For the
global clustering phenomenon studied in this paper,
multi-clustered GCC states occur due to time delay. Typ-
ical examples of two-clustered and three-clustered GCC
states are illustrated in Fig. 9 where the time evolution
of the phases of the synchronized oscillators are plotted.
While chimera states are a link between sychronized and
desychronized states [8] (see also analytical explanation),
the multi-cluster GCC states are a link between the two
(since we have two populations) types of chimera states.
As we increase the delay parameter τ , the multi-cluster
GCC state of the type shown in Fig. 9 and the GCC state
occur for certain values of τ in between the occurrence of
chimeras. This is easily evident from Figs. 1 and 9. For
the same values of all the other parameters as in Fig. 1,
these two figures show the occurrence of multi-clustered
states in between the chimera or GCC states for increas-
ing values of τ . When τ = 2, we have the chimera (with
population-1 synchronized and population-2 desynchro-
nized, see Fig. 1 (left panel)). On increasing τ to 2.8 we
get a two-clustered GCC state as shown in Fig. 9 (left).
One cluster contains oscillators only from the first popu-
lation and the other contains oscillators from the second
population. The desynchronized group of this state con-
tains oscillators from both the populations. For τ = 3.2
we again get a chimera (with population-1 desynchro-
nized and population-2 synchronized, not shown here)
and for τ = 3.7 we get a three-clustered GCC state shown
in Fig. 9 (right).

The above three-clustered GCC state has three clus-
ters each of which has oscillators from both the popu-
lations, which is different from the two-clustered state.
This difference in the two- and the three-clustered GCC
states are due to the following reason: The two-clustered
GCC state occurs in between two chimera states and the
three-clustered GCC state occurs in between a chimera
and a GCC state. Further, in between two chimera states
and in between a chimera and a GCC state there can be
more number of multi-clustered states, depending upon
the size of the cluster we choose. On increasing τ to 4,
we get a GCC state as shown in Fig. 1 (right panel).

Therefore we find that, on increasing/decreasing τ
(starting with the state where both the populations are
synchronized separately), the chimera first occurs, and
further increase in τ causes switching between the two
chimera states. Here the two chimera states necessar-
ily mean, state-1 where population-1 is synchronized and
population-2 is desynchronized and vice versa for state-2.
This switching incorporates an intermediate chimera-like
multi-cluster state where each of the synchronized clus-
ters contains oscillators solely from one of the popula-
tions (as shown in Fig. 9 left panel). Further increase
in τ results in multi-clustered GCC states, as shown in
Fig. 9 (right), leading to stable GCC states. On increas-
ing/decreasing τ further, this stable GCC state follows
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FIG. 9: (Color online) Occurrence of multi-cluster GCC states
in system (1). (left) Two-clustered (τ = 2.8) and (right)
three-clustered (τ = 3.7) GCC states. Other parameter values
are the same as those of Fig. 1. Black and green (grey) lines
represent oscillators in the first and second populations re-
spectively. Here we have plotted only the synchronized group
of oscillators.

the following sequence to end up in global synchroniza-
tion: stable GCC, long–period breather, short–period
breather, aperiodic breather and unstable GCC leading
to global synchronization. Further increase in τ from
the global synchronization state leads to a stable GCC
by following the above mentioned route in the reverse
order. These results are summarized in Table I for a spe-
cific set of parameters. As may be noted from the table,
depending upon the values of the parameters A, B and
τ , the behaviour repeats itself periodically. Therefore in
order to visualize the occurrence of this series of phenom-
ena one can either increase or decrease τ depending upon
where we stand in the parameter space.

V. STABILITY OF THE SYNCHRONIZED AND

DESYNCHRONIZED STATES

It is generally difficult to exactly pinpoint the occur-
rence of a GCC state in parameter space analytically.
Our understanding so far [8] reveals that chimera states
are a natural link between synchronized and desynchro-
nized states. In addition, our numerical evidence con-
firms that, on increasing τ for a given set of system pa-
rameters, chimera and GCC states occur periodically be-
tween stages of synchronization and desynchronization.
Therefore one naturally needs to identify the boundaries
that separate regions of synchronization and desynchro-
nization and expect chimera/GCC states to occur near
those boundaries.

In order to find the boundaries, we analyze system (1)
in the continuum limit N → ∞. In this limit, a proba-
bility density for the oscillator phases can be defined as
ρ(1,2)(θ, t)dθ, which describes the number of oscillators
with phases within [θ, θ+dθ] at time t. This distribution
ρ(1,2)(θ, t) obeys the evolution equation

∂ρ(1,2)

∂t
= −

∂

∂θ
(ρ(1,2)v(1,2)), (3)
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TABLE I: Occurrence of chimera and GCC for various values of the delay parameter τ (other parameter values are {f, h} =
{sin(θ), cos(θ)}, n = 0, A = 0.4, B = 0.6)

S.No. Value
of τ

State Description

1 2.0 Chimera Population-1 synchronized and population-2 desynchronized
2 2.8 2-clustered GCC Two synchronized groups and one desynchronized group all containing oscilla-

tors from both the populations.
3 3.2 Chimera Population-1 desynchronized and population -2 synchronized
4 3.7 3-clustered GCC Three synchronized groups and one desynchronized group all containing oscil-

lators from both the populations.
5 4.0 GCC One synchronized group and one desynchronized group all containing oscillators

from both the populations.
6 4.1 Breathing GCC One synchronized group and one desynchronized group that oscillates between

different states.
7 4.12 Unstable GCC One synchronized group and one desynchronized group that oscillates and be-

comes synchronized after a while.
8 4.13 Global Synchronization One synchronized group.

where v(1,2) are given by

v(1,2) = ω −A

∫ 2π

0

f(θ − φ)ρ(1,2)(φ, t− τ1)dφ

− B

∫ 2π

0

h(θ − φ)ρ(2,1)(φ, t− τ2)dφ. (4)

The functions ρ(1,2)(θ, t) and {f, h} are real and 2π pe-
riodic in θ, so they can be expressed as Fourier series in
θ, that is,

ρ(θ, t) =
∞
∑

k=−∞

ρ(t)ke
ikθ, f(θ) =

∞
∑

k=−∞

fke
ikθ

h(θ) =

∞
∑

k=−∞

hke
ikθ . (5)

Substituting ρ(1,2)(θ, t) and {f, h} into the evolution
equation, we get

ρ̇l
(1,2) + ilω̂ρ

(1,2)
l

= 2ilπ

∞
∑

k=1

(akρ
(1,2)
l−k + a∗kρ

(1,2)
l+k ), (6)

where

ρ
(1,2)
−l = ρ

∗(1,2)
l , ω̂ = ω − (Af0 +Bh0) (7a)

and

ak = (Afkρ
(1,2)
k (t− τ1) +Bhkρ

(2,1)
k (t− τ2)). (7b)

Now, the linearized form of Eq. (6) reads as

ρ̇k
(1,2) = −ikω̂ρ

(1,2)
k + ikak, (8)

where the Fourier components for |l| > k are neglected
since l = ±k are the only possible nontrivial unstable
modes, ρ0 = 1/2π is the trivial solution corresponding to

incoherence (desynchronization) and fk and hk are coeffi-
cients of the Fourier series of the functions f and h. Now
by considering only the non-trivial kth Fourier mode ρk,
and considering the linear stability of the desynchronized
state ρk = 0, we arrive at the eigenvalue equation of that
mode,

(λk − Āeλkτ1 + iω0)
2 − B̄2e2λkτ2 = 0, (9)

where Ā = ikfkA, B̄ = ikhkB and ω0 = kω̂. Equation
(9) leads to the pair of eigenvalue equations

λk = Āe−λkτ1 ± B̄e−λkτ2 − iω0. (10)

These eigenvalues characterize the stability of the desyn-
chronized state. This desynchronized state loses stability
when the real part of the eigenvalue crosses the imaginary
axis. Therefore, in order to obtain the stability boundary
we assume λk = −iβ/τ , where β is an arbitrary param-
eter, so that we can find the kth stability region in a
parametric form as

B = ±kA
|fk| cos(nβ − αf )

|hk| cos(β − αh)
; τ = β/[k(ω0

+A|fk| sin(nβ − αf )±B|hk| sin(β − αh)]
−1, (11)

where fk = −i|fk|e
iαf , hk = −i|hk|e

iαh and τ1 = nτ2 =
nτ . The overall stability of the desynchronized state is
determined by the overlap of these domains for all the
modes.
Now it is also of importance to investigate the stability

of the synchronized state for which we consider the solu-

tion θ
(1,2)
i = Ωt. With this solution, system (1) becomes

Ω = ω −Af(nΩτ)−Bh(Ωτ). (12)

Along with this relation, the condition Af ′(nΩτ) +
Bh′(Ωτ) > 0 should also be satisfied in order that the
synchronized state is stable. This provides the stability
regime

B =
−Af ′(nβ)

h′(β)
; τ =

β

ω −Af(nβ)−Bh(β)
, (13)
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where β = Ωτ . The parametric forms (11) and (13) sep-
arate the regions of desynchronization and synchroniza-
tion. For {f, h} = {sin(θ), cos(θ)}, these boundaries are
plotted in Fig. 10.

A homogeneous perturbation θ
(1,2)
i = Ωt+∆θ(1,2) per-

taining to the case when all the phases remain equal while
their rotation becomes nonuniform in time to the syn-
chronization regimes leads to the following equations for
stability

∆θ̇1 = −(Af ′(nβ) +Bh′(β))∆θ1

+Af ′(nβ)∆θ1nτ −Bh′(β)∆θ1τ , (14)

∆θ̇2 = −(Af ′(nβ) +Bh′(β))∆θ2

+Af ′(nβ)∆θ2nτ +Bh′(β)∆θ2τ , (15)

where ∆θ(1,2) = ∆θ(1) ∓∆θ(2). The stabilty of the fixed
point ∆θ(1,2) = 0 represents the global synchronization
and individual synchronization of the populations. This
is because, when ∆θ(1) = 0, ∆θ(1) = ∆θ(2) and therefore
both the populations are synchronized with the same en-
trainment phase. When ∆θ(2) = 0, ∆θ(1) = −∆θ(2) and
hence both the populations are synchronized with differ-
ent entrainment phase, the difference in the entrainment
phase being 2∆θ(1). The stability conditions for (14) for
the cases n = 0 and n = 1 are [15]

Bh′(β) > 0, n = 0,

Af ′(β) +Bh′(β) > |Af ′(β) −Bh′(β)|, n = 1.(16)

In both the above mentioned cases, the stability condi-
tions for (15) are

τBh′(β) + 1 > 0, n = 0,

τ(Af ′(β) +Bh′(β)) + 1 > 0, n = 1. (17)

For {f, h} = {sin(θ), cos(θ)}, the boundaries (16) and
(17) are plotted in Fig. 10. The regions bounded by
dot-dashed and dotted curves correspond to in-phase

(θ
(1)
i − θ

(2)
i = 0) and anti-phase (θ

(1)
i − θ

(2)
i = ±π) syn-

chronization states of (16), respectively. Similarly, the
regions bounded by × and · correspond to in-phase and
anti-phase synchronization states of (17).
The stability boundaries between regions of the syn-

chronized (both global and individual) and desynchro-
nized states can be obtained using equations (11), (13),
(16) and (17). From these equations it becomes evident
that the stability of the synchronized and the desynchro-
nized states switch periodically between stable and un-
stable states on increasing/decreasing τ , since h and f
are 2π periodic. This also depends on the signs of A
and B. From Fig. 10, it is obvious that on increasing
τ , the regions of synchronization and desynchronization
alternate each other. The chimera/GCC states can be ex-
pected near the stability boundaries of the synchronized
and desynchronized states and hence the chimera/GCC
states also repeat periodically on increasing τ . This is ev-
ident from Fig. 10 where the numerical occurrence of the

different chimera/GCC states, given in Table I (mark-
ings 1– 8 in Fig. 10 (left)) and Fig. 7 (markings 1 – 4
in Fig. 10 (right)) are near the analytical synchroniza-
tion/desychronization boundaries. Note the (bistable)
coexistence of globally synchronized state and desynchro-
nized state (that is marking 8 in Fig. 10 (left) occurs
inside Region I) due to the effect of time delay. Thus the
stability analysis, while clearly pointing out the bound-
aries between synchronized and desynchronized states,
also indicates the occurrence of chimera and GCC states.

VI. APPLICATIONS

It is well known that synchronization is not always
desirable. For example, in the brain synchronization is
desirable when it supports cognition via temporal cod-
ing of information [14, 16] while at the same time, it is
undesirable when synchronization of a mass of neuronal
oscillators occurs at a particular frequency band resulting
in pathologies like trauma, Parkinson’s tremor and so on.
Other examples include lasers and Josephson junction ar-
rays [17], emission of microwave frequencies by coupled
spin torque nano-oscillators [18] where synchronization
is desirable, while in the case of epileptic seizures [19],
Parkinson’s tremor [20], event related desynchronization
[21], or pedestrians on the Millennium Bridge [10], it is
undesirable.
In the field of neuroscience, event-related synchroniza-

tion and desynchronization of brain waves play a vital
role in controlling higher level information processing,
large scale integration and motor control and can be ex-
plained by models of diffusively coupled oscillators [22].
A thalamocortical model of three populations of neurons
[14] to simulate the state of emergence from deep to light
anæsthesia explains that successful coding of information
and consciousness (on emergence from deep anæsthesia)
is achieved by the occurrence of global synchronization
between the thalamus and the cortex. In the correspond-
ing experiment [23], during deep anæsthesia δ waves (fre-
quency in the range 1−4Hz) occur with a high amplitude
in the electroencephalogram (EEG).
On emergence from deep to light anæsthesia the δ wave

amplitude is dramatically decreased and θ (frequency in
the range 4 − 8Hz) waves begin to emerge in the EEG,
however with a lower amplitude compared to that of the δ
waves. The model demonstrates that, during deep anæs-
thesia, there is strong synchronization in the cortex giv-
ing rise to high amplitude δ waves. At the same time
the neuronal oscillators in the thalamus are very poorly
synchronized (which is similar to a chimera state) giving
rise to very low amplitude θ waves and hence are not
predominantly visible in the EEG. On emergence from
deep to light anæsthesia some neuronal oscillators from
the cortex desynchronize (and hence the dramatic de-
crease in the amplitude of δ waves) and combine with
those in the thalamus to give rise to θ waves that are
not as strongly synchronized as the δ waves during deep
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FIG. 10: (Color online) Theoretically obtained stability regions for n = 0 (left) and n = 1 (right), I. Desynchronization, II.
Synchronization of the populations individually and III. Global synchronization. Here {f, h} = {sin(θ), cos(θ)}. Boundaries
with ⋄ and � represent, respectively, + and − signs in equation (11). These boundaries are the same as those for the in-phase
and anti-phase synchronization states obtained from Eq. (13). Dot-dashed and dashed curves correspond to in-phase and
anti-phase synchronization states of (16). The regions bounded by + (+++) and ◦ (◦◦◦) correspond to in-phase and anti-phase
synchronization states of (17). The markings with × denote the numerical examples; (left) 1-8 correspond to the states denoted
in Table I and (right) 1-4 correspond to panels (a), (c), (e) and (g) of Fig. 7. Note the numerical occurrence of the different
chimera/GCC states near the analytical boundaries of synchronized and desynchronized states.

anæsthesia. This state may be considered as a state sim-
ilar to a GCC state where neuronal oscillators from both
the thalamus and cortex combine to form a synchronized
group. The chimera and the GCC like states play a
crucial role in the emergence from deep to light anæs-
thesia and also in blocking information transfer during
deep anæsthesia (so that one does not feel pain) and for
successful coding of information during light anæsthe-
sia. Thus throughout the processes that take place in
the brain the transmission delay in the propagation of
neuronal signals causes the chimera and GCC like states
to occur, that in turn facilitates the successful accom-
plishment of various tasks.
Another example prevails in the field of nanotechnol-

ogy where the problem of synchronizing one or more
populations of spin torque nano-oscillators at different
columns to generate coherent microwave power is still
open [18]. By successfully modeling such a system us-
ing delay coupled populations of oscillators and exactly
knowing where in parameter space the chimera/GCC oc-
curs, one would be able to tune the system parameters,
having the time delay parameter as the control parameter
so to avoid the occurrence of a chimera/GCC. It will then
be possible to stabilize the system in a state of complete
synchronization.

VII. SUMMARY

To summarize, we have demonstrated that chimera
and GCC states exist in delay coupled phase oscillator

populations. A system of two identical, delay–coupled
populations splits into two groups, one synchronized and
the other desynchronized. The state is called chimera if
one of the populations is synchronized while the other is
desynchronized. On the other hand, the state is called a
GCC if each group has a fraction of oscillators from both
the populations. We have found that these states need
not be stable always but can breathe periodically, aperi-
odically or become unstable, depending upon the value
of coupling delay. In order to characterize the stable, un-
stable and breathing GCC states we have introduced a
modified version of the order parameter that incorporates
the mean of only the desynchronized group by neglecting
the synchronized group of oscillators.

We also found that multi-clustered states exist as link
between the chimera and GCC states, as the value of
the time delay parameter is increased. We have provided
analytical explanations of the observed effects on the ba-
sis of linear stability theory. Based on these results, we
suggest that models that incorporate time delay serve
as good candidates to explain many complicated natu-
ral phenomena as opposed to models without time de-
lay. There are various methods to control synchroniza-
tion (even its rate and velocity). One can choose regimes
of synchronization or desynchronization depending upon
coupling strengths, initial distribution of frequencies, the
form of the coupling functions and so on. The message
of the paper is that knowledge about the occurrence of
chimera, GCC and multi–cluster states will help one to
achieve a good control over synchronization and desyn-
chronization in interacting populations of neurons, spin
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torque nano-oscillators and similar systems.
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