Pramana, Vol. 24, No. 4, April 1985, pp. 583—589. © Printed in India.

Two-mode para-Bose number states
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Abstract. Two-mode para-Bose number states are discussed. The two-mode system has been
chosen as it is a representative of the multi-mode system. Salient properties like normalization,
orthogonality and degeneracy of these states have also been discussed.
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1. Introduction *

Since the introduction of generalized commutation relations (Green 1953)

[${ai,a;}, 4] =0, 1)

[% {ai: a;' }s a;] = 5ika;- (2)

" and their complex conjugates for the particles not obeying the symmetrization

postulate, considerable work has been done to find representations of para-Bose and

- para-Fermi operators. The main problem confronted while considering multi-mode
- para-Bose system is the non-commuting nature of the operators belonging to different

modes. As a result additional indices are required for defining a basis spanning Fock-
space of a para-Bose system. We consider in this paper a two-mode para-Bose system as
it is a representative of the multi-mode system. We shall restrict our discussion to
number states only.

In section 2 the number states are defined and the necessity of using an additional

. operator (parameter) is elucidated. The orthogonality and normalization of these states
- are discussed in §3. The matrix elements of the number operator and the free

Hamiltonian are obtained and the degeneracy of these states is discussed in §4.

2. Number states

While discussing the number states of a two mode system, we shall first review briefly

- the normal two-mode Bose oscillator. For the normal case the convenient choice of the

basis is the state |n;,n, > defined by
|y, my ) = aifm a0, | | NE)
where |0 is the unique ground state. Obviously, n, and n, represent the number of
| - 583
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excitations of modes 1 and 2 respectively. An alternative basis is obtained by the states
|Lm) = (3{af, a,})" a3'| 0 (I > m). @)

Here m and (I — m) are the number of excitations of modes 1 and 2 respectively. The
state |, m) with | < m vanishes.

In the case of a para-Bose system, operators belonging to the different modes do not
© commute, ie.

[aifaf]#0, | (5a)
[ai,af1#0 (@#)) (5b)

We shall see below that the number of excitations of modes 1 and 2 does not uniquely
define a given state and one needs a third parameter to label the basis. A basis with only
two parameters can span only a part of the Hilbert-Fock space of a two-mode para-
Bose system. A convenient choice of the basis, the number states (Alabiso et al 1969)is;

n,Lmy = K*™af! J*r0>, (1> m) (6)
where

J* =3[af, af], (7a)

K* =%{af, a,}, : (7b)
and |0 is a unique vacuum state such that |

{a,-,af}lO) =5ijL‘0>- (8)

Here L is an integer (Greenberg and Messiah 1965) and has values greater than one for
para-bosons. For bosons L = 1, L is termed as the order of para-statistics. It is readily
seen from (6) that the number of excitations of the first and second modes are n + mand
I+ n—m respectively. The states |n,,m) are termed two-mode para-Bose number
states. We shall later show that it is an eigen state of the number operator and the free
Hamiltonian of the system. ‘

3. Orthogonality and normalization of number states

The number states |n,,m ) as defined by (6) are not normalized. We shall now discuss
the orthogonality and normalization of these states. For this purpose we shall make use
of the following relations

[K+:a;] = ai{-a ' (98,)
[K*,J"]={af,J*} =0. (9b)
Now we can obtain using (6) and (9) the following relations,
Klnlmy =m(l—-m+1)[nlm—1), (10)
1+ (L—=2)A,}
Jin00y = PFLEE=DAN 0o, (11)

{(n—14+(L-2A,}!
and
I+ A{n+1+14+(L-2)A

azln,l,()): (l-{.—l)

"+’};n,1-1,0>
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(- —-1L1+1,1), (12)

e {n+(L-2)A,} |
(I+1)
where A, is the projection to odd k values i.e.
A, =3{1—(—1)¥} = 0if k is even,
Ay =3{1-(—1f} =1if kis odd. o (13)

Successively applying the operator K to the basis |n,,m > for m’ times, we obtain from
(10),

m(l—m+m')

m’ = Lm—m'. 14
K™|n,lLm) gy oy [nm—m'> _ (14)
Now consider the matrix element,
. m _ m!(l—m+m')! D
<n:I>OIK |n3lam>—(m_m/)‘(l_m)' <nal7 (15)

By defining the basis |n,/,m ) (equation (6)) we have
(n,I'0|K™ = (', l',m|.
Therefore (15) can be rewritten as

m!(l—m+m')!
(m—m') (I1—m)!

For m < m’ the right side of (16) vanishes. On taking the complex conjugate of (16) and
interchanging the roles of m and m' it readily follows that the scalar product;

', l,m|nl,m) =0, (17)

for m > m' as well. For m = m' we obtain

| lmy = < 1,0l Lm—n' . (16)

(n',lI'ym ( )' ——=(n,I,0ln, 0. (18)
From (16)—(18) it can be concluded that
(I m | my = S (’"’) <n,l',olnzo> (19)

Now consider the scalar product {n’, I, 0 . By definition |

(n', 1,0

—1,0]az|n, 1,0). (20)
From (12) and (19) it follows

(n, 1, 0[n 10>— {+l+1+(L DA} (A, 1

(l 21

A repeated iteration of this procedure clearly indicates that {n’, I', O]n, I, 0 vanishes
unless [ = I'. It is so because if I’ > [,

n, I'=1,0|n,0,0) =, I'=1-1, 0|a;|n, 0,0 =0,
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and for I' < |,
{n',0,0[n, 11,0 = {n, 0,0|a|nI1-1'—1,0) = 0.
Hence we may write

. o (=AM I+ 1~ A M+ I+ L=24 A, )
K Ol L 0 = b AT F 1= A (% L2+ A
{n,0,0[n,0,0). | 22)

Now put [ = m = 0 in (6) and consider the scalar product
(n',0,0[n,0,0) =¢(n'—1,0,0|J|n, 0,0, (23)

Now using (11) we have;

{n+1+(L—-2)A,M
(n—1+(L-2A,)!

A repeated iteration of this process clearly indicates that {(n’, 0,0
unless n = n'. As for n' > n,

(n'=n,0,0/0>={n"=n—1,0,0]J]0) =0,
and if n’ < n then,

{Oln—=n,0,0> = <0|J*[n—n'—1,0,0) = 0.

(', 0,0[n,0,0) = (n'—1,0,0{n—1,0,0. (24)

n, 0,0 vanishes

Therefore,

v [ {k+1+(L—2)A)!
;0,0 0,0) = 3 ] [{{kjli((L_Z;A:H<o|o>.

k=1
Assuming that the vacuum state |0 ) is normalized i.e. (0|0 = 1, (25) can be rewritten
as

(25)

(n+1—A)N(n+L—2+A,)
(L—2)

{n,0,0]n,0,0) = Sy (26)

From (19), (22) and (26) we have,
<n’: l’, m’ln, l’ m> = 5mm' 511’ 5nn’ N
Here N nm, the normalization factor, is given by,
CMml (=AM (11 =AM (n+ T+ D=2+ A, !
- (I4+1=A)! (I—m)!
=AM (n+L-3+A)!
(L-2) '

Here A, is the projection to the odd k values (cf. equation (13)). The normalized number
state is defined as

nlm*

nlm

(27)

1
mlmy = K*maftg*tn|oy. (28)

Ivnlm)1 12

For normalized number states |n,,, m> we have

<nla l,, m’,n’ la m > = 6nn’5ll’ 6mm’ . (29)

g £ Rt
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We shall henceforth use only the normalized number states defined by (28). We have
thus established that the number states ]n, I, m> are orthogonal and normalized.

4. Matrix elements of number operator and degeneracy of number states

We shall now obtain the matrix elements of the number operator and the free
Hamiltonian and then discuss the degeneracy of number states. The number operator

for two mode para-Bose system is defined as

587

N =N;+N,, (30a)
where
=3({a;,ai} — L), (30b)
and |
N, =3({as, a5} ~L). (30¢)
" From commutation relations
[aza%{alaa;}] =4y, (313)
[a23%{ai“9 aZ}] = 03 (31b)
and (12) and (27) we obtain,
m{n+1+1+(L=2)Ai} |
= I-1,m-—1
a|n, I, m) [ T+ 1-A) |n, m—1>
F(=1) (l—m+1){n+(L—2)A,,}"’2
(I+1+A)
|[n—=1,1+1,m)>, (32a)
L-2)A, 172 «
ai&-‘n’ l, m> —_ [(m"" 1){n+(ll':-2l'+-_+-(Al) ) n+l+1} 1n, l+ 1’ m+1 > :
s (o[ Ummin+1 +(L—2)An+1}]1/2
, (I+1-A)
In+1,1-1,m), (32b)
(l—‘m){n+l+1+(L—2)A,,+,} 12
= -1
a2|nalsm> [ (1+1_Al) In’ 9m>
(m+1){n+(L—2)A,,}]“2
_y+1
+(-1) [ I+1+A)
|n—1,l+],m+1>, (32¢)

(l—-m+1){n+1+2+(L——2)A,,+1+1}

azln, L, m> =|:

(+1+A)

1/2
j|» |n,14+1,m>

m{n+1+(L=2)Ays1}
“"1)'[ I+1-A)

In+1,1=1,m—1).

]1/2

(32d)
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Equations (32a)-(32d) can be used for specifying completely the number state
representation of two-mode para-Bose system. We obtain from these equations

Ny|n, I,m) =4({a,, af} ~L)n,I,m)> = (n+mn, L m)>, (33a)

Ny|n L, m) =4({a,,af } —L)|n,m) = (n+ [—m)n,l,m), (33b)
and for the Number operator N,

NinL,m) = (N, +N,)n, m) = Q2n+1)|nim). (33¢)
It readily follows that [n, I, m > is also an eigenstate of free Hamiltonian H = H, + H 2

= 3({ay, af'} + {a,, a5} ) with eigenvalue (2n+1+ L). The eigenvalue equation is given
by ;
Hin,m)=(Qn+1+L)|n,1,m). (3%

We have thus established that |n, I, m> is an eigenstate of energy operator H with the
lowest energy eigenvalue being L, the order of para-statistics. Fora para-boson system
we observe that the lowest energy eigenvalue is related to the order of para-statistics
while for normal bosons it is a constant as I = 1.

It follows from (33) that there are several states [n,l,m> with the same given
eigenvalues of Ny and N, for a given order of statistics Z. This degeneracy of the
number state [n, I, m with given eigenvalues of N, and N » Is another salient feature
of two mode para-Bose system, besides the presence of anti-symmetrical states
(J* =3[af, af] # 0). The degeneracy of the basis |n,l,m> is also obvious from
the presence of three running indices n, |, m. The state |n, Il,m) has n; = n+m and
n, = n+1!—m excitations of the first and second modes respectively. The order of
degeneracy of the state |n, I, m with fixed excitation N = n, +n, is given by

D=4(N+2—=A,) (N+2+A,). (35)

On the other hand if we fix values of n, and n, respectively then the order of degeneracy
becomes

D=n+1 (36)
where n' is the smaller of the two integers n; and n,, i.e.

n' =min (ny, n,).

5. Conclu-ion

The para-Bose number states for the two-mode system discussed in this paper have two

salient features, namely, presence of anti-symmetrical states and degeneracy. The
treatment of the problem is complex as additional indices are needed for defining the
number states. It is not possible in the case of para-Bose number states to straightaway
generalize a one- or two-mode system to an n mode system. The number states for a
three mode system will require six indices and one of the convenient choices (Saxena

1983) is; .
Glaf, a2} )" G{ad, ay} ) (@) J3EI3{T 200> = |nlmpgr >,

where J;] = 4[a;",a;" ]. For n-mode para-Bose number states it can be readily verified
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n
that 3 (n+ 1) operators will be required. The para-Bose number states can be used asa

basis for a representation of the Sp,, , group.
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