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i Abstract. The moment generating function of the integrated light intensity of thermal
radiation having multiple peak spectrum is obtained. Cases of two-peak and three-
peak spectra where different peaks are in orthogonal states of polarisation are con-
sidered, The moment generating function is shown to be the product of two simpler
generating functions.
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1. Introduction

Studies in the photoelectron counting statistics provide one of the most convenient
methods of studying the statistical properties of light beams. We study the distri-
bution of electron pulses produced by a detector during a specified interval of time.
f) Consider a plane, quasimonochromatic, stationary light wave incident normally on
an ideal photo-detector. If 7 (¢) represents the light intensity at time 7, then under
usual experimental conditions, the probability p (n, T) that n photoelectrons will be
released in a time interval T'is given by Mandel’s formula (Mandel 1958, 1959)

p(n, T) = f (V) xp (— aw) POW) dw, )
}; 0 n!
; where W= j I Tra) ar. o)

a is the quantum efficiency of the detector and P(W) is the probability density of the
fluctuating time integrated intensity W. We note that p(n, T) is the Poisson trans-
form of P(W).

Although the photoelectron counting statistics with thermal light has been studied
extensively no general formulae are available for P(W) except in some special cases,
such as polarised thermal light with a single peak Lorentzian spectrum or that with
a rectangular spectral profile. For polarised thermal light with an arbitrary spectral
profile one can obtain an expression for P(W) for counting times either very small or
very large as compared to the coherence time (Rice 1945). However, this expression is
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only approximate and is not valid when time 7" becomes of the order of the coherence
time. ) . .

The problem of determining P(W¥) may be reduced to solvmg an associated integral
equation (Kac and:Siegert 1947; Slepian 1958). For Gaussml.l processes the. wave
field V(¢) is 2 complex analytic signal. The correlation function is written in the
following form

T (7) = {V* (1) V(t + 7))- (3)

Angular brackets denote the ensemble average. Let us assume that Ay, As,.. . .are the
eigenvalues of integral equation

[ara—1)4® ()t =M™ (@) @
The generating function G(s) defined as

G(s) = {exp (— asT)), ()
is then given by

G(s) =T (1 + ash)™, (6)
k

and P(W) is the inverse Laplace transform of G(s).

In the case of partially pelarised radiation, the wave field ¥(z) is a vector analytic
signal and instead of I'(7) one now considers the coherence tensor T'y;(7). The integral
equation is now replaced by a matrix integral equation

T N =N P (Y dt = n ) (p
2 Tut—1) ¢ () adt' = X ;" (1). D
0 z‘=«_3/c,y

Intensity fluctuations in partially polarized light were first studied by Mandel (1963).
Later on Helstrom (1964) followed the method first given by Kac and Siegert (1947)
for the calculation of P(W) in the long and short counting time-interval limits. Jaiswal
and Mehta (1969) diagonalised the coherency matrix for partially polarised radiation
with special reference to Gaussian Lorentzian light.

In an earlier paper, Mehta and Gupta (1975) have considered the problem of
determining the moment generating function of W when the incident plane polarised
thermal light has a multiple peak spectrum. In this paper we consider the problem
of intensity fluctuations in thermal light fur the cases when the different peaks of
the spectrum are orthogonally polarised. In § 2 we consider the case of a light beam
with two peak spectral profile when the two peaks are orthogonally polarised. In
§ 3 we consider the case of three peak spectrum where one of the peaks is orthogonally
polarised to the other two peaks which are Lorentzian with same height and line

wic?th. This laiter case is applicable, for example, to the Ii ght resulting from Zeeman
splitting of a spectral line. .
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2. Orthogonally polarised two peak spectral prefile
We consider the incoherent superposition of two peaks which are orthogonally

polarised to each other, the line shapes and their separation being arbitrary. The
plane wave field V(¢) incident on the photodetector may then be expressed in the form

V(@) =V, (t)gl -+ Vz(t)gza ‘ )]
where ¢; and e, are the two orthogonal unit vectors perpendicular to the direction of
propagation. These vectors are in general complex and represent the state of
polarisation of each spectral peak separately. If these peaks are linearly polarised in

x and y directions then ¢, and ¢, are real unit vectors in these directions. Orthogona-
lity of ¢, and ¢, implies ®

Ay
e"f . 2 e 8
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The instantaneous intensity I(¢) is now given by

1(t) = | V(1) P={V@F + l Vs (1) |2,
= L(®) + L (?) . (10)

The integrated intensity W may then be written as
W=W +W, (11)
where W, = [T Trah dr. 12

Since we assume V;(t) and Vy(¢) to be statistically independent, W, and W, are also
statistically independent random variables and P(W) is therefore given by

POV) = || Py(W) P(W—W Wy, (13)

where P, (Wy) and Py(W,) are the probability densities of the variables #; and W,
respectively. The gencrating function as defined in equation (6)

G(s) = J’ P(W) exp (—asW) dW,
is then a product of two generating functions
G(s) = Gy(s) - Gy(s)s (14)

where G(s) and Gy(s) are the generating functions corresponding to the intensity
fluctuations in the two peaks individually. Using (5), we therefore obtain :

G(s) = T 1

o — . (15
1 iTeon & TFari) ()
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M and Ay are the eigenvalues of the following integral equations

[o Tut—t) 21" = 2 4(0), (16)
and [ Tolt—t) %)t = Mg (@), (7)
where  Ti(—t') = (VWD) (18)

Thus we see that from the knowledge of the generating function for radiation
from the individual peaks of the spectrum, one can obtain information about the
fluctuations in the time integrated light intensity. For example when the spectral

profiles of the two peaks are Lorentzian with half widths oy and o, we obtain (Mehta
1970, Bedard 1966)

G(s) = Gy (s) G (s), ' (19)
where
Gi(s) = exp (o, T) [cosh Z; + & (f.’.f ;Z_T ) sinh Z,] -t (20)
A
and Z: =0T+ 26, a{I,) sT? (20a)

Similarly one can calculate G(s) for the case when the peaks are rectangular in shape
using the calculations done by Mehta and Mehta (1973).

3. Three peak spectral profile

There are many situations in which we observe light having a symmetric spectrum
with three spectral lines. We may have, for example, the light resulting from Brillouin
scattering or that encountered as a result of Zeeman splitting. The spectrum of the
light resulting from Zeeman splitting has three spectral lines. The middle peak of the
spectrum is completely polarised orthogonally to the other two peaks which are
symmetrically placed on the either side. In our calculations, however, we only
require that the two peaks having similar polarisation should be symmetric about
some central frequency. The third peak having polarisation orthogonal to the other

two can have a different shape. Proceeding in a strictly analogous manner as before
one can prove that in this case also

Gls) = Gy(s) " Gofs)

Gy(s) and G,(s) are the generating functions corresponding to the light of the two
polarisations. In a particular case when the three peaks are Lorentzian one can
obtain the generating function G(s) by using the generating function for the two

Lorentzian peak profile (Mehta and Gupta 1975) and that for a single Lorentzian
peak (equations (20) and (20a)). ' '
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