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Abstract

While many integrable spin systems are known to exist in (1+1) and (2+1) di-
mensions, the integrability property of the physically important (2+1) dimensional
isotropic Heisenberg ferromagnetic spin system in the continuum limit has not been
investigated in the literature. In this paper, we show through a careful singularity
structure analysis of the underlying nonlinear evolution equation that the system
admits logarithmic type singular manifolds and so is of non-Painlevé type and is
expected to be nonintegrable.
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The nonlinear dynamics underlying magnetic spin systems is a fascinating
topic of study and it is of considerable interest especially from the points of
view of soliton theory and condensed matter physics. The underlying evolution
equations are highly nonlinear and they give rise to many integrable cases both
in (1+1) and (2+1) dimensions.

The standing example of an integrable spin system in (1+1) dimensions is the
isotropic Heisenberg ferromagnetic spin (IHFS) chain [1]-[3] in its continuum
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limit. The underlying spin evolution equation is

St = S ∧ Sxx, (1)

where S = (S1, S2, S3), S2 = 1. It is equivalent geometrically [2] and through
gauge transformation [3] to the ubiquitous soliton possessing nonlinear Schrödinger
equation [2]. Also the corresponding spin evolution equation itself is associated
with a Lax pair and the inverse scattering transform analysis can be carried
out for the system directly [4].

Besides the isotropic spin system, there exists a number of other spin systems
in (1+1) dimensions which possess Lax pairs, gauge equivalent counterparts
and complete integrability property. These include the addition of anisotropy
and magnetic field to the isotropic case leading to the spin evolution equation
[5],

St = S ∧ Sxx − 2A(S.n)n + µB, (2)

where ~n = (0, 0, 1), ~B = (0, 0, B), A is the strength of anisotropy and B is the
strength of the magnetic field along the z-direction.

One more interesting integrable spin evolution equation is the bianisotropic
equation studied by Sklyanin [6],

St = S ∧ Sxx + S ∧ JS, (3)

where J = diag(J1, J2, J3) is the anisotropic matrix. The above type of spin
equations are also special cases of the Landau-Lifshitz(L-L) equation deduced
from phenomenological arguments [7]. Besides the aforementioned systems,
various higher order and inhomogeneous integrable extensions also exist. For
example, the spin evolution equation

St = (ν2 + µ2x)S ∧ Sxx + µ2S ∧ Sx − (ν1 + µ1x)Sx − γ[Sxx +
3

2
(Sx)

2.S]x, (4)

is integrable [8]. Also an SO(3) invariant deformed Heisenberg spin system has
been shown to be integrable [9]

St = S ∧ Sxx + αSx(Sx)
2, (5)

and it is equivalent to the integrable derivative NLS equation [10]

iqt + qxx + 2|q|2q − 2iα(|q|2q)x = 0. (6)

Many other integrable generalizations have also been obtained by Myrzakulov
and coworkers [11]-[14]. All the above equations admit Lax pairs and satisfy
Painlevé property.
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Naturally, the question arises as to what is the situation in (2+1) dimensions.
The well known integrable generalization of Eq. (1) in (2+1) dimensions are
the Ishimori equation [15],

St = S ∧ (Sxx + σ2Syy) + φySx + φxSy, (7a)

φxx − σ2φyy = −2σ2S.Sx ∧ Sy, (7b)

where S = (S1, S2, S3), S2 = 1 and φ(x, y, t) is a scalar field and σ2 = ±1,
and the Myrzakulov M-I equation [13]

St = {S ∧ (Sy + uS}x, (8a)

ux = −S.Sx ∧ Sy, (8b)

where u(x, y, t) is a scalar field.

Again these equations possess Lax pairs and admit the Painlevé property.
However, till today the integrability nature of the physically interesting (2+1)
dimensional direct generalization of (1), namely

St = S ∧ (Sxx + Syy), (9)

where S = (S1, S2, S3), S2 = 1, has not been studied, though the special
case of Eq.(9) with circular symmetry

St = S ∧ (Srr +
1

r
Sr), (10)

where r =
√
x2 + y2, is known to be integrable [16].

In this paper, we wish to investigate the singularity structure property of the
isotropic Heisenberg spin equation (9) in (2+1) dimensions and prove that it is
of non-Painlevé type and so is expected to be non-integrable, even though the
special cases (1) and (10) are of Painlevé type and so integrable. The Painlevé
analysis of the Heisenberg spin type equations is rather tricky as was shown for
the case of (1+1) dimensional system with anisotropy and transverse magnetic
field [17], where the ”Taylor” type expansion can lead to logarithmic singular
manifolds leading to non-integrability.

In order to investigate the Painlevé singularity structure underlying Eq. (9),
we first rewrite it in terms of the complex stereographic field variable ω(x, y, t)
through the transformation

S+ = S1 + iS2 =
2ω

1 + |ω|2 , S3 =
1 − |ω|2
1 + |ω|2 . (11)
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In terms of this variable, the equation of motion for the (2+1) dimensional
Heisenberg spin system can be written as

(1 + ωω∗)[iωt + ωxx + ωyy] − 2ω∗(ω2

x + ω2

y) = 0, (12)

and its complex conjugate. Representing ω → F and ω∗ → G, Eq. (12) and
its complex conjugate equation can be written as

(1 + FG)(iFt + Fxx + Fyy) − 2G(F 2

x + F 2

y ) = 0, (13a)

(1 + FG)(−iGt +Gxx +Gyy) − 2F (G2

x +G2

y) = 0. (13b)

We carry out a Painlevé analysis of Eqs.(13) by seeking a generalized Laurent
expansion for each dependent variable in the form,

F = F0φ
p +

∑

j

Fjφ
p+j, F0 6= 0, (14a)

G = G0φ
q +

∑

j

Gjφ
q+j, G0 6= 0, (14b)

in the neighbourhood of the noncharacteristic singular manifold φ(x, y, t) = 0,
φt, φx, φy 6= 0. The results are as follows.

1.Leading Order Behaviour

Looking at the dominant terms, we distinguish the following possibilities cor-
responding to (i) p ≤ 0, q ≤ 0, (ii) p ≤ 0, q ≥ 0, (iii) p ≥ 0, q ≤ 0.

Case(i): p ≤ 0, q ≤ 0 :

Upon using the leading order solution F = F0φ
p, G = G0φ

q, substituting it in
Eq.(13), and balancing the most dominant terms, we obtain

F 2

0G0[p(p− 1) − 2p2](φ2

x + φ2

y)φ
2p+q−2 = 0, (15a)

F0G
2

0[q(q − 1) − 2q2](φ2

x + φ2

y)φ
2q+p−2 = 0. (15b)

From the above, we have the following three possibilities of leading order be-
haviour:

Branch (i) p = −1, q = −1, F0, G0: arbitrary

Branch (ii) p = −1, q = 0, F0, G0: arbitrary

Branch (iii) p = 0, q = −1, F0, G0: arbitrary

4



In addition, there is a possibility that p = 0, q = 0, which requires a more
detailed analysis, see below.

Case(ii): p ≤ 0, q ≥ 0:

(

F0(p− 1)φp−2 − F 2

0G0(p+ 1)φ2p+q−2
)

(φ2

x + φ2

y) = 0, (16a)
(

G0(q − 1)φq−2 − F0G
2

0(q + 1)φp+2q−2
)

(φ2

x + φ2

y) = 0. (16b)

From Eqs. (16a,16b) we obtain p+ q = 0 and F0G0 = p−1

p+1
from Eq.(16a), and

F0G0 = q−1

q+1
from Eq.(16b), respectively. We also obtain the same result for

the case p ≥ 0, q ≤ 0. This suggests that p = q = 0 is the only possibility here.
Looking at this case more carefully, by using Eq. (14) in (13), we obtain the
following.

Branch (iv): p = 0, q = 0

(1 + F0G0)[i(F0t + F1φt) + F0xx + 2F1xφx + F1φxx + 2F2φ
2

x + F0yy

+2F1yφy + F1φyy + 2F2φ
2

y] − 2G0[F
2

0x + F 2

0y + F 2

1 (φ2

x + φ2

y)

+2F1(F0xφx + F0yφy)] = 0,(17a)

(1 + F0G0)[−i(G0t +G1φt) +G0xx + 2G1xφx +G1φxx + 2G2φ
2

x +G0yy

+2G1yφy +G1φyy + 2G2φ
2

y] − 2F0[G
2

0x +G2

0y +G2

1(φ
2

x + φ2

y)

+2G1(G0xφx +G0yφy)] = 0.(17b)

We consider two separate cases of the manifold (i) F0G0 6= −1 (ii) F0G0 = −1.
In the former case, from eqn. (17a) and (17b), the coefficient functions F2 and
G2 can be expressed in terms of F0, G0, F1 and G1 leaving the later functions
arbitrary. For the case (1 +F0G0) = 0, we assume for simplicity the Kruskal’s
reduced manifold φ(x, y, t) = x + ψ(y, t) = 0. Using this in (17), we find two
sets of solutions.

Case (1):

F1 =
iF0y

(1 − iψy)
, (18a)

G1 =
iG0y

(1 − iψy)
. (18b)

Case (2):
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F1 =
iF0y

(1 − iψy)
, (19a)

G1 =
−iG0y

(1 + iψy)
. (19b)

2. Resonances

To find the resonances, that is the powers of the Laurent series (14) at which
arbitrary functions enter, for branches (i), (ii) and (iii) we expand

F = F0φ
p + ... + αφp+r, (20a)

G = G0φ
q + ...+ βφq+r, (20b)

(α, β not both zero) and substitute in the equations (13) containing the dom-
inant terms alone to fix the values of r. Detailed calculation leads to the
following results.

Branch(i) p = −1, q = −1: r = −1,−1, 0, 0

Branch(ii) p = −1, q = 0: r = −1, 0, 0, 1

Branch(iii) p = 0, q = −1: r = −1, 0, 0, 1

For the case of branch (iv), p = 0, q = 0, we proceed with the expansion

F = F0 + F1φ+ ... + Frφ
r, (21a)

G = G0 +G1φ+ ... +Grφ
r, (21b)

and substitute them into the equations (13) and collect the coefficients of φr−2

and φr−1 (after making use of eqs.(17).

(a) Coefficients of φr−2:

When (1 + F0G0) 6= 0, we have the condition

(1 + F0G0)(1 + ψ2

y)r(r − 1)Fr = 0, (22a)

(1 + F0G0)(1 + ψ2

y)r(r − 1)Gr = 0. (22b)

It follows that the resonance values are r = 0, 0, 1, 1. For the case (1+F0G0) =
0, the conditions become identities.

(b) Coefficients of φr−1:
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When (1 + F0G0) 6= 0, the resulting condition is in confirmity with the reso-
nance values r = 0, 0, 1, 1 noted above. When (1 + F0G0) = 0, we have

r[(F0G1 + F1G0)(1 + ψ2

y)(r − 1) − 4(G0F1(1 + ψ2

y) +G0F0yψy)]Fr = 0,(23a)

r[(F0G1 + F1G0)(1 + ψ2

y)(r − 1) − 4(F0G1(1 + ψ2

y) + F0G0yψy)]Gr = 0.(23b)

These equations reduce to the following forms for the cases 1 and 2, respec-
tively.

Case(1):

4irG0F0y = 0, (24a)

4irF0G0y = 0. (24b)

For this case, the resonance values are 0, 0.

Case(2):

In this case, we have

r[F0yG0(r − 5) − F0G0y(r − 1)] = 0, (25a)

r[G0yF0(r − 5) −G0F0y(r − 1)] = 0. (25b)

Since (1 + F0G0) = 0, F0yG0 + F0G0y = 0 and consequently from Eqs. (25),
we find the resonance values to be r = 0, 0, 3, 3.

3. Analysis of the Laurent expansion for arbitrary functions

In the case of the branches (i), (ii) and (iii) we have verified that the resonance
conditions are indeed satisfied in the sense that apart from the arbitrariness of
the singular manifold, required number of arbitrary functions occur at r = 0
and r = 1 in the Laurent series and also that no logarithmic singularity can
occur in the leading order for the branch (i). We now carry out the calculations
for the analysis of the Taylor like expansion corresponding to the branch (iv)
(again in terms of the Kruskal’s reduced manifold x+ψ(y, t) = 0) by writing

F (x, y, t) = F0(y, t) + F1(y, t)φ+ F2(y, t)φ
2 + F3(y, t)φ

3 + ...., (26a)

G(x, y, t) = G0(y, t) +G1(y, t)φ+G2(y, t)φ
2 +G3(y, t)φ

3 + ..... (26b)

Substituting the above into Eq.(13), and collecting the coefficients of different
powers of φ we obtain the following results.

Zeroth order in φ:
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a) For the manifold F0G0 6= −1, the Taylor like series (26) can be easily shown
not to admit any movable singular manifold, where four arbitrary functions
can enter into the series (while the manifold φ can be absorbed into F1 or G1).
This is in confirmity with the resonance values r = 0, 0, 1, 1 pointed out after
Eq.(22).

b) For the manifold F0G0 = −1, one can obtain two sets of the expression for
F1 and G1 which are the same as cases 1 and 2 given by Eqs. (18) and (19),
respectively. We will consider each of the cases separately.

Case(1)-Eqs.(18):
(a) First order in φ: With (1 + F0G0) = 0, we have

(F0G1 + F1G0)[i(F0t + F1ψt) + 2F2 + (F0yy + 2F1yψy + F1ψyy

+2F2ψ
2

y)] − 4G0[F0yF1y + 2F0yF2ψy + F1(2F2(1 + ψ2

y) + F1yψy)]]

−2G1[F
2

1 (1 + ψ2

y) + F0y(F0y + 2F1ψy)] = 0, (27a)

(F0G1 + F1G0)[−i(G0t +G1ψt) + 2G2 + (G0yy + 2G1yψy +G1ψyy

+2G2ψ
2

y)] − 4F0[G0yG1y + 2G0yG2ψy +G1(2G2(1 + ψ2

y) +G1yψy)]]

−2F1[G
2

1(1 + ψ2

y) +G0y(G0y + 2G1ψy)] = 0. (27b)

Using the results of the previous order for F1 and G1, we obtain

F2 =
−F0yy(1 − iψy) − iF0yψyy

2(1 − iψy)3
, (28a)

G2 =
−G0yy(1 − iψy) − iG0yψyy

2(1 − iψy)3
. (28b)

(b) Second order in φ:

Here we obtain F3 and G3 as
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F3 =
i

12G0F0y

[

2G0[4F
2

2 + (F 2

1y + 4F 2

2ψ
2

y + 4F1yF2ψy) + (2F0yF2y

+F1F2yψy)] + 2G1[4F1F2 + 2(F0yF1y + 2F0yF2ψy + F1F1yψy

+2F1F2ψ
2

y)] − (F0G2 + F1G1 + F2G0)[i(F0t + F1ψt) + 2F2

+(F0yy + 2F1yψy + F1ψyy + 2F2ψ
2

y)]

]

, (29a)

G3 =
i

12G0yF0

[

2F0[4G
2

2 + (G2

1y + 4G2

2ψ
2

y + 4G1yG2ψy) + (2G0yG2y

+G1G2yψy)] + 2F1[4G1G2 + 2(G0yG1y + 2G0yG2ψy +G1G1yψy

+2G1G2ψ
2

y)] − (F0G2 + F1G1 + F2G0)[−i(G0t +G1ψt) + 2G2

+(G0yy + 2G1yψy +G1ψyy + 2G2ψ
2

y)]

]

. (29b)

In a similar way, one can compute (F4, G4), (F5, G5), etc. No indeterminate
coefficients appear in the series (at least upto the order deduced) and thus no
possibility for singularity arises. We also note that either F0 or G0 and ψ(y, t)
are the only arbitrary functions in the Taylor like series (26) in confirmity
with the resonance values r = 0, 0.

Case(2)-Eqs.(19):
(a) First order in φ: From Eq. (13) we obtain

F2 =
i

4F0yG0

(

−i(F0yG0 − F0G0y)

1 + ψ2
y

[

i(F0t + i
F0y

1 − iψy

ψt) + F0yy

+
2iF0yy

1 − iψy

ψy −
2F0y

(1 − iψy)2
ψyψyy +

iF0y

1 − iψy

ψyy

]

+4G0

[

F0y

1 − iψy

(
iF0yy

1 − iψy

− F0y

(1 − iψy)2
ψyy)

])

, (30a)

G2 =
−i

4F0G0y

(

−i(F0yG0 − F0G0y)

1 + ψ2
y

[

− i(G0t − i
G0y

1 + iψy

ψt) +G0yy

− 2iG0yy

1 + iψy

ψy −
2G0y

(1 + iψy)2
ψyψyy −

iG0y

1 − iψy

ψyy

]

+4F0

[

G0y

1 + iψy

(
−iG0yy

1 + iψy

− G0y

(1 + iψy)2
ψyy)

])

. (30b)

(b) Second order in φ:
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2G0[4F
2

2 + (F 2

1y + 4F 2

2ψ
2

y + 4F1yF2ψy) + (2F0yF2y + F1F2yψy)]

+2G1[4F1F2 + 2(F0yF1y + 2F0yF2ψy + F1F1yψy + 2F1F2ψ
2

y)]

−(F0G2 + F1G1 + F2G0)[i(F0t + F1ψt) + 2F2 + (F0yy + 2F1yψy

+F1ψyy + 2F2ψ
2

y)] − (F0G1 + F1G0)[i(F1t + 2F2ψt)

+(F1yy + 4F2yψy + 2F2ψyy)] = 0, (31a)

2F0[4G
2

2 + (G2

1y + 4G2

2ψ
2

y + 4G1yG2ψy) + (2G0yG2y +G1G2yψy)]

+2F1[4G1G2 + 2(G0yG1y + 2G0yG2ψy +G1G1yψy + 2G1G2ψ
2

y)]

−(F0G2 + F1G1 + F2G0)[−i(G0t +G1ψt) + 2G2 + (G0yy + 2G1yψy

+G1ψyy + 2G2ψ
2

y)] − (F0G1 + F1G0)[−i(G1t + 2G2ψt)

+(G1yy + 4G2yψy + 2G2ψyy)] = 0. (31b)

It may be noted that in this order both F3 and G3 are absent indicating that
they are arbitrary functions corresponding to the resonance values r = 3, 3.
Note that from Eqs. (30) and the relation (1 + F0G0) = 0, two of the three
functions F0, G0 and ψ are arbitrary corresponding to the values r = 0, 0.
However, simplifying the above set of equations (31) by using the expressions
obtained for the coefficients F1, F2, G1, G2 in terms of F0, G0 and ψ (vide
Eqs. (18), (19), (30)), we find that the equations (31) reduce to two nontrivial
conditions which are incompatible, unless the y-dependence is dropped (cor-
responding (1+1) dimensional system (1)) or one carries out the analysis with
the radial variable r =

√
x2 + y2 (vide Eq.(10)). As a consequence logarith-

mic singularity appears in the series expansion (26). Consequently the (2+1)
dimensional continuum isotropic Heisenberg spin system (12) and so (9) does
not satisfy the Painlevé property [18] and is expected to be nonintegrable.

One can also carry out the analysis with the general manifold φ(x, y, t) instead
of the Kruskal’s reduced manifold and one can check that the same conclusion
results in here also.

To conclude, in this letter we have shown that the physically important (2+1)
dimensional isotropic Heisenberg continuum spin system (9) does not admit
the Painlevé property and so it belongs to the class of non-integrable nonlin-
ear evolution equations. It will be of considerable interest to investigate the
underlying spatiotemporal structures of such a nonlinear evolution equation
in detail.
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