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Holder’s inequality for matrices
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Abstract. We prove that for arbitrary »n X n matrices 4y, A4,,..., 4, and for
positive real numbers py, pa...,pm With prt 4 prt+ -+ ppt =1, the
inequality

"
| Tr (dyds o« An)?] < I [Tr(di4)me]p;
k=1
holds.
Keywords. Matrix sums; Holder’s inequality.

The inequality

n m n
|2 uMd® ™ < T [ u® e (1)

§m] k=1 i=1

where ¥, 42, ... , U™ (=1,2,..., n) are arbitrary complex numbers

and py,y Poy ...y P are positive real numbers with

ittt =1

is well known in literature and is called Holder’s inequality (Beckenbach and
Bellman 1961).

In this paper we prove an inequality analogous to (1) involving arbitrary
matrices. Our result is expressed by the following:
THEOREM: Let Ay, 4y, ..., A, be aset of arbitrary (n X n) matrices and let

D1y Pay -+ -3 Dm be positive real numbers with 2y~ p;* = 1, m being any positive
integer. If dagger denotes the Hermitian adjoint, then

| Tr (dydy, ... A)*| < IT [Tr (4] A" ‘ @
k=1 .
Some other related results are considered by Mehta (1968).
Proof of the theorem is based on two lemmas:
LeMMA 1. For an arbitrary (n X n) matrix X,
| Tr X2 | < Tr (XX1); | | (3)

LemMmA 2. Let A4,, A,y ..., A, beaset of arbitrary (n X n) matrices and for

SR —
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each k, (k =1,2, ..., m), let the eigenvalues o @ d® of the matrix
A AL (or that of Af A4,) be so arranged that

a(lk) > a(zk) > ... >a g‘), : (4)

Then the inequality
! .
T (x| Ay A AL )< Z o e o (3)
i=1 =
holds. Here |x,), j=1,2,..., [, (I <n) are arbitrary orthonormal vectors in
the n-dimensional space.
Lemma | is proved by Schur (1909) and is a special case of a more general
result due to Weyl (1949).
We now proceed to prove lemma 2.  Let |0, =1,2,..., n), be an orthonormal

set of eigenvectors of the matrix A, Al

A Af |40 = |do). (6)
For each j, we write

(x| Ay oo AnA AT 1)

= é:'(xj‘Al...A,n_lvagmw‘ﬁi)(‘ﬁi‘AL—1---A§Ixj>

f

"az Pz l(xilAl'nAm-ﬂ‘ﬁi)lz

=1

+ (Em)”‘agm)”(x}IA1---Am—1i‘}l‘t>lz

4

(6 = o) [0 [y ey [ 40 )

+M=l‘:

+

Since for i>1, o™ — o™ <0, it follows that

- e

(leAl-.-AmAnZ~"Ailxj)<a§'m)<le‘41" A171—1A1)1—1"-A1|xj>

+ Z (agm) - a(lm)> l ( Xj ‘ Al s Am—l l?"t) 12a. (8)

i=1

T e A D i e L3S

from which on summing over j, We obtain
. l | l L
5w | Ay Al AL 5 < 0 B [ A Ao AT 3
14 l )
L™ o™ Z (| A AL (g [ Ay Ay [0
i=1 =L
©)

Further, since | x,) are orthonormal

2 <¢¢|Am_1...A’{|x,><x,lA1---Am_llqm

j=l

?h ‘Am-i v AI Al U Am—l Ié’i )‘ (10)
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From (9) and (10) it follows that

4

1
_Zl(x,|A1...AmAI,...AI[x, <a 52<xj[A Ay Al g 4T x))
j=

]
4+ 1,21' (aim — a,’"’) (G| Afmy .. AT Ay ... Apey | 6 ). (11)

We now apply the method of induction. Setting
m=1 in (11), we obtain

4 l
2 (X IAIAI | %) < Z: 0-51)7 (12)
i=1 i=
so that the inequality (5) is obviously true for m = 1. Inequality (12) is a
special case of a result due to Fan (1949). Our proof is similar to that given
by him.
Next assume that (5) is true for m — 1, ie, that
i

l
2 (x| AL ... m_lA,,,_l...Ailx,><£ oMo L alm (1< n).

- (13)

Substituting | ¢;) for | x, ) and using the fact that the eigenvalue spectrum of
AtA is identical to that of 44t we can rewrite (13) as

k
zw,\Am c ATy A 18) < I oo Lo (14)

j=1

I et us multiply (14) by (a"” — a{®) and sum over k fromk=1to k=1—1,
(I <n). We then obtain

3@ —a™ (b | Ahy o AT A A |6

=1

1
< 3 (ag-m) — a§”") aﬁl) a;z) e ag-m—]). (15)

i=1

From (11), (13) and (15) it follows that the inequality (5) is true for m. This
completes the proof of lemma 2.

If we set / =n in (5) and also use Holder’s inequality (1), we obtain

m
Tr(dy ... Awds ... 4D < 3 P af® . o™
i=1

"

[ X (ask))"k]”?

=t

s

< .
k

Il
[y

= IT [Tr (4} 405", (16)

k=1

where pyy Pos...y Pm are posmve numbers with 2 )% =L
k=1 ,
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Also if we set X = A;A; ... 4, in (3) and use (16), we obtain the required
result expressed by the theorem, viz., the inequality

| Tr (4,4, ... A2 | < Tr(4y ... A, AL ... 4D
m
< IT [Tr (AiA)% . (17)
k=1

In this paper we have considered the case when A, 4,. .., 4, are arbitrary
(n X n) matrices. However, the same results and proofs hold also in the cases
when A, A,,..., 4, are arbitrary completely continuous linear operators in a
Hilbert space or when they are continuous kernels of linear integral equations.
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