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Abstract. Bright plane soliton solutions of an integrable (2+1) dimensional (n+1)-

wave system are obtained by applying Hirota’s bilinearization method. First, the

soliton solutions of a 3-wave system consisting of two short wave components and

one long wave component are found and then the results are generalized to the

corresponding integrable (n+1)-wave system with n short waves and single long wave.

It is shown that the solitons in the short wave components (say S(1) and S(2)) can

be amplified by merely reducing the pulse width of the long wave component (say

L). The study on the collision dynamics reveals the interesting behaviour that the

solitons which split up in the short wave components undergo shape changing collisions

with intensity redistribution and amplitude-dependent phase shifts. Even though

similar type of collision is possible in (1+1) dimensional multicomponent integrable

systems, to our knowledge for the first time we report this kind of collisions in (2+1)

dimensions. However, solitons which appear in the long wave component exhibit only

elastic collision though they undergo amplitude-dependent phase shifts.

PACS numbers: 02.30.Jr, 05.45.Yv

http://arXiv.org/abs/0810.2868v3


Bright solitons in multicomponent LSRI system 2

1. Introduction

One of the main emphasis of current research in the area of integrable systems and their

applications is the study on multicomponent nonlinear systems admitting soliton type

solutions [1–17]. In (1+1) dimensions, it has been shown that the multicomponent bright

solitons of the integrable N-coupled nonlinear Schrödinger (CNLS) equations undergo

fascinating shape changing collisions with intensity redistribution which have no single

component counterpart [4–8]. This interesting behaviour found applications in nonlinear

switching devices [12], matter wave switches [13] and more importantly in the context

of optical computing in bulk media [14,15]. There is a natural tendency to look for such

kind of collisions in higher dimensions. From this point of view, we have considered the

following recently studied integrable coupled (2+1) dimensional ((2+1)D) system, which

is a two component analogue of the two dimensional long wave-short wave resonance

interaction (LSRI) system [16], in dimensionless form,

i(S
(j)
t + S(j)

y ) − S(j)
xx + LS(j) = 0, j = 1, 2, (1a)

Lt = 2

2
∑

j=1

|S(j)|2x, (1b)

where the subscripts denote partial derivatives. (Note that in the above two components

mean two short wave (S) components). The one component (j = 1) version of the above

equations corresponds to the interaction of a long interfacial wave (L) and a short surface

wave (S) in a two layer fluid [18]. Also in ref. [19], the existence of dromion like solution

was established for the j = 1 case. In their very recent interesting work, Ohta, Maruno

and Oikawa [16] have derived equation (1) as the governing equations for the interaction

of three nonlinear dispersive waves by applying a reductive perturbation method. Here,

among these three waves, two waves are propagating in the anomalous dispersion region

and the third wave is propagating in the normal dispersion regime. In the context of

long wave-short wave interaction, the first two components can be viewed as the two

components of the short surface waves while the last component corresponds to the

long interfacial wave. Note that the presence of the long interfacial wave induces the

nonlinear interaction between the two short wave components which leads to nontrivial

collision behaviour as will be shown in this paper. Here onwards we call equation (1) as

the 3-wave LSRI system in which the first two components correspond to short waves

and the last one is a long wave.

Apart from deriving the governing equation (1) in ref. [16], Ohta et al have also

given Wronskian type soliton solutions of a specific type where the components S(1),

S(2), and L comprise of N solitons, M solitons, and (M +N) solitons, respectively. In

this context, however, it is of considerable interest to study the collision behaviour if the

same number of solitons are split up in all the three components and to check whether

nontrivial shape changing collisions of solitons as in the case of CNLS systems [4, 5]

occur here also and to look for the possibilities of construction of logic gates based on

soliton collisions. For the one component case the interaction of two solitons in both



Bright solitons in multicomponent LSRI system 3

short wave and long wave components have been studied in detail in ref. [18] and certain

interesting features such as fusion and fission processes have been revealed. In this study,

we consider the multicomponent (2+1)D LSRI system admitting the same number of

bright solitons in all the three components and obtain the multisoliton solutions. Our

analysis on their collision properties shows that the solitons appearing in the short wave

components exhibit a shape changing collision scenario resulting in a redistribution of

intensity as well as amplitude-dependent phase shift whereas the long wave component

solitons undergo standard elastic collisions only but with amplitude-dependent phase

shifts. We also point out that the (N,M,N +M) soliton solutions obtained in ref. [16]

follow as special cases of the (m,m,m) multisoliton solution obtained here when some of

the soliton parameters are restricted to very special values. The study is also extended

to the (n + 1) wave system as well, where n is arbitrary.

The plan of the paper is as follows: In section 2, we briefly present the bilinearization

procedure for the three wave system. Multisoliton solution of the three wave system

is discussed in section 3. Explicit one-soliton and two-soliton solutions are analysed in

section 4. The asymptotic analysis of the two-soliton solution of the three wave system is

given in section 5. The interesting collision scenario of two solitons is discussed in detail

in section 6. Sections 7 and 8 deal with three- and four-soliton solutions, respectively.

Multicomponent case with j > 2 in equation (1) is studied in section 9. Section 10 is

allotted for conclusion.

2. (2+1)D bright soliton solutions

The soliton solutions of equation (1) are obtained by using Hirota’s direct method

[20, 21]. By performing the bilinearizing transformations

S(j) =
g(j)

f
, L = −2

∂2

∂x2
(log f), j = 1, 2, (2)

where g(j)’s are complex functions while f is a real function, equation (1) can be

decoupled into the following bilinear equations
(

i(Dt +Dy) −D2
x

)

(g(j) · f) = 0, j = 1, 2, (3a)

DtDx(f · f) = −2
2
∑

j=1

(g(j)g(j)∗), (3b)

where ∗ denotes the complex conjugate. The Hirota’s bilinear operators Dx, Dy and Dt

are defined as

Dp
xD

q
yD

r
t (a · b) =

( ∂

∂x
− ∂

∂x′

)p( ∂

∂y
− ∂

∂y′

)q( ∂

∂t
− ∂

∂t′

)r

a(x, y, t)b(x′, y′, t′)
∣

∣

∣

(x=x′,y=y′,t=t′)
.

Expanding g(j)’s and f formally as power series expansions in terms of a small arbitrary

real parameter χ,

g(j) = χg
(j)
1 + χ3g

(j)
3 + . . . , j = 1, 2, (4a)

f = 1 + χ2f2 + χ4f4 + . . . , (4b)
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and solving the resultant set of linear partial differential equations recursively, one can

obtain the explicit forms of g(j) and f . Then by substituting their expressions in (2)

one can write down the soliton solutions. The procedure has been successfully used to

unearth several interesting properties of soliton collisions associated with CNLS system

in Refs. [4–8]. We have used a similar procedure here and obtained the one-soliton (1,

1, 1), two-soliton (2, 2, 2), three-soliton (3, 3, 3) and four-soliton (4, 4, 4) solutions

explicitly. This can be generalized to the arbitrary m-soliton (m,m,m) solution, in a

Gram determinant form. From this one may claim that in the general case the number

of solitons which split up in the short wave components (S(1) and S(2)) as well as in

the long wave component (L) are the same. However, we also point out that the (1,

1, 2), (2, 2, 4) and (N,M,N + M) soliton solutions obtained by Ohta et al [16] can

be deduced as special cases of our (m,m,m) soliton solution with m = 2, m = 4 and

m = N +M , respectively, for particular choices of parameters in the solutions.

3. Arbitrary m-soliton solution

We first present the general form of (m,m,m) soliton solution for arbitrary m in the

following Gram determinant form. In order to write down the multisoliton (m-soliton)

solution of the three wave LSRI system (1), we define the following (1×m) row matrix

Cs, s = 1, 2, (m × 1) column matrices ψj , and φ, j = 1, 2, . . . , m, and the (m × m)

identity matrix I:

Cs = −
(

α
(s)
1 , α

(s)
2 , . . . , α(s)

m

)

, 0 = (0, 0, . . . , 0), (5a)

ψj =

(

α
(1)
j

α
(2)
j

)

, φ =











eη1

eη2

...

eηm











, I =











1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1











. (5b)

Here α
(s)
j , s = 1, 2, j = 1, 2, . . . , m, are arbitrary complex parameters and ηi =

kix− (ik2
i +ωi)y+ωit, i = 1, 2, . . . , m, and ki and ωi are complex parameters. Then we

can write down the multisoliton solution of the three wave LSRI system in the form of

equation (2), with

S(s) =
g(s)

f
, s = 1, 2, L = −2

∂2

∂x2
log(f), (6)

where

g(s) =

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

0 Cs 0

∣

∣

∣

∣

∣

∣

∣

, f =

∣

∣

∣

∣

∣

A I

−I B

∣

∣

∣

∣

∣

, (7a)

in which s denotes the short wave components. Here the matrices A and B are defined

as

Aij =
eηi+ηj

ki + k∗j
, Bij = κji =

−ψ†
iψj

(ω∗
i + ωj)

= −
(α

(1)
j α

(1)∗

i + α
(2)
j α

(2)∗

i )

(ω∗
i + ωj)

, i, j = 1, 2, . . . , m. (7b)
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In equation (7b), † represents the transpose conjugate and the real parts of ωi’s (or

ki’s) should be chosen as negative quantities in order to obtain nonsingular solutions,

which are necessary conditions. Sufficiency condition requires the choice of parameters

such that f is real and nonzero (see below sections 4, 7 and 8 for details in the case of

m = 1, 2, 3, and 4).

3.1. Proof of multisoliton solution of the three wave LSRI system

We now prove that the Gram determinant forms of g(s) and f given above indeed satisfy

the bilinear equations (3). By applying the derivative formula for the determinants, that

is,

∂D

∂x
=

∑

1≤i,j≤n

∂ai,j

∂x

∂D

∂ai,j
=

∑

1≤i,j≤n

∂ai,j

∂x
∆i,j , (8a)

where D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

and ∆i,j is the cofactor of the (i, j)th element

and making use of the properties of bordered determinants and also the elementary

properties of determinants [21, 22], the derivatives g
(s)
x , fx, ft, fxt, g

(s)
z , g

(s)
xx , fz and fxx,

where ∂
∂z

=
(

∂
∂t

+ ∂
∂y

)

, can be derived as below:

g(s)
x =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ φx

−I B 0T 0T

0 Cs 0 0

0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

, fx =

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

, (8b)

ft = −
2
∑

s=1

∣

∣

∣

∣

∣

∣

∣

A I 0T

−I B −C†
s

0 Cs 0

∣

∣

∣

∣

∣

∣

∣

, fxt = −
2
∑

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ 0T

−I B 0T −C†
s

−φ† 0 0 0

0 Cs 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (8c)

g(s)
z = −i

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ φxx

−I B 0T 0T

0 Cs 0 0

0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ i

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ φx

−I B 0T 0T

0 Cs 0 0

φ† 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (8d)

g(s)
xx =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ φxx

−I B 0T 0T

0 Cs 0 0

0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ φx

−I B 0T 0T

0 Cs 0 0

φ† 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (8e)
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fz = −i

∣

∣

∣

∣

∣

∣

∣

A I φx

−I B 0T

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

+ i

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

−φ†
x 0 0

∣

∣

∣

∣

∣

∣

∣

, (8f)

and

fxx =

∣

∣

∣

∣

∣

∣

∣

A I φx

−I B 0T

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

−φ†
x 0 0

∣

∣

∣

∣

∣

∣

∣

. (8g)

The conjugate of g(s) can be written as

g(s)∗ = −

∣

∣

∣

∣

∣

∣

∣

A I 0T

−I B −C†
s

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

. (8h)

Substituting for g
(s)
x , g

(s)
z , g

(s)
xx , fx, fxx, and fz in equation (3a), we find

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ φx

−I B 0T 0T

0 Cs 0 0

−φ† 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I

−I B

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

A I φx

−I B 0T

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

0 Cs 0

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

A I φx

−I B 0T

0 Cs 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

.(8i)

This is nothing but a Jacobian identity and hence g(s) and f satisfy the first bilinear

equation (3a). In a similar way one can also check that the second bilinear equation

(3b) gives rise to the following Jacobian identity for the Gram determinant forms of g(s)

and f :

−
2
∑

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ 0T

−I B 0T −C†
s

−φ† 0 0 0

0 Cs 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I

−I B

∣

∣

∣

∣

∣

= −
2
∑

s=1

∣

∣

∣

∣

∣

∣

∣

A I 0T

−I B −C†
s

0 Cs 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

+

2
∑

s=1

∣

∣

∣

∣

∣

∣

∣

A I φ

−I B 0T

0 Cs 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A I 0T

−I B −C†
s

−φ† 0 0

∣

∣

∣

∣

∣

∣

∣

. (8j)

Thus equations (8i) and (8j) clearly show that the given Gram determinants g(s) and f

satisfy the bilinear equations (3), which completes the proof of (6) with (7).

3.2. (N,M,N +M) soliton solution

We now point out that the (N,M,N+M) soliton solution (for N even) given in ref. [16]

can be obtained as a special case of the above (m,m,m) soliton solution for the specific
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choice of parameters α
(2)
i = 0, i = 1, 2, . . . , N , and α

(1)
l = 0, l = N + 1, N + 2, . . . , m(=

N +M) along with the parametric restrictions

α
(1)
i =

∏m
j=1(ki + k∗j )

∏m
j=1,i6=j(kj − ki)

, i = 1, 2, . . . , N,

α
(2)
l =

∏m
j=1(kl + k∗j )

∏m
j=1,l 6=j(kj − kl)

, l = N + 1, N + 2, . . . , m(= N +M).

In the following sections, we will consider the explicit cases of m = 1, 2, 3, and 4 soliton

solutions and the nature of the soliton interactions therein.

4. One-soliton (1, 1, 1) and two-soliton (2, 2, 2) solutions

Specializing to the case of m = 1 in equation (6) so that the Gram determinants take

the form

g(j) =

∣

∣

∣

∣

∣

∣

∣

A11 1 eη1

−1 B11 0

0 −α(j)
1 0

∣

∣

∣

∣

∣

∣

∣

, f =

∣

∣

∣

∣

∣

A11 1

−1 B11

∣

∣

∣

∣

∣

, j = 1, 2, (9)

where A11 =
eη1+η∗

1

k1 + k∗1
, and B11 = κ11 =

−(|α(1)
1 |2 + |α(2)

1 |2)
ω1 + ω∗

1

. One can write down the

explicit one-soliton solution as

S(j) =
α

(j)
1 eη1

1 + eη1+η∗

1+R
, j = 1, 2, (10a)

L = −2
∂2

∂x2

(

log
(

1 + eη1+η∗

1+R
))

, (10b)

where

η1 = k1x− (ik2
1 + ω1)y + ω1t, eR =

−
∑2

j=1(α
(j)
1 α

(j)∗
1 )

4k1Rω1R
, (10c)

k1 = k1R + ik1I , ω1 = ω1R + iω1I . (10d)

Here α
(1)
1 , α

(2)
1 , ω1 and k1 are all complex parameters. In equation (10) the suffixes

R and I denote the real and imaginary parts, respectively. It may be noted that this

bright soliton solution is nonsingular only when k1Rω1R < 0, otherwise equation (10)

becomes singular. In this work, the main focus will be on nonsingular solutions as they

are of physical importance. The above one-soliton solution can also be rewritten as

S(j) = Aj

√

k1Rω1Re
iη1I sech

(

η1R +
R

2

)

, j = 1, 2, (11a)

L = −2k2
1Rsech2

(

η1R +
R

2

)

, (11b)

where

η1R = k1Rx+ (2k1Rk1I − ω1R)y + ω1Rt and Aj =
α

(j)
1

(

|α(1)
1 |2 + |α(2)

1 |2
) 1

2

, j = 1, 2.
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The complex quantities Aj

√
k1Rω1R, j = 1, 2, represent the amplitude of the soliton in

the S(j) components whereas thy real quantity 2k2
1R gives the amplitude of the soliton

in the component −L. Note that the complex quantities A1 and A2 satisfy the relation

|A1|2 + |A2|2 = 1, which is a reflection of the fact that the set of equation (1) is

rotationally symmetric in the (S(1), S(2)) space.

For illustrative purpose, let us obtain the soliton solution for the special choice of

parameters ω1 = −ik2
1/2. In this case, the above soliton solution (11) becomes

S(j) = Ajk1R

√

k1Ie
iη1I sech

(

η1R +
R

2

)

, j = 1, 2, (12a)

L = −2k2
1Rsech2

(

η1R +
R

2

)

, (12b)

where

η1 = k1x−
ik2

1

2
(t+ y), eR =

∑2
j=1(α

(j)
1 α

(j)∗
1 )

−4k2
1Rk1I

, k1 = k1R + ik1I , (12c)

The above soliton solution is nonsingular only when k1I ≤ 0, otherwise the parameter R

in equation (12c) becomes complex and the solution (12) becomes singular. Interestingly,

we observe that by just reducing the width of the soliton in the L component (which

is proportional to k1I) without affecting its amplitude, the soliton in the S(1) and

S(2) components can be amplified with a proportionate pulse compression, a desirable

property for a pulse in nonlinear optics.

4.1. Two-soliton (2, 2, 2) solution

To obtain the two soliton solution, we take m = 2 in equation (7) and deduce the Gram

determinant forms as

g(j) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 1 0 eη1

A21 A22 0 1 eη2

−1 0 B11 B12 0

0 −1 B21 B22 0

0 0 −α(j)
1 −α(j)

2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 1 0

A21 A22 0 1

−1 0 B11 B12

0 −1 B21 B22

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (13)

where Aij =
eηi+η∗

j

ki + k∗j
, and Bij = κji = −

(

α
(1)
j α

(1)∗
i + α

(2)
j α

(2)∗
i

)

(ωj + ω∗
i )

, i, j = 1, 2. We can

then write the explicit form of the (2, 2, 2) soliton solution as

S(j) =
1

f

(

α
(j)
1 eη1 + α

(j)
2 eη2 + eη1+η∗

1+η2+δ1j + eη2+η∗

2+η1+δ2j

)

, j = 1, 2, (14a)

L = −2
∂2

∂x2
log(f), (14b)

where

f = 1 + eη1+η∗

1+R1 + eη1+η∗

2+δ0 + eη2+η∗

1+δ∗0 + eη2+η∗

2+R2

+ eη1+η∗

1+η2+η∗

2+R3 . (14c)
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The various quantities found in equation (14) are defined as below:

ηi = kix− (ik2
i + ωi)y + ωit, i = 1, 2, eR1 =

κ11

(k1 + k∗1)
, (15a)

eR2 =
κ22

(k2 + k∗2)
, eδ0 =

κ12

(k1 + k∗2)
, eδ∗0 =

κ21

(k2 + k∗1)
, (15b)

eδ1j =
(k1 − k2)

(k1 + k∗1)(k2 + k∗1)
(α

(j)
1 κ21 − α

(j)
2 κ11), (15c)

eδ2j =
(k2 − k1)

(k2 + k∗2)(k1 + k∗2)
(α

(j)
2 κ12 − α

(j)
1 κ22), j = 1, 2, (15d)

eR3 =
|k1 − k2|2

(k1 + k∗1)(k2 + k∗2)|k1 + k∗2|2
(κ11κ22 − κ12κ21), (15e)

κil = −

(

α
(1)
i α

(1)∗
l + α

(2)
i α

(2)∗
l

)

(ωi + ω∗
l )

, i, l = 1, 2.

The two-soliton solution is characterized by eight arbitrary complex parameters α
(1)
1 ,

α
(2)
1 , α

(1)
2 , α

(2)
2 , k1, k2, ω1 and ω2. The above solution features both singular and

nonsingular solutions. The nonsingular solution can be obtained by requiring the

denominator f in (14) to be real and nonzero. The expression (14c) for f can be

rewritten as

f = 2eη1R+η2R
(

e(R1+R2)/2 cosh (η1R − η2R + (R1 +R2)/2) + eδ0R cos (η1I − η2I + δ0I)

+eR3/2 cosh (η1R + η2R +R3/2)
)

. (15f)

To get regular solutions, eR1 and eR2 should be positive which can be obtained only

for k1Rω1R < 0 and k2Rω2R < 0, respectively. Otherwise, that is for negative values,

the solution is not regular as in this case R1 and R2 appearing in the argument of cosh

in first term become complex. So the condition kjRωjR < 0, j = 1, 2 is a necessary

condition to obtain regular solution. In a similar way, in the third term, the quantity

R3/2 becomes real and positive for the condition κ11κ22 − |κ12|2 > 0, as may be seen

from equation (15e). Still the middle term cos(η1I − η2I + δ0I) can lead to a singularity

as it oscillates between -1 and 1. This can be eliminated by choosing the coefficients

of the remaining two terms as e(R1+R2)/2 + eR3/2 > eδ0R , in order to ensure that f will

not be zero at any point in space and time. The last condition is a sufficient one. As

an illustration, the interaction of two solitons in system (1) is shown in figure 1. The

parameters are chosen as k1 = 1 − 2i, k2 = 1.5 − 1.05i, ω1 = −1 − i, ω2 = −1.3 − 0.5i,

α
(1)
1 = 2, α

(1)
2 = α

(2)
1 = 1, α

(2)
2 = 0.01. One observes that the solitons in the S(1) and

S(2) components undergo shape changing (energy redistribution) collisions while there

is only elastic collision in the L component. More details are given in section 6 below.

4.2. (1, 1, 2) soliton solution of Ohta et al

Now we show that the (1, 1, 2) soliton solution obtained by Ohta et al [16] is a special

case of the above two-soliton (2, 2, 2) solution (14). Specifically, for the special choice
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of the parameters α
(1)
2 = α

(2)
1 = 0, the above two-soliton solution becomes

S(1) =
1

f

(

α
(1)
1 eη1 + eη2+η∗

2+η1+δ21
)

, (16a)

S(2) =
1

f

(

α
(2)
2 eη2 + eη1+η∗

1+η2+δ12
)

, (16b)

L = −2
∂2

∂x2
(log(f)) , (16c)

where

f = 1 + eη1+η∗

1+R1 + eη2+η∗

2+R2 + eη1+η∗

1+η2+η∗

2+R3. (16d)

The various other parameters defined in equations (14) now take the forms

eR1 =
κ11

(k1 + k∗1)
, eR2 =

κ22

(k2 + k∗2)
, eδ0 = eδ11 = eδ22 = 0, (16e)

eδ12 =
−α(2)

2 κ11(k1 − k2)

(k1 + k∗1)(k2 + k∗1)
, eδ21 =

−α(1)
1 κ22(k2 − k1)

(k2 + k∗2)(k1 + k∗2)
, (16f)

eR3 =
|k1 − k2|2κ11κ22

(k1 + k∗1)(k2 + k∗2)|k1 + k∗2|2
, (16g)

κ11 = − |α(1)
1 |2

(ω1 + ω∗
1)
, κ22 = − |α(2)

2 |2
(ω2 + ω∗

2)
. (16h)

Solution (16a-h) is nothing but the (1, 1, 2) soliton solution obtained by Ohta et al in

ref. [16] when the parameters in (16a-h) are further restricted to the special choice

α
(1)
1 =

(k1 + k∗1)(k1 + k∗2)

(k2 − k1)
and α

(2)
2 =

(k2 + k∗2)(k2 + k∗1)

(k2 − k1)
. (16i)

5. Asymptotic analysis of the two soliton solution (14) of the three wave

system

We now consider the collision properties associated with the general two-soliton solution

(14) of the three wave system. For this purpose we carry out the analysis, for kjR > 0,

ωjR < 0, j = 1, 2. Also we choose k2R

k1R
>
∣

∣

∣

ω2R

ω1R

∣

∣

∣
and k2Rk2I

k1Rk1I
>
∣

∣

∣

ω2R

ω1R

∣

∣

∣
for convenience.

Similar analysis can be performed for other choices of kjR’s and ωjR’s also by keeping

kjR > 0, ωjR < 0, which is the necessary condition for nonsingular solutions. We

now define the soliton wave variables as η1R = k1Rx + (2k1Rk1I − ω1R)y + ω1Rt and

η2R = k2Rx + (2k2Rk2I − ω2R)y + ω2Rt. In the limit x, y → ±∞ and a fixed t the

two-soliton solution (14) takes the following asymptotic forms.

a) Before collision (limit x, y → −∞):

(i) Soliton 1 (η1R ≃ 0, η2R → −∞):






S(1)

S(2)






≃







A1−
1

A1−
2







√

k1Rω1R sech

(

η1R +
R1

2

)

eiη1I , (17a)

L ≃ −2k2
1R sech2

(

η1R +
R1

2

)

, (17b)
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where






A1−
1

A1−
2






≃







α
(1)
1

α
(2)
1







e−R1/2

((k1 + k∗1)(ω1 + ω∗
1))

1/2
. (17c)

(ii) Soliton 2 (η2R ≃ 0, η1R → ∞):






S(1)

S(2)






≃







A2−
1

A2−
2







√

k2Rω2R sech

(

η2R +
(R3 − R1)

2

)

eiη2I , (18a)

L ≃ −2k2
2R sech2

(

η2R +
(R3 − R1)

2

)

, (18b)

where






A2−
1

A2−
2






≃







eδ11

eδ12







e−(R1+R3)/2

((k2 + k∗2)(ω2 + ω∗
2))

1/2
. (18c)

The various quantities in the above expressions are defined in equation (15).

b) After collision (limit x, y → ∞):

(i) Soliton 1 (η1R ≃ 0, η2R → ∞):






S(1)

S(2)






≃







A1+
1

A1+
2







√

k1Rω1R sech

(

η1R +
(R3 − R2)

2

)

eiη1I , (19a)

L ≃ −2k2
1R sech2

(

η1R +
(R3 − R2)

2

)

, (19b)

where






A1+
1

A1+
2






≃







eδ21

eδ22







e−(R2+R3)/2

((k1 + k∗1)(ω1 + ω∗
1))

1/2
. (19c)

(ii) Soliton 2 (η2R ≃ 0, η1R → −∞):






S(1)

S(2)






≃







A2+
1

A2+
2







√

k2Rω2R sech

(

η2R +
R2

2

)

eiη2I , (20a)

L ≃ −2k2
2R sech2

(

η2R +
R2

2

)

, (20b)

where






A2+
1

A2+
2






≃







α
(1)
2

α
(2)
2







e−R2/2

((k2 + k∗2)(ω2 + ω∗
2))

1/2
. (20c)
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Note that in all the above expressions
∣

∣Aj±
1

∣

∣

2
+
∣

∣Aj±
2

∣

∣

2
= 1, j = 1, 2. Our above

analysis reveals the fact that due to collision the amplitude of the colliding solitons,

say s1 and s2 in the S(1) and S(2) components, change from
(

A1−
1 , A1−

2

)√
k1Rω1R and

(

A2−
1 , A2−

2

)√
k2Rω2R to

(

A1+
1 , A1+

2

)√
k1Rω1R and

(

A2+
1 , A2+

2

)√
k2Rω2R, respectively.

Here the superscripts in Aj±
i ’s with i, j = 1, 2 denote the solitons s1 and s2, while

the subscripts represent the components S(1) and S(2) and the “ ± ” signs stand for

“x, y → ±∞”. In addition to this change in the amplitudes, the solitons also undergo

amplitude-dependent phase shifts due to the collision and they can be determined

straightforwardly from the above asymptotic expressions. From equations ((17) and

(19)) and equations ((18) and (20)), one can easily check that the phase shift suffered

by the soliton s1 (say Φ1) = − Phase shift of soliton s2 (say −Φ2 ≡ Φ1) = Φ and is

given by

Φ =
(R3 − R1 −R2)

2
, (21)

where R1, R2 and R3 are as defined in equation (15) and depends on the amplitudes.

6. Soliton Interaction

Now it is of further interest to analyze the interaction properties of the solitons depicted

in figure 1 for the specific set of values of the parameters given in section 4.1. Figure

1 shows typical spatial collision of two solitons for t = −4 corresponding to the exact

expression (14). The interesting collision scenario depicted in figure 1 clearly indicates

that there is a redistribution of intensity among the two S(j) components resulting in

an enhancement (suppression) of intensity of solitons s2 (s1) in the S(1) component and

a suppression (enhancement) of soliton s2 (s1) in the S(2) component. The solitons

also undergo amplitude-dependent phase shifts along with this energy redistribution.

However, the solitons appearing in the long wave component (L) exhibit the standard

elastic collision as shown in the third figure of figure 1 though the phase shift here

is also amplitude-dependent. Interestingly, if the parameters are so chosen such that

the condition
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

is satisfied, there occurs only elastic collision in all the three

components S(j) and L. The underlying collision dynamics can be well understood by

using the asymptotic analysis of the two-soliton solution (14) discussed in section 5 and

is further described below.

6.1. Collision behaviour of solitons in the short wave components

The asymptotic analysis presented in the previous section also results in the following

expressions relating the intensities of solitons s1 and s2 in the S(1) and S(2) components

before and after interaction,

|Aj+
i |2 = |T i

j |2|Aj−
i |2, i, j = 1, 2, (22a)

where the superscripts j± represent the solitons designated as s1 and s2 at “x, y → ±∞”.

The expression for the transition intensities for the solitons in the short wave components
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can be written down using the results in equations (17c), (18c), (19c) and (20c) as

|T 1
j |2 =

|1 − λ2(α
(j)
2 /α

(j)
1 )|2

|1 − λ1λ2|
, (22b)

|T 2
j |2 =

|1 − λ1λ2|
|1 − λ1(α

(j)
1 /α

(j)
2 )|2

, j = 1, 2, (22c)

λ1 =
κ21

κ11
, λ2 =

κ12

κ22
. (22d)

In general
∣

∣T i
j

∣

∣ 6= 1 and so an intensity (energy) redistribution of the solitons in the

S(1) and S(2) components occurs as shown in figure 1. One can notice that the standard

elastic collision takes place for the specific parametric choice
α

(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

, as |T i
j |2 = 1

and hence |Aj−
i |2 = |Aj+

i |2, i, j = 1, 2, for this choice. However the two colliding solitons

s1 and s2 suffer amplitude-dependent phase shifts Φ1 and Φ2, respectively, as given in

equation (21).

6.2. Collision scenario in the long wave component

In the L component, there occurs only elastic collision for any parametric choice. This

is evident from the asymptotic analysis, vide equations (17b), (18b), (19b) and (20b).

One finds that the amplitudes of the solitons s1 and s2 before and after interaction are

the same which are −2k2
1R and −2k2

2R, respectively, while there occurs an amplitude-

dependent phase shift as given by equation (21).

6.3. Shape changing collisions and Linear fractional transformations

It is instructive to notice that the intensity redistribution in the short wave components

characterized by the transition matrices (equation (22)) can also be viewed as a linear

fractional transformation (LFT). To realize this, we re-express the amplitude changes

in the short wave components of soliton s1 after interaction as

A1+
1 = ΓC11A

1−
1 + ΓC12A

1−
2 , (23a)

A1+
2 = ΓC21A

1−
1 + ΓC22A

1−
2 . (23b)

Here

Γ =
( a

a∗

)

c
[

(α
(1)
1 α

(1)∗
2 + α

(2)
1 α

(2)∗
2 )(α

(1)
2 α

(1)∗
2 + α

(2)
2 α

(2)∗
2 )

]−1

, (23c)

C11 = −
[

(α
(1)
2 α

(1)∗
2 )(ω1 − ω2) + (α

(2)
2 α

(2)∗
2 )(ω1 + ω∗

2)
]

, (23d)

C12 = (α
(1)
2 α

(2)∗
2 )(ω2 + ω∗

2), (23e)

C21 = (α
(2)
2 α

(1)∗
2 )(ω2 + ω∗

2), (23f)

C22 = −
[

(α
(1)
2 α

(1)∗
2 )(ω1 + ω∗

2) + (α
(2)
2 α

(2)∗
2 )(ω1 − ω2)

]

, (23g)

where

c =

(

1

|κ12|2
− 1

κ11κ22

)−1/2

, (23h)
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a =
[

−(k1 − k2)(k2 + k∗1)(ω2 + ω∗
1)(α

(1)
1 α

(1)∗
2 + α

(2)
1 α

(2)∗
2 )

]1/2

. (23i)

Note that the coefficients Cij’s, i, j = 1, 2, are independent of α
(j)
1 ’s and so of A1−

1 and

A1−
2 , that is the α parameters of soliton s1. From equations (23a) and (23b),

ρ1+
1,2 =

A1+
1

A1+
2

=
C11ρ

1−
1,2 + C12

C21ρ
1−
1,2 + C22

, (23j)

where ρ1−
1,2 =

A1−
1

A1−
2

, in which the superscripts represent the underlying soliton and

the subscripts represent the corresponding short wave components. Thus the state

of s1 before and after interaction is characterized by the complex quantities ρ1−
1,2 and

ρ1+
1,2, respectively. The direct consequence of the above LFT representation is the

identification of a binary logic using soliton collisions as in the case of CNLS equations

[6, 14, 15] and hence the LFT can be profitably used to construct logic gates associated

with the binary logic. A similar analysis can be made for the soliton s2 also.

7. Three-soliton (3, 3, 3) solution

From the general form (7), and restricting m = 3, one can write down the explicit

three-soliton (3, 3, 3) solution as

S(j) =
α

(j)
1 eη1 + α

(j)
2 eη2 + α

(j)
3 eη3 + eη1+η∗

1+η2+δ1j + eη1+η∗

1+η3+δ2j + eη2+η∗

2+η1+δ3j

f

+
eη2+η∗

2+η3+δ4j + eη3+η∗

3+η1+δ5j + eη3+η∗

3+η2+δ6j + eη∗

1+η2+η3+δ7j + eη1+η∗

2+η3+δ8j

f

+
eη1+η2+η∗

3+δ9j + eη1+η∗

1+η2+η∗

2+η3+τ1j + eη1+η∗

1+η3+η∗

3+η2+τ2j

f

+
eη2+η∗

2+η3+η∗

3+η1+τ3j

f
, j = 1, 2, (24a)

where

f = 1 + eη1+η∗

1+R1 + eη2+η∗

2+R2 + eη3+η∗

3+R3 + eη1+η∗

2+δ10 + eη∗

1+η2+δ∗10

+ eη1+η∗

3+δ20 + eη∗

1+η3+δ∗20 + eη2+η∗

3+δ30 + eη∗

2+η3+δ∗30 + eη1+η∗

1+η2+η∗

2+R4

+ eη1+η∗

1+η3+η∗

3+R5 + eη2+η∗

2+η3+η∗

3+R6 + eη1+η∗

1+η2+η∗

3+τ10 + eη1+η∗

1+η3+η∗

2+τ∗

10

+ eη2+η∗

2+η1+η∗

3+τ20 + eη2+η∗

2+η∗

1+η3+τ∗

20 + eη3+η∗

3+η1+η∗

2+τ30 + eη3+η∗

3+η∗

1+η2+τ∗

30

+ eη1+η∗

1+η2+η∗

2+η3+η∗

3+R7 . (24b)

Here

ηi = kix− (ik2
i + ωi)y + ωit, i = 1, 2, 3, (24c)

eδ1j =
(k1 − k2)(α

(j)
1 κ21 − α

(j)
2 κ11)

(k1 + k∗1)(k
∗
1 + k2)

, eδ2j =
(k1 − k3)(α

(j)
1 κ31 − α

(j)
3 κ11)

(k1 + k∗1)(k
∗
1 + k3)

,

eδ3j =
(k1 − k2)(α

(j)
1 κ22 − α

(j)
2 κ12)

(k1 + k∗2)(k2 + k∗2)
, eδ4j =

(k2 − k3)(α
(j)
2 κ32 − α

(j)
3 κ22)

(k2 + k∗2)(k
∗
2 + k3)

,
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eδ5j =
(k1 − k3)(α

(j)
1 κ33 − α

(j)
3 κ13)

(k3 + k∗3)(k
∗
3 + k1)

, eδ6j =
(k2 − k3)(α

(j)
2 κ33 − α

(j)
3 κ23)

(k∗3 + k2)(k∗3 + k3)
,

eδ7j =
(k2 − k3)(α

(j)
2 κ31 − α

(j)
3 κ21)

(k∗1 + k2)(k∗1 + k3)
, eδ8j =

(k1 − k3)(α
(j)
1 κ32 − α

(j)
3 κ12)

(k1 + k∗2)(k
∗
2 + k3)

,

eδ9j =
(k1 − k2)(α

(j)
1 κ23 − α

(j)
2 κ13)

(k1 + k∗3)(k2 + k∗3)
,

eτ1j =
(k2 − k1)(k3 − k1)(k3 − k2)(k

∗
2 − k∗1)

(k∗1 + k1)(k
∗
1 + k2)(k

∗
1 + k3)(k

∗
2 + k1)(k

∗
2 + k2)(k

∗
2 + k3)

×
[

α
(j)
1 (κ21κ32 − κ22κ31) + α

(j)
2 (κ12κ31 − κ32κ11) + α

(j)
3 (κ11κ22 − κ12κ21)

]

,

eτ2j =
(k2 − k1)(k3 − k1)(k3 − k2)(k

∗
3 − k∗1)

(k∗1 + k1)(k∗1 + k2)(k∗1 + k3)(k∗3 + k1)(k∗3 + k2)(k∗3 + k3)

×
[

α
(j)
1 (κ33κ21 − κ31κ23) + α

(j)
2 (κ31κ13 − κ11κ33) + α

(j)
3 (κ23κ11 − κ13κ21)

]

,

eτ3j =
(k2 − k1)(k3 − k1)(k3 − k2)(k

∗
3 − k∗2)

(k∗2 + k1)(k∗2 + k2)(k∗2 + k3)(k∗3 + k1)(k∗3 + k2)(k∗3 + k3)

×
[

α
(j)
1 (κ22κ33 − κ23κ32) + α

(j)
2 (κ13κ32 − κ33κ12) + α

(j)
3 (κ12κ23 − κ22κ13)

]

,

(24d)

eRm =
κmm

km + k∗m
, m = 1, 2, 3, eδ10 =

κ12

k1 + k∗2
, eδ20 =

κ13

k1 + k∗3
, eδ30 =

κ23

k2 + k∗3
,

eR4 =
(k2 − k1)(k

∗
2 − k∗1)

(k∗1 + k1)(k∗1 + k2)(k1 + k∗2)(k
∗
2 + k2)

[κ11κ22 − κ12κ21] ,

eR5 =
(k3 − k1)(k

∗
3 − k∗1)

(k∗1 + k1)(k∗1 + k3)(k∗3 + k1)(k∗3 + k3)
[κ33κ11 − κ13κ31] ,

eR6 =
(k3 − k2)(k

∗
3 − k∗2)

(k∗2 + k2)(k∗2 + k3)(k∗3 + k2)(k3 + k∗3)
[κ22κ33 − κ23κ32] ,

eτ10 =
(k2 − k1)(k

∗
3 − k∗1)

(k∗1 + k1)(k
∗
1 + k2)(k

∗
3 + k1)(k

∗
3 + k2)

[κ11κ23 − κ21κ13] ,

eτ20 =
(k1 − k2)(k

∗
3 − k∗2)

(k∗2 + k1)(k∗2 + k2)(k∗3 + k1)(k∗3 + k2)
[κ22κ13 − κ12κ23] ,

eτ30 =
(k3 − k1)(k

∗
3 − k∗2)

(k∗2 + k1)(k
∗
2 + k3)(k

∗
3 + k1)(k

∗
3 + k3)

[κ33κ12 − κ13κ32] ,

eR7 =
|k1 − k2|2|k2 − k3|2|k3 − k1|2

(k1 + k∗1)(k2 + k∗2)(k3 + k∗3)|k1 + k∗2|2|k2 + k∗3|2|k3 + k∗1|2
× [(κ11κ22κ33 − κ11κ23κ32) + (κ12κ23κ31 − κ12κ21κ33)

+(κ21κ13κ32 − κ22κ13κ31)] , (24e)

and

κil = −
∑2

n=1 α
(n)
i α

(n)∗
l

(ωi + ω∗
l )

, i, l = 1, 2, 3. (24f)
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The explicit form of L can be obtained by substituting the expression for f in

L = −2
∂

∂x2
(log f). Here α

(1)
1 , α

(1)
2 , α

(1)
3 , α

(2)
1 , α

(2)
2 , α

(2)
3 , k1, k2, k3, ω1, ω2, and ω3

are the twelve complex parameters which characterize the above three-soliton solution.

Following the arguments of ref. [8] (see equations (28) and (29) there) and the discussion

in section 4 one can show that the necessary conditions for nonsingular solution are

eRi > 0, i = 1, 2, . . . 7, (24g)

which is automatically taken care by the choice kjRωjR < 0, j = 1, 2, 3. One can also

easily show that the inequality

e(R1+R6)/2, e(R2+R5)/2, e(R3+R4)/2, e(R7)/2 > 4max
(

e(δ10R+τ30R), e(δ20R+τ20R), e(δ30R+τ10R)
)

(24h)

is the sufficient condition in order to ensure that the solution is regular. Typical shape

changing collision of the three-soliton solution is shown in figure 2 for the parametric

choices k1 = 0.2+0.3i, k2 = 0.6+0.4i, k3 = 0.7+0.2i, ω1 = −0.5+0.4i, ω2 = −0.7+0.1i,

ω3 = −0.3 + 0.3i, α
(1)
1 = 0.5− i, α

(1)
2 = 0.5 + i, α

(1)
3 = 0.3 + 0.2i, α

(2)
1 = 0.39 + 0.2i, and

α
(2)
2 = α

(2)
3 = 1. The above three soliton solution (24) represents the interaction of three

solitons and their collision scenario can be well understood by making an asymptotic

analysis following the procedure given in section 5 for the two soliton solution.

We have identified from the asymptotic analysis that for the three interacting

solitons (say, s1, s2 and s3), as in the case of CNLS equations [6,8], the total transition

amplitude of a particular soliton (say s1) can be expressed as the product of two

transition amplitudes which result respectively during the first collision of s1 with s2

and during the collision of the outcoming soliton (say s′1) with soliton s3. In a similar

manner the net phase shift acquired by a particular soliton (say s1) during the complete

collision process is equal to the addition of phase shifts experienced by that soliton

during its cascaded collisions with s2 and s3, respectively. Thus the analysis clearly

shows that the multi-soliton collision process indeed occurs in a pair-wise manner in

the multicomponent (2+1)D LSRI system and there exists no multiparticle effects. The

details are similar to the CNLS system [6, 8] and so we do not present them here.

8. Four-soliton (4, 4, 4) solution

Again to obtain the explicit four-soliton solution, we substitute m = 4 in the Gram

determinant form (7) and obtain an expression involving exponentials. Since it is too

lengthy, we do not present the explicit form here. However we note that the four-soliton

solution is characterized by sixteen complex parameters, kj , ωj , α
(1)
j , α

(2)
j , j = 1, 2, 3, 4.

The nonsingular solution results for the choice kjRωjR < 0, j = 1, 2, 3, 4. One can

check that kjRωjR < 0, j = 1, 2, 3, 4, are the necessary conditions for the existence of

nonsingular solution and the sufficient condition can be obtained following the procedure

mentioned in sections 4 and 7.
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8.1. (2, 2, 4) soliton solution of Ohta et al

In the above discussed four-soliton solution, we make the choice α
(1)
3 = α

(1)
4 = α

(2)
1 =

α
(2)
2 = 0, and also introduce the parametric restrictions

α
(1)
1 =

(k1 + k∗1)(k1 + k∗2)(k1 + k∗3)(k1 + k∗4)

(k2 − k1)(k3 − k1)(k4 − k1)
, (25a)

α
(1)
2 =

(k2 + k∗2)(k2 + k∗1)(k2 + k∗3)(k2 + k∗4)

(k1 − k2)(k3 − k2)(k4 − k2)
, (25b)

α
(2)
3 =

(k3 + k∗3)(k3 + k∗4)(k3 + k∗2)(k3 + k∗1)

(k4 − k3)(k2 − k3)(k1 − k3)
, (25c)

α
(2)
4 =

(k4 + k∗4)(k4 + k∗1)(k4 + k∗2)(k4 + k∗3)

(k3 − k4)(k2 − k4)(k1 − k4)
, (25d)

then one can show that it is exactly equivalent to the (2, 2, 4) soliton expression given

by Ohta et al [16]. This can be verified by expanding the determinant form with

the above parametric restrictions and comparing it with the expanded version of the

(2, 2, 4) solution of ref. [16]. The interaction of solitons for the above special case of the

four-soliton solution is shown in figure 3 for the choice of parameters k1 = 0.5 − 0.2i,

k2 = 0.4 + 0.1i, k3 = 0.3 − 0.4i, k4 = 0.4 + 0.6i, ω1 = −0.5 + 0.4i, ω2 = −0.7 + 0.1i,

ω3 = −0.3 + 0.3i, ω4 = −0.2 + 0.2i. This is similar to the interaction shown in ref. [16].

9. Soliton solutions of (n+ 1)-wave system

We now extend our study to obtain multisoliton solutions of the multicomponent system

with arbitrary (n+ 1) waves, in which we consider n short wave components and single

long wave component. The (n+ 1)-wave system in this case is given by

i(S
(j)
t + S(j)

y ) − S(j)
xx + LS(j) = 0, j = 1, 2, . . . , n, (26a)

Lt = 2
n
∑

j=1

|S(j)|2x. (26b)

(i) One soliton solution:

Following the procedure discussed in section 4, we can obtain the one soliton solution

as

S(j) =
α

(j)
1 eη1

1 + eη1+η∗

1+R
, j = 1, 2, . . . n, (27a)

L = − 2
∂2

∂x2

(

log
(

1 + eη1+η∗

1+R
))

, (27b)

where

η1 = k1x− (ik2
1 + ω1)y + ω1t, eR =

−
∑n

j=1(α
(j)
1 α

(j)∗
1 )

4k1Rω1R

. (27c)

(ii) Two soliton solution:

Similar procedure results in the two soliton solution for the multicomponent case with

arbitrary (n + 1) waves whose expression can be obtained from equations (14) by just
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allowing j to run from 1, 2, . . . , n and redefining κil as κil = −
∑n

j=1(α
(j)
i α

(j)∗
l )/(ωi +ω

∗
l ),

i, l = 1, 2. Now it is straightforward to extend the bilinearization procedure of obtaining

one and two soliton solutions to obtain multisoliton solutions as in the 1D integrable

CNLS equations [8]. Similarly, three- and four soliton solutions of equation (26) can be

obtained by suitably redefining κil’s with i, l = 1, 2, 3 and i, l = 1, 2, 3, 4, respectively,

and fixing the upper limit of the index j, corresponding to the short wave components

as n. The multisoliton solution of the multicomponent case (26) can be written down

from equation (6) by allowing s to run from 1 to n and redefining the column matrix

ψj as

ψj =
(

α
(1)
j , α

(2)
j , . . . , α

(n)
j

)T

.

Likewise the proof of the multisoliton solution of the multicomponent system also follows

the three wave system discussed in section 3.

10. Conclusion

To conclude, we have obtained explicitly the multi bright plane soliton solutions of

recently reported physically interesting integrable (2+1) dimensional (n+1)-wave system

by applying Hirota’s bilinearization procedure. We have also presented the results in

a Gram determinant form for the multisoliton solutions of the multicomponent LSRI

system along with the necessary proof. We observe that the solitons in the short wave

components can be amplified by merely reducing the pulse width of the long wave

component. The study on collision dynamics shows that the solitons appearing in the

short wave components undergo shape changing collisions with intensity redistribution

and amplitude-dependent phase shift. This gives the exciting possibility of soliton

collision based computing in higher dimensional integrable systems also. However, the

solitons in the long wave component always undergo elastic collision.
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Figure 1. Shape changing collision of solitons in the three wave system with the

parametric choice
α

(1)
1

α
(1)
2

6= α
(2)
1

α
(2)
2

. Here the two soliton solution (14) is plotted for a fixed

value of t and the associated parameters are given in the text (below equation (15)).

Note that intensity redistribution occurs only in the S(1) and S(2) components, while

elastic collision only occurs in the L component.
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Figure 2. Shape changing collision of the three solitons of the three wave system,

equation (24). The chosen soliton parameters are given in the text. Again note that

intensity redistribution occurs only in the S(1) and S(2) components, while elastic

collision only occurs in the L component.
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Figure 3. A special case of the four soliton collision with two solitons in S(1) and S(2)

components and four solitons in L component, equation (25). Note that this collision

scenario is similar to the (2, 2, 4) soliton interaction depicted in figure 2 of ref. [16].
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