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Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an exter-
nal identical oscillator is studied. Based on numerical simulations we show that by introducing
additional couplings at (mNc + 1)-th oscillators in the ring, where m is an integer and Nc is the
maximum number of synchronized oscillators in the ring with a single coupling, the maximum num-
ber of oscillators that can be synchronized can be increased considerably beyond the limit restricted
by size instability. We also demonstrate that there exists an exponential relation between the num-
ber of oscillators that can support stable synchronization in the ring with the external drive and
the critical coupling strength εc with a scaling exponent γ. The critical coupling strength is calcu-
lated by numerically estimating the synchronization error and is also confirmed from the conditional
Lyapunov exponents (CLEs) of the coupled systems. We find that the same scaling relation exists
for m couplings between the drive and the ring. Further, we have examined the robustness of the
synchronous states against Gaussian white noise and found that the synchronization error exhibits a
power-law decay as a function of the noise intensity indicating the existence of both noise-enhanced
and noise-induced synchronizations depending on the value of the coupling strength ε. In addi-
tion, we have found that εc shows an exponential decay as a function of the number of additional
couplings. These results are demonstrated using the paradigmatic models of Rössler and Lorenz
oscillators.

PACS numbers: 05.45.Xt

I. INTRODUCTION

Chaos synchronization has been receiving a great deal
of interest for more than three decades [1–5]. In partic-
ular, chaos synchronization in arrays of coupled nonlin-
ear dynamical systems has been extensively investigated
over the years in view of its diverse applications in spa-
tially extended systems, neural process, networks, etc.
[6–11]. Linear arrays with periodic boundary condition
(ring geometry) have been used widely in modeling phys-
iological, biochemical and biological phenomena [11–13].
For example, morphogenesis in biological context [14] and
transitions between different animal gaits have been ex-
plained by considering a model composed of a ring of cou-
pled oscillators [15]. An important application of the ring
geometry is that the resulting spatiotemporal patterns
in the ensemble of coupled oscillators can be analyzed
through symmetry arguments [12, 15]. Recently several
interesting dynamical properties/collective behaviors in-
cluding amplitude death and chimera states have been
identified in such a ring type configuration [11–13, 16–
24].

Some of the recent studies have considered synchro-
nization dynamics in both ring and linear arrays cou-
pled together in order to understand the dynamics of
basic units of networks [11, 18–20]. Recently, interest-
ing scaling behavior of correlation properties of interact-
ing dynamical systems in such a configuration has been
demonstrated [20]. However, most of the studies have
considered unidirectional coupling in both the ring and
linear arrays. Because of the diverse nature of interaction

in real world phenomena, we have considered diffusively
(nearest-neighbor) coupled chaotic systems with ring ge-
ometry driven by an external identical drive in view of
its widespread applications in engineering, robotics, net-
works, and physiological and biological systems [25, 26].
For instance, cultured networks of heart cells are exam-
ples of biological structures with strong nearest-neighbor
coupling [24, 27].

The phenomenon of size instability, where a critical
size of the number of oscillators upto which a stable syn-
chronous chaotic state exists, of a uniform synchronous
state in arrays of coupled oscillators with both periodic
and free-end boundary conditions have been widely stud-
ied [6, 7, 12, 13, 28–33]. Increasing the number of oscil-
lators beyond this limit leads to desynchronization and
the occurrence of spatially incoherent behavior (eg., high-
dimensional or spatiotemporal chaos). The stability of
synchronous chaos in coupled dynamical systems plays a
crucial role in the study of pattern formation, spatiotem-
poral chaos, etc. [7, 30–32, 34, 35]. In this connection,
using the paradigmatic models of Rössler and Lorenz os-
cillators we shall demonstrate in this paper that the max-
imal number of oscillators in the ring geometry that can
support stable synchronous chaos can be increased by
integer multiples of the original number of oscillators in
the ring with additional couplings from the same drive
oscillator. Furthermore, it is also found that the critical
coupling strength and the number of oscillators which
can be synchronized in the ring exhibit an exponential
relation with a scaling exponent and indeed the relation
remains unaltered even on increasing the number of cou-
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plings between the drive and the ring. In addition, the
synchronization error displays a power law decay as a
function of the noise intensity for a fixed value of the
coupling strength indicating the existence of noise en-
hanced/induced synchronization. It is to be noted that
small world networks can be generated by introducing
additional couplings between randomly selected nodes to
create shortest paths (links) between distant nodes [10].
Further, recent studies on synchronizability of networks
have been employing pinning control in which hubs in
the networks are connected to the same drive node [10]
as in our present study.

In particular, we consider here the Rössler and Lorenz
oscillators in a ring geometry with diffusive coupling be-
tween them and driven by an external identical oscil-
lator, whose strength is proportional to a parameter ε
(see Eq. (2) below). Based on numerical simulations,
we find that the critical coupling strength, say εc, below
which no synchronization exists (ε < εc), of the exter-
nal drive increases exponentially with a scaling exponent,
γ ∈ (0.3, 0.5), as a function of the number of oscillators
in the array that supports a stable synchronous state.
Further we observe that the number of oscillators which
supports such a stable synchronous state can be increased
in integer multiples by introducing additional couplings
at the (mNc+1)-th oscillator of the ring with same value
of the coupling strength, where m is the number of cou-
plings and Nc is the maximum number of oscillators in
the ring that can sustain stable synchronization with a
single coupling. Interestingly, this exponential relation is
maintained while increasing the number of couplings, m,
between the array and the external drive. In addition,
we have found that εc shows an exponential decay as a
function of the number of additional couplings between
the drive and the response array for a fixed number of os-
cillators in the array. Further, we find that these results
are robust against Gaussian white noise of small intensity
and the synchronization error exhibits a power law decay
as a function of the noise intensity. These results also
indicate the existence of both the phenomena of noise-
enhanced and noise-induced synchronizations depending
on the value of the coupling strength ε beyond certain
threshold values of the noise intensity. It is to be empha-
sized that all the numerical simulations throughout the
manuscript have been repeated with several initial con-
ditions and the results are the averages of a large number
of realizations.

The structure of the paper is as follows. In Sec. II,
we study synchronization in rings of diffusively coupled
Rössler and Lorenz systems driven by external identical
oscillators with a drive-response configuration. We show
that in both the cases the critical coupling strength in-
creases exponentially with the number of oscillators in
the response array with a scaling exponent. In addition,
the systems exhibit a power law decay of the synchro-
nization error as a function of the noise intensity demon-
strating noise-enhanced and noise-induced synchroniza-
tions depending on the value of the coupling strength.

In Sec. III, we demonstrate that the size of the ring can
be increased beyond the size instability limit by integer
multiples of the maximum number of synchronized oscil-
lators (Nc) in the ring with a single coupling for the same
value of coupling strength. We also show that the same
scaling relation with a characteristic exponent is valid for
the case of arbitrary number of couplings also. Further,
we examine the effect of noise on the robustness of the
synchronous state for a fixed value of the noise intensity
and as a function of the noise intensity for a fixed value of
the coupling strength in all the cases. Finally, in Sec. IV,
we present a summary and conclusions.

II. CHAOS SYNCHRONIZATION IN

DIFFUSIVELY COUPLED OSCILLATORS

DRIVEN BY AN EXTERNAL IDENTICAL

OSCILLATOR

For the present study, we consider a coupling scheme
with drive-response configuration as shown in Fig. 1, in
which the diffusively coupled circular array is driven by
an external identical oscillator. Here ‘0’ denotes the ex-
ternal drive and ‘1’, ‘2’, . . . ‘N ’ denote the constituents of
the response array with nearest neighbor (diffusive) cou-
pling. For simplicity, we assume that all the oscillators
in the drive-response configuration are identical. In this
section, we study chaos synchronization in the response
array when driven by the external drive. For this pur-
pose, we have considered Rössler and Lorenz oscillators
coupled according to Fig. 1. The value of the diffusive
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FIG. 1: (color online) Schematic diagram of the ring of diffu-
sively coupled oscillators driven by an external identical os-
cillator with drive-response configuration.

coupling constant is chosen such that all the oscillators
in the array are in a stable synchronous state. By vary-
ing the number of oscillators in the response array from
N = 2 onwards, we calculate the critical value of the cou-
pling constant εc at and above which the response array
evolves in synchrony with the external drive.
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A. Coupled Rössler system

First we analyse the coupled Rössler systems given by
the dynamical equations

ẋ0 = − (y0 + z0),

ẏ0 =x0 + ay0

ż0 = b+ z0(x0 − c), (1)

ẋj = − (yj + zj)

+ d(xj+1 + xj−1 − 2xj) + δ1,jε(x0 − xj), (2a)

ẏj = xj + ayj (2b)

żj = b+ zj(xj − c), j = 1, 2, · · · , N, (2c)

where a = 0.15, b = 0.2, c = 10, d = 1 and ε is
the coupling strength. Here the variable x0, y0 and
z0 correspond to the drive system and xj , yj and zj
(j = 1, 2, . . . , N) represent the diffusively coupled re-
sponse array. The first oscillator of the response array
(2) is driven by the drive (1). δi,j is the Kronecker delta
function given by

δi,j =

{

1 for i = j
0 otherwise.

The isolated system (1) exhibits chaotic behavior for the
above choice of parameters with the Lyapunov exponents
λ1 ≈ 0.1304 > 0, λ2 = 0 and λ3 ≈ −14.1405.
Next we shall study the dynamics of the drive-response

configuration (1) and (2). The value of the diffusive cou-
pling constant d is chosen such that it supports the maxi-
mum number of oscillators in the circular array to evolve
in synchronous fashion. In the absence of any external
coupling (ǫ = 0), the array of diffusively coupled Rössler
systems (2) exhibits chaos synchronization in all the N
oscillators with N ≤ Nmax with [7]

Nmax =
π

sin−1
(

√

λmax/4d
) , (3)

where λmax is the maximal Lyapunov exponent. One
can easily check that Nmax = 17 for the above choice of
parameters.
As soon as the external drive is switched on (ǫ 6= 0),

the stable synchronous state of the diffusively coupled os-
cillators gets destroyed for small values of ǫ. The number
of oscillators in the response array (2) which retains syn-
chronization with the drive (1) depends on the coupling
strength ǫ. To estimate the quality of synchronization,
we define a measure, namely the synchronization error,
as the Euclidean norm

η(t) =
1

N







N
∑

j=1

[

(x0 − xj)
2 + (y0 − yj)

2 + (z0 − zj)
2
]







1

2
,

(4)

In order to get a perfect synchronization in the drive-
response configuration, (1) and (2), we require η → 0 as
t → ∞. We remark here that all the simulations in the
manuscript are performed for an average of over 100 ran-
dom initial conditions. By examining η, we extract the
critical coupling strength εc corresponding to the number
of oscillators, N , in the response array, whose dynam-
ics are entrained with that of the drive in phase space.
For example, for N = 2, we find the critical coupling
strength as εc = 0.47. The εc values are given in Table I
for different values of N . However, for N ≥ 6, the system
gets destabilized or becomes completely unstable, for any
value of ε 6= 0.

TABLE I: Critical coupling strength εc

Rössler system Lorenz system

N εc N εc

2 0.447 2 12.528

3 0.721 3 20.288

4 1.134 4 31.334

5 1.882 5 51.486

By careful examination of the numerical values, we re-
alize that there is an exponential relation between the
number of oscillators (N) in the response array that sup-
ports synchronization with the external drive and the
critical coupling strength, ǫc. By fitting the numerical
values, one can easily establish the relation connecting ǫc
and N as

εc = ε0 exp(γN), (5)

with the proportionality constant ε0 = 0.1665 and the
scaling exponent γ = 0.4842. The critical coupling

FIG. 2: (color online) Variation of the critical coupling
strength, εc, as a function of the number of oscillators, N ,
for (a) Rössler system (ε0 = 0.1665 and γ = 0.4842) and (b)
Lorenz system (ε0 = 4.8158 and γ = 0.4731). Filled circles
correspond to the numerical data and solid lines are the plot
of εc using relation (5).

strength as a function of the number of oscillators is
shown in Fig. 2(a), where the filled circles correspond
to numerical data and the solid line is the fitted data us-
ing the relation (5). The above result is also confirmed by
calculating the conditional Lyapunov exponents (CLEs)
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FIG. 3: (color online) Conditional Lyapunov exponents of the
coupled Rössler system (2) for different values of the number
of oscillators (N) in the array as a function of the coupling
strength.

of the response array by increasing the number of the
coupled oscillators N . Here by CLE we mean the largest
Lyapunov exponent of the response array, which of course
should be less than zero in order to have a synchronous
state. Fig. 3 shows the variation of CLEs as a function
of ε for the various numbers of oscillators in the response
array. From Fig. 3, one can identify that the value of εc
for each N , where a transition of the CLE from positive
to negative value occurs, agrees with the value of εc given
in Table I.

B. Coupled Lorenz systems

Next we consider the case of the Lorenz system de-
scribed by the following set of equations [36, 37] as the
drive,

ẋ0 =σ(y0 − x0),

ẏ0 = rx0 − y0 − x0z0

ż0 = − βz0 + x0y0, (6)

where σ = 10, r = 23 and β = 1. A ring of diffusively
coupled Lorenz systems for the response array can be
represented by the following set of coupled equations,

ẋj = σ(yj − xj) + d(xj+1 + xj−1 − 2xj)

+ δ1,jε(x0 − xj), (7a)

ẏj = rxj − yj − xjzj (7b)

żj = − βzj + xjyj , j = 1, 2, · · · , N, (7c)

where d is the diffusive coupling constant and ε is the
coupling strength of the external drive. One may note
that the isolated system (6) exhibits chaotic behavior for
the above choice of parameters with the Lyapunov expo-
nents λ1 = 0.6075 > 0, λ3 = 0 and λ3 = −17.9194.
We study the variation of the critical coupling strength

as a function of the number of oscillators in the response
array by numerically examining the synchronization error
η in a similar fashion as in the case of the coupled Rössler
oscillators. For this purpose, we fix the diffusive coupling
constant as d = 30. In this case, the response array
(7), in the absence of external drive (ε = 0), supports a

maximum of N = 9 oscillators in the stable synchronous
state as per Eq. (3).
When the external coupling is switched on, the syn-

chronization in the array (7) gets lost. However, by
choosing the number of oscillators, N , and the coupling
strength, ε, appropriately one can synchronize the array
with the external drive. The values of εc for different
numbers of oscillators in the response array, N , are also

FIG. 4: (color online) Conditional Lyapunov exponents of the
coupled Lorenz system (7) for different values of the number of
oscillators in the array as a function of the coupling strength.

given in Table I. Fig. 2(b) depicts the plot of N versus
εc. It is easy to see that, as in the case of the coupled
Rössler oscillators discussed above, εc again increases ex-
ponentially as a function of N according to the relation
(5) with ε0 = 4.8158 and γ = 0.4731.
The above results have also been examined by calculat-

ing the conditional Lyapunov exponents associated with
(7) and it is confirmed that the largest CLE (cf. Fig. 4)
transits from positive to negative value at the critical
coupling strength of a given N as shown in Table I.
So far, we have considered Rössler and Lorenz oscilla-

tors with a ring geometry and driven by an external iden-
tical oscillator in a drive-response configuration. Based
on numerical simulations, we have found that there is an
exponential relation connecting the critical value of the
coupling strength εc and the number of oscillators in the
response array N that evolve in synchrony with the ex-
ternal drive with a scaling exponent γ ≈ 0.48 for both
the Rössler and Lorenz oscillators. Next, we will exam-
ine the effect of Gaussian white noise on the stability of
synchronization of the coupled oscillators.

C. Effect of noise

We have examined the robustness of the synchronous
states of the coupled oscillators by including Gaussian
white noise to the first variable of all the systems. In-
terestingly, we find that the results obtained remain un-
altered for small values of the noise intensity and the
synchronization error, η, follows a power law decay as
the intensity of the noise is increased resulting in noise-
enhanced and noise-induced synchronizations depending
on the value of the coupling strength. It is of interest to
note that similar noise-enhanced phase synchronization
in two coupled noisy Rössler oscillators [11, 38] and noise-
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FIG. 5: (color online) Conditional Lyapunov exponents of
the coupled (a) Rössler and, (b) Lorenz systems for different
values of the number of oscillators in the array as a function
of the coupling strength in the presence of Gaussian white
noise with intensity D0 = 0.001.

induced phase synchronization in two coupled Rössler
and Lorenz oscillators [11, 39] have been observed.
In particular, we have included the Gaussian white

noise,
√
2aD0ξ(t) with a = 0.01 to the x variable of

all the coupled systems including the drive after every
time step, where D0 is the noise intensity and ξ(t) is the
Gaussian white noise. We have calculated the CLEs for
both the Rössler and Lorenz oscillators as in the previ-
ous section by including a small noise with noise intensity
D0 = 0.001, which are plotted in Figs. 5(a) and 5(b), re-
spectively. It is evident from this figure that the critical
values of ε for the chosen value of the noise intensity re-
main almost the same as in Figs. 3 and 4 for the Rössler
and Lorenz oscillators, respectively. Hence, the expo-
nential relation between the number of oscillators in the
ring and their corresponding εc remains the same in the
presence of small noise also.
Furthermore, we have calculated the synchronization

error η by increasing the noise intensity D0 at the thresh-
old value of ε, namely εc, shown in Table I. The average
synchronization error 〈η〉, where 〈·〉 denotes the time av-
erage over 500 000 time steps, for different values of N in
the ring as a function of noise intensity D0 is shown in
Figs. 6(a) and 6(b) for the Rössler and Lorenz systems,
respectively. The average synchronization error for both
the Rössler and Lorenz systems for different numbers of
oscillators in the ring follows a power law decay as a func-
tion of the noise intensity D0 beyond certain threshold
values of D0, i.e, D0 ≥ 0.01.
In our studies, we have fixed the value of the coupling

strength ε at the critical coupling strength εc as shown
in Tables for different values of N . On increasing the
noise intensity D0, the synchronization error follows a
power-law decay as a function of D0 after certain thresh-
old value of noise intensity. This naturally corresponds to

FIG. 6: (color online) Time averaged synchronization error
〈η〉 for different numbers of oscillators in the ring as a function
of the noise intensity D0 for a fixed value of εc displaying a
power law decay for (a) the Rössler oscillators in the range
D0 ∈ (0.01, 1), and (b) the Lorenz oscillators in the range
D0 ∈ (0.01, 10).

a noise-enhanced synchronization and also confirms the
robustness of the synchronous state. Interestingly, we
have also observed that by fixing ε at a value less than
that of the synchronization threshold εc, noise can induce
synchronization between the ring and the drive oscillator.
The synchronization error again shows a power-law de-
cay as a function of the noise intensity (exactly similar
to Figs. 6 omitted here to avoid repetition), exhibiting
noise-induced synchronization. Thus we have observed
both the phenomena of noise-enhanced and noise-induced
synchronizations depending upon the choice of ε.

III. OVERCOMING SIZE INSTABILITY BY

INTRODUCING ADDITIONAL COUPLINGS

In the above, we have pointed out that, when one con-
siders an array of diffusively coupled chaotic oscillators
(with a ring geometry) driven by an external identical
forcing in the drive-response configuration, the critical
coupling strength of the external drive required to syn-
chronize the response array varies exponentially with the
number of oscillators within the synchronization regime.
As a consequence of the exponential relation, the number
of oscillators in the response array that can be synchro-
nized with the external drive is limited to 4 or 5 because
one requires a high coupling strength, which results in
desynchronization above a certain threshold value of the
coupling strength due to size instability. However, we
wish to point out here that it is possible to increase the
number of oscillators in the response array, which are
synchronized with the external drive by increasing the
number of couplings. In Fig. 7 we show a schematic di-
agram for the realization of the drive-response configu-
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FIG. 7: (color online) Schematic diagram of the ring of diffu-
sively coupled oscillators driven by an external identical os-
cillator with additional coupling in (a) first neighbor and (b)
second neighbor.

ration with more than one coupling. In this section we
explore the possibility of increasing the number of os-
cillators that evolve in synchrony with the drive and the
robustness of the scaling exponent γ when one introduces
more number of couplings between the drive and the re-
sponse array.
In order to study the effect of making more number of

couplings between the drive and the response array, we
again consider the coupled Rössler systems as discussed
earlier in Sec. II A. The drive system is assumed to follow
the same set of equations (1) as before. Then the gov-
erning equations for the response array can be written as

ẋj = − (yj + zj)

+ d(xj+1 + xj−1 − 2xj) + pj(x0 − xj), (8a)

ẏj =xj + ayj , (8b)

żj = b+ zj(xj − c), j = 1, 2, · · · , N, (8c)

where

pj = ε

m−1
∑

k=0

δj,kl+1, δj,kl+1 =

{

1 for j = kl+ 1,

0 otherwise.
(9)

and ε corresponds to the coupling strength. Here m de-
notes the number of couplings and l represents the l-th
neighbor of the first oscillator in the response array. For
example, l = 1 for the first neighbor, l = 2 for the second
neighbor and so on.

A. Second coupling at the first neighbor

First let us consider the case in which there is a sec-
ond coupling (of the same strength as the first one) be-
tween the external drive and the response array in the
immediate neighborhood of the first oscillator, that is,
l = 1 in Eq. (9), which is already coupled to the drive [cf.
Fig. 7(a)]. For simplicity, we consider the coupled Rössler
systems (1) and (8) with N = 3 with coupling at the first
and second oscillators in the array. Now, interestingly it

is easy to see that the critical coupling strength required
to synchronize all the three oscillators in the array gets
reduced to εc ≈ 0.311 from εc ≈ 0.407 (see Table I).
Similarly, up to N = 6 the second additional coupling
helps to reduce the critical values of ε as tabulated in
Table II for the coupled Rössler oscillators. The same

TABLE II: Critical coupling strength εc for second coupling
at the first neighbour

Rössler system Lorenz system

N εc N εc

3 0.311 3 9.189

4 0.441 4 12.895

5 0.647 5 18.435

6 1.056 6 28.297

analysis can be extended to the Lorenz oscillators (6)-
(7) as well. Again the results are tabulated in Table II.
It may be noted that for such a second additional cou-
pling one additional oscillator, namely N = 6, in the
ring can be synchronized compared to the case of a sin-
gle coupling (see Table I). Further, the critical values of
ε in Table II again show an exponential relation with the
number of synchronized oscillators in the array as shown
in Figs. 8(a) and 8(b) for the Rössler and Lorenz os-

FIG. 8: (color online) The variation of the critical coupling
strength, εc, as a function of the number of oscillators, N , for
second additional coupling at the first neighbor of the first
coupling for (a) Rössler system (ε0 = 0.0788 and γ = 0.43303)
and (b) Lorenz system (ε0 = 2.7351 and γ = 0.3878). Filled
circles corresponds to the numerical data and solid lines are
the plot of εc using relation (5).

cillators, respectively. Here the proportionality constant
ε0 = 0.0788 and the scaling exponent γ = 0.4303 for the
Rössler oscillators and ε0 = 2.7351 and γ = 0.3878 for
the Lorenz oscillators.
The conditional Lyapunov exponents of the coupled

Rössler and Lorenz oscillators for N = 3, 4, 5 and 6 oscil-
lators in the ring as a function of ε is shown in Figs. 9(a)
and 9(b), respectively. It is to be noted that all the CLEs
change their values from positive to negative near the
critical values of ε as in Table II.
We have also investigated the effect of noise in the

present case as well. The CLEs of both the coupled
Rössler and Lorenz oscillators for different N values in
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FIG. 9: (color online) Conditional Lyapunov exponents of the
(a) Rössler and, (b) Lorenz systems for different values of the
numbers of oscillators (N) in the array as a function of the
coupling strength with the second additional coupling at the
first neighbor of the first coupling.

FIG. 10: (color online) Conditional Lyapunov exponents of
the (a) Rössler and, (b) Lorenz systems for different values of
the number of oscillators (N) in the array as a function of the
coupling strength with the second additional coupling at the
first neighbor of the first coupling in the presence of Gaussian
white noise with intensity D0 = 0.001.

the ring for the noise intensity D0 = 0.001 is plotted in
Figs. 10(a) and 10(b) as a function of ε. Again the CLEs
change their signs almost at the same critical values of
ε as the CLEs of the coupled oscillators without noise
[Figs. 9(a) and 9(b)] thereby preserving the same expo-
nential relation between the critical values of ε and the
number of oscillators synchronized in the ring. Further,
the synchronization error 〈η〉 follows a power law decay as
a function of the noise intensity D0 for both the Rössler
and Lorenz oscillators as shown in Figs. 11(a) and 11(b)
beyond certain threshold values of D0 for a fixed value

FIG. 11: (color online) Time averaged synchronization er-
ror 〈η〉 for different number of oscillators in the ring as
a function of noise intensity D0 for fixed value of εc dis-
playing a power-law decay (a) the Rössler oscillators in the
range D0 ∈ (0.01, 1), and the Lorenz oscillators in the range
D0 ∈ (0.01, 10) with the second additional coupling at the
first neighbor of the first coupling.

of εc given in Table II illustrating noise-enhanced syn-
chronization. Further, a similar relation can be obtained
between 〈η〉 and D0 for values of ε < εc confirming the
existence of noise-induced synchronizations.

B. Second coupling at the second neighbor

Next, by introducing a second coupling at the second
neighbor (instead of the first one), l = 2, of the first cou-
pling, we find that one can synchronize two additional
oscillators in the ring compared to the number of syn-
chronized oscillators with a single coupling. Likewise,
introducing the second coupling at the third neighbor
[cf. Fig. 7(b)] of the first oscillator (l = 3) in the array

TABLE III: Critical coupling strength εc for second coupling
at the second neighbour.

Rössler system Lorenz system

N εc N εc

4 0.405 4 12.212

5 0.563 5 16.231

6 0.814 6 21.883

7 1.156 7 31.987

results in increasing the number of oscillators that are
synchronized with the drive by 3. Similarly, introducing
the second coupling at the N -th neighbor will increase
the synchronized oscillators in the ring by N . Thus from
the Table I for single coupling, we can realize that it is
possible to synchronize up to 10 oscillators (instead of
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5) with the introduction of a second coupling at reduced
critical coupling strength.
The critical values of the coupling strength εc and their

corresponding number of synchronized oscillators in the
ring for both the Rössler and Lorenz oscillators for the
second coupling at the second neighbor are tabulated in
Table III, which again displays an exponential relation
as shown in Figs. 12(a) and 12(b). The proportional-

FIG. 12: (color online) The variation of the critical coupling
strength, εc, as a function of the number of oscillators, N , for
second additional coupling at the second neighbor of the first
coupling for (a) Rössler system (ε0 = 0.0972 and γ = 0.3536)
and (b) Lorenz system (ε0 = 3.0908 and γ = 0.3321). Filled
circles corresponds to the numerical data and solid lines are
the plot of εc using relation (5).

ity constant is estimated as ε0 = 0.0972 and the scal-
ing exponent γ = 0.3536 for the Rössler oscillators and
ε0 = 3.0908 and γ = 0.3321 for the Lorenz oscillators.
These critical values of ε are also confirmed by the tran-
sitions in the value of the CLEs of the coupled Rössler
and Lorenz oscillators as shown in Figs. 13(a) and 13(b).

FIG. 13: (color online) Conditional Lyapunov exponents of
the (a) Rössler and, (b) Lorenz systems for different values
of the number of oscillators in the array as a function of the
coupling strength with the second additional coupling at the
second neighbor of the first coupling.

The conditional Lyapunov exponents of both the os-
cillators as a function of ε with the noise intensity D0 =

FIG. 14: (color online) Conditional Lyapunov exponents of
the (a) Rössler and, (b) Lorenz systems for different values
of the number of oscillators in the array as a function of the
coupling strength with the second additional coupling at the
second neighbor of the first coupling in the presence of the
Gaussian white noise with noise intensity D0 = 0.001.

0.001 for N = 4, 5, 6 and 7 oscillators in the ring are
shown in Figs. 14(a) and 14(b). It is evident from this
figure that the critical value of ε for small noise intensity
is almost the same as that of the oscillators without noise
[cf. Figs. 13(a) and 13(b)], indicating the robustness of
the synchronous state and the exponential relation (5)
with the addition of small noise. Further the power law

FIG. 15: (color online) Time averaged synchronization error
〈η〉 for different number of oscillators in the ring as a function
of noise intensity D0 for fixed value of εc displaying power-
law decay for (a) the Rössler oscillators in the range D0 ∈
(0.01, 1), and (b) the Lorenz oscillators in the range D0 ∈
(0.01, 10) with the second additional coupling at the second
neighbor of the first coupling.

decay of the synchronization error as a function of the
noise intensity [Figs. 15(a)-(b)] beyond certain threshold
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values of D0 for the value of εc for both the oscillators
confirming the existence of noise-enhanced synchroniza-
tion. Exactly similar figures can be obtained by fixing
the coupling strength to be less than εc indicating the
existence of noise-induced synchronization.

C. Couplings at the N-th neighbors

Let Nc be the maximum number of oscillators in the
response array that are synchronized with the external
drive for a given εc for m = 1. Then, by introducing
a second coupling, (m = 2) in eq. (9), at Nc + 1 one
can synchronize up to a maximum of 2Nc oscillators in
the response array with the external drive for the same
coupling strength εc. One can also introduce a third
coupling in the response array, (m = 3) in eq. (9), in the
same fashion in which the second coupling is introduced
where one can synchronize a maximum 3Nc oscillators
in the response array. In this way one can increase the
number of oscillators (size) in the response array that
evolve in synchrony with the external drive to mNc by
introducing m couplings at the oscillator index 1, Nc+1,
2Nc + 1, . . . , (m− 1)Nc + 1, respectively, with the same
critical coupling εc.
In the following we shall illustrate this result using the

second and third couplings at the oscillators with the
indices Nc+1 and 2Nc+1, respectively. It is known from
Section II that the maximum number of oscillators that
can be synchronized with the drive with a single coupling
isNc = 5. The CLEs of the Rössler and Lorenz oscillators
with the second coupling, (m = 2), at the oscillator in
the ring with the index Nc+1 = 6 and the third coupling,
(m = 3), at the oscillator index 2Nc + 1 = 11 along with
the CLE of the Nc oscillators in the ring with a single
coupling are shown in Figs. 16(a) and 16(b) as a function
of ε. It clearly shows that the mNc oscillators in the
ring with couplings at m = 1, 2 and 3 are synchronized
exactly at the same critical value of the coupling strength
εc. Hence, it is evident that the number of synchronized
oscillators can be increased beyond the size instability to
any desired amount by introducing additional couplings
at the (mNc + 1)-th oscillators for the same value of εc.
We have also examined the effect of noise as in the

previous cases. The CLEs of the Rössler and Lorenz
oscillators with the second and the third couplings at
the oscillators with the indices Nc + 1 and 2Nc + 1 with
the noise intensity D0 = 0.001 for fixed value of εc are
shown in Figs. 17(a) and 16(b), respectively. The syn-
chronization error also displays a power law decay as a
function of the noise intensity D0 as shown in Figs. 19(a)
and 19(b) beyond after certain threshold values of D0

for both the coupled Rössler and Lorenz oscillators con-
firming the robustness of the synchronous states and the
noise-enhanced synchronization. Further these systems
of coupled oscillators also display noise-induced synchro-
nization by exhibiting similar figures as a function of D0

for ε less than εc.

FIG. 16: (color online) Conditional Lyapunov exponents of
the (a) Rössler and, (b) Lorenz system for different values
of the number of oscillators in the array as a function of the
coupling strength with the second and the third additional
couplings at the N-th and 2N-th neighbor, respectively, of
the first coupling.

FIG. 17: (color online) Conditional Lyapunov exponents of
the (a) Rössler and, (b) Lorenz system for different values
of the number of oscillators in the array as a function of the
coupling strength with second additional coupling at the N-th
and 2N-th neighbors, respectively, of the first coupling in the
presence of Gaussian white noise with intensity D0 = 0.001.

D. Effect of additional couplings

In addition to the effect of increasing the number of
synchronized oscillators in the array beyond the size
instability limit by introducing additional couplings at
(mNc + 1)-th oscillators for m = 1, 2, · · · it reduces the
required coupling strength exponentially to synchronize
the fixed number of oscillators in the array. For instance,
we have fixed the number of oscillators in the array to
be N = Nc = 5 and increase the number of couplings
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between the drive and the array from N = 1 to N = 5-th
oscillator and estimate the critical coupling strength εc
required to synchronize the N = Nc = 5 oscillators in
the array for each additional coupling. The estimated εc
is plotted as a function of the number of additional cou-
plings in the array in Figs. 18 for both the Rössler and
the Lorenz systems, which establishes an exponential de-
crease of the required coupling strength to synchronize
the fixed number of oscillators in the array by introduc-
ing additional couplings between the drive and the array.
It may be noted that the critical coupling strength follows

FIG. 18: (color online) Critical coupling strength as a function
of the number of additional couplings between the drive and
the response array for a fixed number of oscillators in the
array displaying an exponential decay of εc as a function of
number of additional couplings (a) Rössler and, (b) Lorenz
system.

an exponential relation with the number of couplings as
εc ∼ ε0 exp(−γ m), with m being the number of cou-
plings. The constants, in the case of Rössler equations,
turn out to be ε0 = 4.4746 and γ = 0.8819 while they
are ε0 = 105.6375 and γ = 0.7069 for Lorenz equations.

IV. SUMMARY AND CONCLUSION

In this paper, we have studied chaos synchronization
in arrays of diffusively coupled nonlinear oscillators with
a ring geometry driven externally by an identical oscilla-
tor. In particular, we have shown that the critical cou-
pling strength required to synchronize the array with the
external drive increases exponentially with a scaling ex-
ponent γ ∈ (0.3, 0.5) as a function of the number Nc of
the oscillators in the array. We have pointed out that
as a consequence of the exponential relation, the maxi-
mum number of oscillators in the array that can evolve
in synchrony with the external drive is limited. Further,
we have shown that by introducing additional couplings
between the external drive and the array at (mNc+1)-th
oscillators in the ring, one can proportionately increase
the maximum number of oscillators that can evolve in
synchrony with the drive. Further, we have obtained the
same exponential relation connecting the critical coupling
strength and the number of oscillators even after intro-
ducing the additional number of couplings. Furthermore,
we have found that εc establishes an exponential decay as
a function of the number of additional couplings between

FIG. 19: (color online) Time averaged synchronization error
〈η〉 for different numbers of oscillators in the ring as a function
of noise intensityD0 for the fixed value of εc displaying power-
law decay for (a) the Rössler oscillators in the range D0 ∈
(0.01, 1), and (b) the Lorenz oscillators in the range D0 ∈
(0.01, 10) with second additional coupling at the N-th and
2N-th neighbor, respectively, of the first coupling.

the drive and the response array for a fixed number of
oscillators in the array. We have also examined the ro-
bustness of the results against noise of small intensity and
found that the synchronization error displays a power law
decay as a function of the noise intensity at ε = εc indi-
cating the existence of noise-enhanced and noise-induced
synchronization for ε < εc in all the cases.
In addition, we have also obtained similar results as

above in other ubiquitous coupled nonlinear oscillators
such as coupled MLC circuits, Chua’s circuits and Sprott
oscillators as well, and also in a discrete system, namely
coupled logistic maps, thus confirming the universality of
the above results. One can also extend the same type of
analysis with other coupling configurations such as star-
type, unidirectional, global, weighted coupling configura-
tions, 2-d, 3-d lattices, etc. We believe that our results
shed more light on controllability and synchronizability
of networks by introducing additional couplings at ap-
propriate oscillators/nodes with the less cost in terms
of the coupling strength. Further investigations can be
extended to networks, in particular to network with com-
munity structure using pinning control and also with de-
lay coupling.
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Mariño, and V. Pérez-Villar, Phys. Rev. Lett. 78, 219
(1997).
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