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Evanescent waves and the van Cittert Zernike theorem in cylindri-
cal geometry
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Abstract. The cylindrical angular spectrum of the wavefield is introduced. In this
representation the field consists of homogeneous as well as evanescent waves. The
representation is applied to propagation problems and an analogue of van Cittert
Zernike theorem is obtained in cylindrical geometry.
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The angular momentum representation has been found extremely useful while ‘
considering the propagation problem of wavefield from a plane boundary (Asby j
and Wolf 1971; Marchand and Wolf 1972; Jaiswal et al 1973; Agrawal and Mehta ’
1975). 1Itis observed that in such a representation the evanescent waves always ‘
accompany the homogeneous waves. The evanescent waves, which are exponentially
decaying surface waves are indeed observed while considering, for example, the total
internal reflection of plane waves. A natural question arises: what happens when
the plane boundary is replaced by a non-planar one? The normal mode solutions
of the wave equation in cases such as cylindrical and spherical geometries are fairly
well known (Stratton 1941). While studying the surface waves, Rupin and Englman
(1970) observed the existence of evanescent waves (also called the non-radiative
modes) along with the homogeneous waves (or radiative modes) in cylindrical geo-
metry but no such waves are observed for spherical geometry. In this paper we
briefly discuss the existence and non-existence of evanescent waves in cylindrical and
spherical geometries respectively and suggest that the question of the existence of
‘evanescent waves is associated with the condition that the corresponding eigenvalue
spectrum is continuous or discrete. This in turn depends on whether the surface is
open (extends to infinity) or is bounded in the particular direction. We also consider
the application of the cylindrical or spherical wave representation to wave propaga-
tion when the field is specified over a cylindrical or spherical boundary. An analogue
of van Cittert-Zernike theorem is derived in the cylindrical case.

For obtaining the angular spectrum representation when the field is initially
specified over a plane boundary z=0, the Helmholtz equation (¥ 2+kA2)y(r)=0
satisfied by the wavefield »(r) is solved using the method of separation of variables in
cartesian coordinates. This involves two separation constants which are to be
determined from the boundary conditions. These conditions allow only certain
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restricted values, called the eigenvalues, for the separation constants and the corres-
ponding solutions of the Helmholtz equation are called the eigenfunctions. In
Cartesian geometry the eigenfunction is exp {z‘k ( px+qy+mz)}, where p and g are
two independent eigenvalue parameters ranging throughout the real plane and

m=(1—p2—g2)t. Following the linearity of the Helmholtz equation the general solu-
tions is then expressed in the form:

W)= [ [ A(p, ) exp {ik(px-+ay+mz)}dp da. (1)

The function A(p, ¢) is called the angular spectrum and is the Fourier transform of
the boundary field v(¢, 7);

A(p, )=(k[27)* [ [ v(é ) exp {—ik(p&+qn)} dé dn, @

where ¢ and 5 are the cartesian coordinates in the plane z=0.

The origin of the evanescent waves lies in the fact that for p and g such that p2+¢%>1,
mis imaginary and the eigenfunction represents a surface wave decaying exponentially
along positive z-direction. In the language of the optical information processing,
the eigenvalues (p, q) are related to the spatial frequencies (kp, kg). Thus, the evane-
scent waves are high frequency components in the spatial frequency decomposition
of the optical field and carry information about the field variations over distances
smaller than the wavelength.

We follow an analogous method for the cylindrical geometry. It is assumed that
all the sources are confined within a cylinder of radius p, and the boundary field is
§peciﬁed over the surface of this cylinder. The solution of the Helmholtz equation
in the source free region p>p, is obtained by employing separation of variables in

terms of cylindr.ical coordinates (p, 6, z). The procedure is straightforward, and one
finds that the eigenfunctions in this case are (Stratton 1941):

H,0 (ktp)elm? giker 3
where

t=(1 '"pz)"‘:

@
(5’9:6?) 5;0 the W0 separation constants, and H, " is the Hankel function (Watson
g )10 ’;1316: ﬁmt kind* The continuity of the wavefield requires that m is restricted
I i;ntzg;e n’values only. However p may take any value in the interval (— oo, o).

piledl f)ttt}i thgt in contrast tc_> the angular spectrum representation where both
ge: » e spectra (‘?’ g) are continuous, in the present case one of the eigenvalue
spectra m becomes discrete, the other still b

) X ) eing continuous. The optical information
15 now be i . .
Beld v) i;ﬂé v:::z;d by discrete spatial frequencies. The general solution of the

=
| 4 F= ) . .
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where the cylindrical spectrum 4,,(p) is the Fourier transform of the boundary field
Y(pgs Oos Zg): -

"

[ve]

k 27
A, (p) = rer{H'"(l) (ktpg) } 7 Uf de, i dzy V(py, By 2o) €xp {—ikpz,—imby}. (6)

Equation (5) gives the normal mode expansion of the field. 1In the case of cartesian
coordinates all the mode eigenfunctions were simple exponential functions, whereas
in the present case, we also get the Hankel function. As such it is difficult, in general,
to separate the field into outgoing and decaying waves analogous to the angular
spectrum case. In the far field case (p - o0), however, we may characterise the
field with two types of waves:

(i) Homogeneous cylindrical waves: For the values of p such that |p| < 1, 7 is real
and the Hankel function H,,'V (ktp) behaves asymptotically as an outgoing wave.
The contribution to the integral (5) for these values of p may be referred to as homo-
geneous cylindrical waves. '

(ii) Evanescent cylindrical waves: For the values of p such that|p|> 1, ¢, becomes
imaginary and the Hankel function in this case is an exponentially decreasing function
of p as is evident from the aymptotic expression (Watson 1966). '

H,,V(a) ~ (2fma)l exp {i(a—}mm—im)} @)

The waves exp {i(kpz ~+mb)} for these values of p will be confined to the surface of
the cylinder and will be decaying exponentially with increasing p. -In analogy with
the angular spectrum case, we call these waves the ‘evanescent cylindrical waves’.

It is worth pointing out that such a clear separationinto homogeneous and evanescent
waves has been valid only in the far field region (k p > 1). In the ‘not so far-region’
one finds (Berry 1975) that decaying waves may also occur when | p| <1 (including
the case when} p=-0). The waves decay as p increases away from the source until a
certain value of p is reached when they change over to outgoing homogeneous waves
which persist on to p=co. :

We now briefly consider the case of the spherical geometry. Carrying out the
separation of variables in the spherical coordinates (r, 0, ) the eigenfunction solution
of the Helmholtz equation is given by (Stratton 1941).

v(r) = n.sz ‘5 A 1y (kr) P, (cost) eimrﬁ ®)

where /1,4 is the spherical Hankel function of the first kind, P, are the associated
Legendre polynomials and (n, n) are the eigenvalues. The interesting point to be
noted is that now the eigenvalue spectra for both m and n are discrete. We do not
find any values of /1 and n such that the spherical Hankel function A, (kr) decays
along r and consequently there will never be be evanéscent waves on the surface

of the sphere.

+This case must be handled with care, since the z'-lde,pendence, is now not oscillatory, but is of
the form a + fz where a and B are constants.
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The absence of the evanescent wa
back we find that these wa

whose spectrum is continuous, How is this related to the surface structure can be
seen as follows: If the surface is open along a particular direction, (i.e. _1t ext_ends up
to infinity) the spectrum is continuous while for the direction in wh_lch surface is
bounded, the spectrum is necessarily discrete. An analogous situation occurs in
quantum mechanics also where one obtains discrete or continuous eigenvalue
Spectrum depending on the potential well being finite or infinite. ,

We now consider the propagation problem. In cylindrical geometry eq. (3) to-
gether with, (6) is the general solution. As an application consider the special case

when the field distribution over the boundary is uniform so that (pg, bps 2) is a func-
tion of p, only. We then obtain

ves in the spherical geometry is curious. Lookiri g

W(E) = T(p, pg) v(py), ®)

where the transfer func

ton T, po) =Hy®(p) Hy®(kpy) is a function. of p only.
In particular if a line soy

rce is situated along z-axis, the field on the boundary cylinder
is given by the two-dimensiona] Green’s function v(pg) ~ H,® (kp,) and from (9) we

find v(r) ~ H,V(kp). This merely indicates that a cylindrical wavefront remains
cylindrical on propagation,

The general solution (5) gets little simplified in the usual far field approximation
kp— 0. Using eq. (7) we rewrite (5) in

this asymptotic approximation as

m

02 (G (1) [ omna

% exp {ik p(1—p2yt/z 1. ikpz} dp. (10)

We now apply the metho

d of stationary phase, (Copson 1971) for evaluting the
integral over p. Wealso '

assume z<p. We then find that -

wr) :i oid z 4, (f) etm (4—/3) , 1D
kp ~ " \p _

where

b = kp + § (kzfp) 3

(12)
Also using €q. (6) we obtain
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In particular, if the source is circularly symmetric, i.e. if ¥(pgs bys Z) does not depend
on 6y, only one term m=0 contributes in the summation over m. We then obtain
from eq. (11)

v(r) = 2 et 4, (5) (14)
kp p
and from eq. (13)
o]
N ,
) = L g {Ho(l) (kpo)§~ - j V(pg, 2o) €~ Fe4lP gz, C(15)
‘TTP e . : ‘_

One may use this procedure also to consider the propagation of coherence func-
tion, etc. The mutual spectral density W (ry, rp, k) which is the time-Fourier
transform of the second order coherence function satisfies the two wave equations
(Mehta and Wolf 1967)

(V2 k%) Wy, xg, k) =0; i =1, 2. : e (16)

We assume that Wi(ry, r,, k) is given for the points r, and r, on a cylinder of radius p,
and we are interested in obtaining the same for the points on a cylinder of radius p
when kp>1. In analogy with eq. (13), we thus find that

W oy 1  ’1‘¢ ! H(m-k g® k -1
(X, 1) = py e my (kpo) - (kpo)
My, My - -
. ‘ ‘ V . . B - > >
X exp {—imy (6,—%m) + im, (02—«%")} [ oo f W1 Po)
exp {k(z120,— 23202) + i(my 8oy —myB00) }d0yy dbyy dzyy dzes, an
where
¢ = 1k (2, —2,9)/p, : (18)

and we have suppressed the explicit £ dependence of W.
We now consider two special cases when eq. (17) gets particularly simplified;

NCylindrical stmetry

> > .
In case when W(Fy,, Py,) does not depend on 6y, and 6y,, we find that only m; =m, =0

term contributes and we obtain from eq. (17), the relation,

. 1 ) . . - w . . ‘.,v. .
Wy, rQ:@ew | Ho® (kpo) |2 ff dzoy, dzgg S T

—00
X Wipos zo1» Z0) €xp {i(klp) (21 21— 25 Zga)}- o (19)
Further if the cylinder corresponds to an incoherent surface, i.e. if

R S Cpa R

DI UL T e s e e it
W(pos Zo1s Zo2) = -i—r I(pgs Z0) 8 (29— Zp9)s SR e e (20)

we obtain ‘

LS A i ey o

. W(ri, 1) 2# ef¢;’r| 1:10(1)(1%”_2 ff(po, ?o) .éi(klp)(z'l—:avz,)‘ Z ~d'zo:- (2.1)
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Here I(py, z;) denotes the spectral density (the intensity per unit freq_tlency inte._r.va.l{
of the field. We thus find that cross-spectral density in the far field is proportiona

to the one dimensional Fourier transform of the intensity distribution (spectral
density) across the source cylinder.

Boundary cylinder large (kpp>1)

Equation (17) also

gets simplified in the practically interesting case when kpy> 1.
In this case we can

use the asympotic expression (eq. 7) for H,,W(kp,) and obtain,

k .
W(l‘l, 1‘2) = i;—f:)z eid f_f W(po, ‘91, 2015 Po> ba, ZOZ)

X exp {i(k/p) (Zg1z1~2002:)} dzgy Az (22)
In deriving eq. (22) we have used the relation 5
- | _ _
2 eimb = 2x5(f), 23
m=—o0

Again if the boundary cylinder corresponds to am incoherent surface* so that

W (po, 9;_: Zo15 Pos B3, Zgo) 2% I(pg, 6y, ‘;'4;01) 8(201~Zp2) 8(6,—b), (24)

we obtain the follbwing relation for VW-(rl, Iy),

Wty t,) = % ei$ 5(6,—6,) [ z(po,‘el, zo) exp {i(klp) (21—25) 2o} dz.  (25)

Equations (21) and (25) ar
cylindrical geometry. -

One can solve the
analogues way. In
in this case is

e the é.nédog’u’es of the van Cittert Zernike theorem in

propagation problem for a spherical source as well in an
particular we find that the transfer function analogues to eq. (9)

T x0) = ke (k)i (kxp), - -

where /iy (k) is the spherical Hanke] fy
for the construction of the Green’s functi

26) -

xictidn.'_ We refer to a paper by Méirathay
on in this geometry.
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*It may be observed that this condition is different from the assumption. that. A( p-p )is L

i 3 01 Toa
independent of ¢y, and 8, as in the ealier case [cf. eq. (19)].
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