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In this paper, we report the nature of transition to generalized synchronization (GS) in a system
of two coupled scalar piecewise linear time-delay systems using the auxiliary system approach. We
demonstrate that the transition to GS occurs via on-off intermittency route and also it exhibits
characteristically distinct behaviors for different coupling configurations. In particular, the inter-
mittency transition occurs in a rather broad range of coupling strength for error feedback coupling
configuration and in a narrow range of coupling strength for direct feedback coupling configuration.
It is also shown that the intermittent dynamics displays periodic bursts of period equal to the de-
lay time of the response system in the former case, while they occur in random time intervals of
finite duration in the latter case. The robustness of these transitions with system parameters and
delay times has also been studied for both linear and nonlinear coupling configurations. The results
are corroborated analytically by suitable stability conditions for asymptotically stable synchronized
states and numerically by the probability of synchronization and by the transition of subLyapunov
exponents of the coupled time-delay systems. We have also indicated the reason behind these dis-
tinct transitions by referring to unstable periodic orbit theory of intermittency synchronization in

low-dimensional systems.

PACS numbers: 05.45.Xt,05.45.Pq

I. INTRODUCTION

Synchronization of interacting chaotic oscillators is one
of the most interesting nonlinear phenomenon and is an
inherent part of many natural systems (cf.|1, [2]). The
concept of synchronization is receiving a central impor-
tance in recent research in nonlinear dynamics due to its
potential applications in diverse areas of science and tech-
nology. Since the identification of chaotic synchroniza-
tion [3, 4, 5], several works have appeared in identifying
and demonstrating basic kinds of synchronization both
theoretically and experimentally [L, 2,13, 4, 5]. There are
also attempts to find a unifying framework for defining
the overall class of chaotic synchronizations |6, |7, Ig].

One of the interesting synchronization behaviors of
unidirectionally coupled chaotic systems is the general-
ized synchronization (GS), which was conceptually in-
troduced in Ref. |9]. Generalized synchronization is ob-
served in coupled nonidentical systems, where there ex-
ists some functional relation between the drive X () and
the response Y'(t) systems, that is, Y(t) = F(X(t)).
With GS, all the response systems coupled to the drive
lose their intrinsic chaoticity (sensitivity to initial condi-
tions) under the same driving and follow the same tra-
jectory. Hence the presence of GS can be detected us-
ing the so called auxiliary system approach [10], where
an additional system (auxiliary system) identical to the
response system is coupled to the drive in similar fash-
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ion. Auxiliary system approach is particularly appealing
since it can be implemented directly in an experiment
and, in addition, this method allows one to utilize ana-
lytical approaches for studying GS. However, one has to
be aware that if there are multiple basins of attraction
for the coupled drive-response system, then the auxiliary
system approach can fail.

Generalized synchronization (GS) has been well stud-
ied and understood in systems with few degrees of free-
dom and for discrete maps (9, [10, 11, 12, [13, [14, 15].
The concept of GS has also been extended to spatially ex-
tended chaotic systems such as coupled Ginzburg-Landau
equations [16]. Recently, the terminology intermittent
generalized synchronization (IGS) [17] was introduced
in diffusively coupled Réssler systems in analogy with
intermittent lag synchronization (ILS) [1&, 19] and in-
termittent phase synchronization (IPS) [20, 21, 22], and
also experimentally in coupled Chua’s circuit. Very re-
cently, it has been shown [23] that the transition to inter-
mittent chaotic synchronization (in the case of complete
synchronization) is characteristically distinct for geomet-
rically different chaotic attractors. In particular, it has
been shown that for phase coherent chaotic attractors
(Rossler attractor) the transition occurs immediately as
soon as the coupling strength is increased from zero and
for non-phase-coherent attractors (Lorenz attractor), the
transition occurs slowly as the coupling is increased from
zero.

Time-delay systems form an important class of dynam-
ical systems and recently they are receiving central im-
portance in investigating the phenomenon of chaotic syn-
chronizations in view of their infinite dimensional nature
and feasibility of experimental realization |24, 25, 126, [27].
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FIG. 1: The hyperchaotic attractor of the system () for the
parameter values a = 1.0,b = 1.2 and 7 = 15.0.

While the concept of GS has been well established in
low dimensional systems, it has not yet been studied in
detail in coupled time-delay systems and only very few
recent studies have been dealt with GS in time-delay sys-
tems |24, [25]. In particular, the mechanism of onset of
GS in coupled time-delay systems and its characteristic
properties have not yet been clearly understood and re-
quire urgent attention.

In this paper, we investigate the characteristic proper-
ties of nature of onset of GS from asynchronous state in
unidirectionally coupled piece-wise linear time-delay sys-
tems exhibiting highly non-phase coherent hyperchaotic
attractors [26]. We find that the onset of GS is preceded
by on-off intermittency mechanism from the desynchro-
nized state. We have also identified that the intermit-
tency transition to GS exhibits characteristically distinct
behaviors for different coupling schemes. In particular,
the intermittency transition occurs in a broad range of
coupling strength for error feedback coupling configura-
tions and in a narrow range of coupling strength for direct
feedback coupling configurations, beyond certain thresh-
old value of coupling strength. In addition, the intermit-
tent dynamics is characterized by periodic bursts away
from the temporal synchronized state with period equal
to the delay time of the response system in the case of
broad range intermittency transition whereas it is char-
acterized by random time intervals in the case of narrow
range intermittency transition. We have also confirmed
these dynamical behaviours in both linear and nonlinear
coupling configurations. We have analyzed these transi-
tions analytically using Krasvoskii-Lyapunov functional
approach and numerically by the probability of synchro-
nization and by the subLyapunov exponents. We have
also addressed the reason behind these transitions using
periodic orbit theory. The robustness of these transi-
tions with the system parameters in both the linear and
nonlinear, error feedback and direct feedback coupling
configurations, are also studied.

The plan of the paper is as follows. In Sec. II, we
will point out the existence of broad range intermittency
transition to GS for linear error feedback coupling pro-
portional to (x1(¢) — z2(t)) while in Sec. III the exis-
tence of narrow range intermittency transition is shown
for the linear direct feedback coupling of the form zy(t),
where z1(t) and z2(t) are the drive and response sig-
nals, respectively (see below for details). In Sec. IV we

will discuss the existence of broad range intermittency
transition for nonlinear error feedback coupling of the
form (f(z1(t—72)) — f(x2(t —72))), where f(z) is an odd
piece-wise linear function. The existence of narrow range
intermittency transition is discussed in Sec. V for nonlin-
ear direct feedback coupling of the form (f(x1(t — 72)).
Finally in Sec. VI, we will summarize our results.

II. BROAD RANGE (SLOW/DELAYED)
INTERMITTENCY TRANSITION TO GS FOR
LINEAR ERROR FEEDBACK COUPLING OF

THE FORM (z1(t) — z2(t))

We consider the following first order delay differential
equation introduced by Lu and He [28] and discussed in
detail by Thangavel et al. [29],

z(t) = —ax(t) +bf(x(t — 1)), (1)

where a and b are parameters, 7 is the time-delay and f
is an odd piecewise linear function defined as

0, x < —4/3
—152-2, —4/3<z<—0.8
flz) = z, -08<2<08 (2)
15242, 08<uz<4/3
0, x> 4/3.

Recently, we have reported [30] that the system ()
exhibits hyperchaotic behavior for suitable parametric
values. For our present study, we find that for the choice
of the parameters a = 1.0,b = 1.2 and 7 = 15.0 with
the initial condition z(t) = 0.9,¢ € (—5,0), Eq. () ex-
hibits hyperchaos. The corresponding pseudoattractor is
shown in Fig. [l The hyperchaotic nature of Eq. () is
confirmed by the existence of multiple positive Lyapunov
exponents. The first ten maximal Lyapunov exponents
for the above choice of parameters as a function of delay
time 7 is shown in Fig. @] (spectrum of Lyapunov expo-
nents in this paper are calculated using the procedure
suggested by Farmer [31]).

To be specific, we first consider the following unidi-
rectional, linearly coupled systems with drive x4 (t), re-
sponse x2(t) and an auxiliary x3(t),

il (t) = — axl(t) + b1f($1 (f - 7'1)) (3&)
Za(t) = — awz(t) + ba f (x2(t — 72))

+ b3(21(t) — z2(2)), (3b)
i3(t) = — azs(t) + baf(zs(t — 72))

+ bg(xl (t) - $3(f ), (3C)

where b1, b and b3 are constant parameters, and 7, and
T9 are constant delay parameters. Note that when by # bs
or 1, # T or both, corresponding to parameter mis-
matches, we have unidirectionally coupled nonidentical
systems (Eq. Bh) and Bb)), while the auxiliary system
is given by Bk) and f(x) is the odd piece-wise linear
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FIG. 2: The first ten maximal Lyapunov exponents Apqz of
the scalar time-delay system for the parameter values a =
1.0,b1 = 1.2, 7 € (2,29) (which is the same as Eq. (1) with by
replaced by b) (Bh).

function [@). The coupling in (Bb) may be also called a
linear error feedback coupling.

For simplicity, we have chosen b; = by so that the
time-delays 7 and 75 alone introduce a simple form of
parameter mismatch between the drive z1(¢) and the re-
sponse x2(t). We have chosen the values of parameters
as a = 1.0,by = by = 1.2,7 = 20 and 7» = 25. For
this parametric choice, in the absence of coupling, all
the three systems (B]) evolve independently and exhibit
hyperchaotic attractors, which is confirmed by the exis-
tence of multiple positive Lyapunov exponents (Fig. 2I).
The actual value of the positive Lyapunov exponents
for 7 = 20 are 0.00916, 0.00759, 0.00565, 0.00283 and
0.00073 and for 7 = 25 they are 0.01234, 0.01067,
0.00886, 0.00658, 0.00386, 0.00229, 0.00123 and 0.00033.

A. Stability Condition

With GS, as all the response systems under the same
driving follow the same trajectory, it is sufficient to iden-
tify the existence condition for establishment of complete
synchronization (CS) between the response x5(t) and the
auxiliary x3(t) systems in order to achieve GS between
the drive z1(¢) and the response xa(t) systems.

Now, for CS to occur between the response x2(t) and
the auxiliary x3(t) variables, we consider the time evo-
lution of the difference system with the state variable
A = z3(t) — x2(t). It can be written for small values of
A as

A = —(a+b3)A+bof (x2(t — 72))Ary, (4)
where

15, —4/3<z<-08
f(z) = 1, —-08<z<0.38 (5)
15, 08<x<4/3.

1 1
(b)
78 ’4'
0.9 09 ?‘i‘\?ﬁ';’
t;“ %"’ .%g‘r
0.8 0.8 '//‘!%
07
06 0.70 .
X(t)
1 1
(d)
09 09
% %
0.8 0.8
0.7 0.7
06 07 08 09 1 07 08 09 1
() ()

FIG. 3: Dynamics in the phase space of the systems (3). (a)
and (b): Approximate GS and CS, respectively, for the value
of the coupling strength b3 = 0.4. (c) and (d): Perfect GS
and CS, respectively, for the value of the coupling strength
bs =0.9.

The synchronization manifold, a2 (t) = z3(t), is locally
attracting if the origin of this equation is stable. Fol-
lowing Krasovskii-Lyapunov functional approach, we de-
fine a positive definite Lyapunov functional of the form
[27, 132, 133] (details of stability analysis are given in ap-

pendix [A])
1 0
V(t) = 2A2 + u/ A2(t + 0)do, (6)

where p is an arbitrary positive parameter, pu > 0.
The solution of Eq. (@), namely A = 0, is stable if
the derivative of the functional along the trajectory of
Eq. (@) is negative. This negativity condition is satisfied
if b3 +a > %}W + p, from which it turns out
that the sufficient condition for asymptotic stability is

a+ bz > |b2f/($2(t—7'2))|. (7)

Now from the form of the piecewise linear function f(z)
given by Eq. @), we have,

1.5, 0.8 < || < 3

|f’($2(t - 7-2))| = { 1.0, |$2| < 0.8. (8)

Consequently the stability condition (@) becomes a+b3 >
|1.5b2] > |ba|. Thus one can take

a—|—b3 > |b2| (9)

as the less stringent or approximate stability condition
(as the synchronization dynamics of the coupled systems
@) can occur even beyond the inner region, |z2| < 0.8)
for (@) to be valid, while

a—+ bz > |15b2| (10)
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FIG. 4: The intermittent dynamics of the response x2(t) and
auxiliary z3(t) systems for the value of the coupling strength
bs = 0.4. (a) Time traces of the difference z2(t) — z3(¢) corre-
sponding to Fig. Bb, (b) Enlarged in x scale to show bursts at
periodic intervals when bursts of larger amplitudes A > [0.01]
are considered and (c) Enlarged in y scale to show random

bursts when bursts of smaller amplitudes A < |0.01] are con-
sidered.

can be considered as the most general or stringent or
exact stability condition (as the full synchronization dy-
namics of the coupled systems (B]) lies within the outer
region 0.8 < |z2| < 3) specified by () for asymptotic
stability of the synchronized state A = 0.

B. Approximate (Intermittent) Generalized
Synchronization

In order to understand the mechanism of transition
to synchronized state, it will be important to follow the
dynamics from the parameter values at which the less
stringent condition is satisfied. Figure Bk shows the ap-
proximate GS (which may also be termed as intermit-
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FIG. 5: The statistical distribution of laminar phases corre-
sponding to the Fig.[d (a) For threshold value A = |0.1] and
(b) for the threshold value of A = ]0.0001].

tent generalized synchronization (IGS) in analogy with
intermittent lag synchronization (ILS)) between the drive
x1(t) and the response z3(t) systems, whereas Fig. Bb
shows the approximate CS between the response xs(t)
and the auxiliary x3(t) systems for the values of the pa-
rameters a = 1.0,b; = by = 1.2, 7 = 20,72 = 25 and
bs = 0.4 satisfying the less stringent condition (@]). Per-
fect GS and perfect CS are shown in Figs. Bk and Bd
respectively for b3 = 0.9 satisfying the general stability
condition (I0). Time traces of the difference x5 (t) —x3(t)
corresponding to approximate CS (Fig. Bb) are shown in
Fig. @ which show periodic bursts with period between
two consecutive bursts approximately equal to the time-
delay of the response system ¢ = 25 when ’on’ states
of amplitude greater than |0.01| are considered. Fig. @b
shows an enlarged (in x scale) part of Fig. [dh to view
the bursts at periodic intervals when bursts of larger am-
plitudes (A > |0.01|) are considered, while Fig. dk is an
enlarged (in y scale) version of Fig. @b to show random
bursts when bursts of smaller amplitude A < ]0.01] are
considered.

Usually the intermittent dynamics is characterized by
the entrainment of the dynamical variables in random



time intervals of finite duration [34, 135]. But from
Fig. @b, it is evident that the intermittent dynamics dis-
plays periodic bursts from the synchronous state with
period approximately equal to the delay time of the re-
sponse system, when amplitudes of the state variable
|A| = |z3(t) — x2(t)] > 0.01 are considered, for the val-
ues of the coupling strength at which the less stringent
stability condition (@) is satisfied. The statistical fea-
tures associated with the intermittent dynamics is ana-
lyzed by calculating the distribution of laminar phases
A(t) with amplitude less than a threshold value to A. A
universal asymptotic power law distribution A(t) oc t~¢
is observed for the threshold value A = ]0.0001| with the
value of the exponent o = —1.5 as shown in Fig. Bb,
which is quite typical for on-off intermittency. On the
other hand the distribution of laminar phases A(t) for
the value of the threshold value of |A = 0.1| shows a
periodic structures (Fig. Bh), where the peaks occur ap-
proximately at t = nT,n = 1,2, ..., where T = 79 is the
period of the lowest periodic orbit of the uncoupled sys-
tem ([Bb). Note that —3/2 power law is observed for the
intermittent dynamics shown in Fig. @ for laminar phases
A(t) with amplitude less than A = ]0.0001]| (as an illus-
trative example), which is also evident from Fig. [k, while
periodic bursts are observed for ’on’ state of amplitude
greater than |0.01]. It is to be noted that such periodic
bursts of period approximately equal to the time-delay
of the response system for larger threshold value of A
along with the on-off intermittency behavior for larger
threshold value of A has also been observed by Zhan et
al [24] in unidirectionally coupled Mackey-Glass systems
, where the authors discussed relation between two modes
of synchronization, namely, CS and GS.

C. Characterization of IGS

Now we characterize the intermittency transition to GS
by using (i) the notion of the probability of synchroniza-
tion ®(b3) as a function of the coupling strength bs [23],
which can be defined as the fraction of time during which
|z2(t) — z3(t)] < € occurs, where € is a small but arbi-
trary threshold, and (ii) from the changes in the sign
of subLyapunov exponents (which are nothing but the
Lyapunov exponents of the subsystem) in the spectrum
of Lyapunov exponents of the coupled time-delay sys-
tems. Fig. [Bh shows the probability of synchronization
®(bs) as a function of the coupling strength bs calcu-
lated from the variables of the response z3(t) and the
auxiliary z3(t) systems for CS between them. For the
range of bs € (0,0.39), there is absence of any entrain-
ment between the systems resulting in asynchronous be-
havior and the probability of synchronization ®(bs) is
practically zero in this region. However, starting from
the value of b3 = 0.39 and above, there appear oscil-
lations in the value of the probability of synchronization
®(bs) between zero and some finite values less than unity,
exhibiting intermittency transition to GS in the range of
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FIG. 6: (a) The probability of synchronization ®(b3) between
the response z2(t) and the auxiliary x3(t) systems and (b)
Largest Lyapunov exponents of the coupled drive x1(t) and

response z2(t) systems [Bh) and (Bb).

bs € (0.4,0.62) for which the less stringent stability con-
dition (@) is satisfied. Beyond b3 = 0.62, ®(b3) attains
unit value indicating perfect GS. Note that the above in-
termittency transition occurs in a rather wide range of
the coupling strength (this can also be termed as slow
or delayed intermittency transition in analogy with the
terminology used in [23]), which has also been confirmed
from the transition of successive largest subLyapunov
exponents in the corresponding range of the coupling
strength.

The spectrum of the first fifteen largest Lyapunov ex-
ponents Ap,q. of the coupled drive z1(t) and response
xo(t) systems are shown in Fig. Bb. From the general
stability condition (), it is evident that for the cho-
sen value of the parameter a = 1.0, the less stringent
stability condition (@) is satisfied for the values of cou-
pling strength b3 > 0.2. Correspondingly, the least posi-
tive subLyapunov exponent of the response system (Bb)
gradually becomes negative from b3 > 0.2. Subsequently,
the remaining positive subLyapunov exponents gradually
become negative and attain saturation in the range of
bs € (0.2,0.8). This is in accordance with the fact that
the less stringent stability condition is satisfied only in
the corresponding range of coupling strength b3. This
is a strong indication of the broad range intermittency
(IGS) transition to GS. For b3 > 0.8, the general sta-
bility condition () is satisfied, where one can observe
perfect GS as is evidenced by both the probability of syn-
chronization approaching unit value and by the negative
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FIG. 7: The probability of synchronization ®(b3) in 3-
dimensional plots (a) as a function of the system parameter bz
and the coupling strength bs and (b) as a function of the cou-
pling delay 72 and the coupling strength bs, exhibiting broad
range intermittency transition to GS for linear error feedback
coupling.

saturation of subLyapunov exponents calculated between
the drive and response systems. The inference is that the
correlation between the oscillations of the systems even-
tually becomes stronger with the strength of the cou-
pling, and this is indicated by the successive transition
of subLyapunov exponents to negative values.

It is a well established fact that a chaotic attractor
can be considered as a pool of infinitely many unsta-
ble periodic orbits of all periods. Synchronization be-
tween two coupled systems is said to be asymptotically
stable, if all the unstable periodic orbits of the response
system are stabilized in the transverse direction of the
synchroniation manifold. Consequently, all the trajecto-
ries transverse to the synchronization manifold converge
for suitable values of coupling strength and this is re-
flected in the negative values of the transverse Lyapunov
exponents (subLyapunov exponents) upon synchroniza-
tion [23]. From our results, we find that the subLyapunov
exponents gradually become negative in a broad range of
coupling strength bs after certain threshold value and
this is in accordance with the known results on gradual
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FIG. 8: Dynamics in the phase space of the systems ([{I)): (a)
and (b) Approximate GS and CS, respectively, for the value
of the coupling strength b3 = 0.64 and (c), (d) Perfect GS
and CS, respectively, for the value of the coupling strength
bs = 0.8.

stabilization of unstable periodic orbits of the response
system in the complex synchronization manifold of low
dimensional systems [23]. Unfortunately, methods for lo-
cating UPQ’s and calculating their transverse Lyapunov
exponents have not been well established for time-delay
systems and hence a quantitative proof for the gradual
stabilization of UPO’s has not been given here. How-
ever, the gradual stabilization of UPQ’s along with their
transverse Lyapunov exponent in the range of intermit-
tency transition have been reported for the case of cou-
pled Rossler and Lorenz systems in Ref. [23]. It can then
be inferred from these studies that the broad range inter-
mitteny transition in the case of error feedback coupling
configuration is due to the fact that the strength of the
coupling b3 contributes only less significantly to stabilize
the UPQO’s as the error x1(t) — 22(t) gradually becomes
smaller from the transition regime after certain threshold
value of the coupling strength.

The robustness of the intermittency transition in a
broad range of coupling strength with the system pa-
rameter by € (1.1,1.6) and with the coupling delay
T2 € (10,20) has also been confirmed. Fig. [Th shows the
3-dimensional plot of the probability of synchronization
as a function of the system parameter be and the coupling
strength b3, while Fig. [b shows the 3-dimensional plot
of ®(b3) as a function of the coupling delay 72 and the
coupling strength bs. The above figures (Fig. []) clearly
reveal the broad range intermittency transition to GS in
the case of linear error feedback coupling scheme.



III. NARROW RANGE (IMMEDIATE)
INTERMITTENCY TRANSITION TO GS FOR
LINEAR DIRECT FEEDBACK COUPLING OF

THE FORM z,(t)

To illustrate the narrow range intermittency transition
to GS, we consider the unidirectional linear direct feed-
back coupling of the form

Il(t) = —a:z:l(t) + blf(xl (t — 7'1)), (11&)
Ig(t) = —axg(t) + bgf(ZCQ (t - 7'2)) + ngl(t), (llb)
Ig(t) = —axg(t) + be(ZCg (t — 7’2)) + ngl(t), (11C)

where f(z) is of the same odd piece-wise linear form as in
Eq. [@). Assuming the same values of the parameters as
before and proceeding in the same way as in the previous
case, one can obtain the sufficient condition for asymp-
totically stable CS between the response z2(t) ([Ib) and
the auxiliary z3(t) ([Ik) systems as

a > |b2f/(1'2(t—7'2))|. (12)

It is to be noted that the above stability condition
holds good only for the case when coupling is present,
that is b3 # 0. When there is no coupling (b3 = 0), by
definition, there will be a desynchronized chaotic state.
As soon as the value of the coupling strength is increased
from zero, the stability condition (I2]) always lead to syn-
chronized state even for very feeble values of b3 for pa-
rameters satisfying the stability condition, as it is inde-
pendent of the coupling strength bs. As the values of the
parameters satisfying the stability condition (I2]) rapidly
leads to immediate transition to synchronized state as
soon as the coupling is switched on, it is difficult to iden-
tify the possible transitions to synchronized state. In
addition, as the stability condition is independent of the
coupling strength bs, one is not able to explore the dy-
namical transitions as a function of coupling strength for
the parameter values satisfying the stability condition
(I2). Hence we study the synchronization transition by
choosing the parameters violating the stability condition
as a = 1.0,bp =1.2,by = 1.1,7 = 75 = 20 and varying
the coupling strength b3 in order to identify the mech-
anism of synchronization transition. Here, in this case
b1 and bs alone introduce the parameter mismatch while
71 = 72 (It may be added that the qualitative nature of
the dynamical transitions remain the same even when the
mismatch is either in time delays alone, that is 71 # 79,
b1 = b or in both the system parameters and time de-
lays, by # by, 71 # T2, as confirmed below in the three
dimensional plots of Figs. [[2]).

As b3 is varied from zero, transition from desynchro-
nized state to approximate GS occurs for b3 > 0.6. Ap-
proximate GS (IGS) between the drive system x4 (¢) spec-
ified by Eq. (ITh), and the response system x5(t) repre-
sented by Eq. (IIb), is shown in Fig. Bk whereas the
approximate CS between the response z3(t) (Eq. (IIb))
and the auxiliary z3(t) (Eq. ([Ik)) systems is shown in
Fig. Bb for the value of the coupling strength b3 = 0.64.
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FIG. 9: The intermittent dynamics of the response z2(t) (IIb)
and auxiliary z3(¢) (IIk) systems for the value of the coupling
strength b3 = 0.64. (a) and (b) Time traces of the difference
22(t) — x3(t) corresponding to Fig. Bb.

Prefect GS and CS are shown in Figs. Bc and [Bd, respec-
tively, for the value of the coupling strength b3 = 0.8.
The intermittent dynamics at the transition regime cor-
responding to the value of the coupling strength b3 = 0.64
is shown in Figs. [0 in which Fig. @b shows the enlarged
part of Fig. Bh. It is clear from this figure that the inter-
mittent dynamics displays intermittent bursts at random
time intervals. The statistical distribution of the laminar
phases again shows a universal asymptotic —1.5 power
law behavior for the threshold value A =]0.0001], which
is typical for on-off intermittency transitions, as shown
in Fig. 10

Now we characterize the intermittency transition to
GS in the present case, again by using the notion of
the probability of synchronization ®(b3) and from the
changes in the sign of subLyapunov exponents of the
coupled system. The probability of synchronization is
shown in Fig. [[Th as a function of the coupling strength,
again calculated from the response z2(t) and the auxil-
iary x3(t) systems, Eqs. (IIb) and (IIk), respectively,
which remains zero in the range of b3 € (0,0.60) and
oscillates between its maximum and minimum values in
a narrow range of b3 € (0.60,0.68) confirming the ex-
istence of approximate CS in the later range. Above
bs = 0.68 the probability of synchronization acquires
its maximum value depicting perfect CS between the
response z2(t) and the auxiliary zs(t) systems. Cor-
respondingly there exists perfect GS between the drive
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FIG. 10: The statistical distribution of laminar phases for the
Fig.

x1(t) and the response xa(t) systems. Fig. [Ib shows
the first twelve maximal Lyapunov exponents of the cou-
pled drive z;(t) and the response w3(t) systems. The
least positive subLyapunov exponent of the response sys-
tem starts to become negative from b3 > 0.60. Subse-
quently, all the other positive subLyapunov exponents
become negative and reach saturation in a rather nar-
row range of bs € (0.60,0.68). Thus the narrow range
intermittency (IGS) transition (this can also be termed
as immediate intermittency transition in analogy with
the terminology used in [23]) is confirmed from both
the probability of synchronization, calculated from the
response and the auxiliary systems, and negative satura-
tion of subLyapunov exponents, calculated from the drive
and the response systems.

As discussed in the previous section, the narrow range
intermittency transition is in accordance with the stabi-
lization of all the unstable periodic orbits of the response
system in a narrow range as a function of the coupling
strength b3 and this is reflected in the immediate transi-
tion of all the subLyapunov exponents (Fig. IIb) to neg-
ative values. It is also to be noted that the narrow range
intermitteny transition in the case of direct feedback cou-
pling configuration can be attributed to the fact that the
strength of the coupling bs contributes significantly pro-
portional to the strength of the signal z1(¢) to stabilize
all the UPO’s immediately at the transition regime after
certain threshold value of the coupling strength as in the
case of low-dimensional systems [23].

The robustness of the intermittency transition in a
narrow range of the coupling strength b3 for a range
of values of the parameter b € (1.1,1.6) and the delay
71 = T2 € (10, 20) is shown in Fig. The 3-dimensional
plot of the probability of synchronization as a function of
the system parameter by and the coupling strength bs is
shown in Fig.[I2h, while Fig.[I2b shows the 3-dimensional
plot of ®(b3) as a function of the coupling delay 72 and
the coupling strength bs.
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FIG. 11: (a) The probability of synchronization ®(b3) be-
tween the response z2(¢) (IIb) and the auxiliary z3(t) ([IIk)
systems and (b) Largest Lyapunov exponents of the coupled
drive z1(t) and response z2(t) systems ([Ih) and ([{Ib).

IV. BROAD RANGE INTERMITTENCY
TRANSITION TO GS FOR NONLINEAR ERROR
FEEDBACK COUPLING OF THE FORM

(f(@1(t = 72)) — f(22(t — 72)))

Next we demonstrate the existence of the above types
of distinct characteristic transitions for nonlinear cou-
pling configurations as well. For this purpose, we con-
sider the unidirectional nonlinear error feedback coupling
of the form

1(t) = —ax1(t) + b1 f(z1(t — 1)), (13a)

&a(t) = — axa(t) + baf(x2(t — 12))
+03(f(z1(t — 12)) — f(z2(t — 72))), (13Db)

&3(t) = — aws(t) + ba f(23(t — 72))
+b3(f(z1(t — m2)) — flzs(t —72))),  (13c)

where f(x) is again of the same piece-wise linear form as
in Eq. [2)). The parameters are now fixed as a = 1.0,b; =
by = 1.2, 71 = 20 and the coupling delay 75 = 25, where
the delays alone form the parameter mismatch between
the drive and response systems in Eqgs. (I3]). Following
Krasvoskii-Lyapunov theory, for complete synchroniza-
tion so that the manifold A = x3(t) — x2(t) between the
response x2(t) and the auxiliary x3(t) approaches zero,
one can obtain the stability condition as

a > |(bz = b3) f'(z2(t — 12))| .- (14)
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dimensional plots (a) as a function of the system parameter
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narrow range intermittency transition to GS for linear direct
feedback coupling

Consequently from the form of the piecewise linear
function (2)), the stability condition ([I4) becomes a >
[1.5(bg — b3)| > |(b2 — b3)|. Thus one can take

a > |by — bs| (15)
as less stringent condition for (@) to be valid, while
a > |1.5b — 1.5b3] (16)

can be considered as the most general condition speci-
fied by (I4) for asymptotic stability of the synchronized
state A = zo(t) — x3(t) = 0. For the chosen values
of the parameters, the less stringent stability condition
(I3 is satisfied for the values of the coupling strength
bs € (0.2,0.535) and the general stability condition (L6
is satisfied for b3 > 0.535.

As the coupling strength is increased from zero, ap-
proximate GS occurs from b3 > 0.2. Figure [[3h shows
the approximate GS (IGS) between the drive z(¢)
(Eq. (T3kh)) and the response z2(t) (Eq. (I3b)) systems
for the value of the coupling strength b3 = 0.37, while the
approximate CS between the response z2(t) (Eq. (I3b))

1 1
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0.9 0.9
= ke
038 038
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Xo(t
) . 0
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09 0.9
K ¥
08 08
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0.6 0.7 0.8 09 1 0.7 0.8 09 1
(1) X(t)

FIG. 13: Dynamics in the phase space of the systems (I3])).
(a) and (b): Approximate GS and CS, respectively, for the
value of the coupling strength b3 = 0.37. (c) and (d): Perfect
GS and CS, respectively, for the value of the coupling strength
bs = 0.8.

and the auxiliary z5(t) (Eq. (I3k)) systems is shown in
Fig. (@3b). Perfect GS and perfect CS are shown in
Figs. I3k and [[3Md respectively for b3 = 0.8. The intermit-
tent dynamics exhibited by the coupled systems at the
transition regime is shown in Fig.[I4] which shows bursts
at the period approximately equal to the delay time of
the response system x2(t) for bursts of amplitude greater
than |0.01] (Fig. I4b). The statistical distribution of the
laminar phases away from the intermittent bursts shows
an asymptotic —1.5 power law behavior for the thresh-
old value A = ]0.0001| (see Fig.[I4k), typical for on-off
intermittency, which is shown in Fig. [[3b. On the other
hand for the threshold value A = |0.1| Fig.I5h shows pe-
riodic structures similar to Fig. Bh with peaks occuring
approximately at t = nT\n = 1,2,..., where T =~ 7o is
the period of the lowest periodic orbit of the uncoupled

system (I3b).

Now, the intermittency transition is again character-
ized using the probability of synchronization and the
subLyapunov exponents as in the previous cases. Fig.[I0h
shows the probability of synchronization ®(bs), the value
of which remains zero in the range b3 € (0,0.2) due to
the fact that there lacks any entrainment between the re-
sponse x2(t) and the auxiliary z3(t) systems, whereas it
fluctuates between the two extreme values in a rather
broad range of the coupling strength b3 € (0.2,0.42),
depicting the existence of intermittency transition in
the corresponding range of b3. Perfect CS exists for
bs > 0.42 as evidenced from the maximum value of
®(b3). Correspondingly there exists perfect GS between
the drive z1(t) and the response z5(t) systems. Figure
[I6b shows the transition of subLyapunov exponents of
the spectrum of Lyapunov exponents of the coupled drive
z1(t) (Eq. (I3k)) and the response z2(t) (Eq. (I3b)) sys-
tems. The subLyapunov exponents become negative in
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FIG. 14: The intermittent dynamics of the response xz(t)
([@I3b) and auxiliary z3(t) [@3k) systems for the the value of
the coupling strength b3 = 0.37 for nonlinear error feedback
coupling. (a) Time traces of the difference z2(t) — z3(t) corre-
sponding to Fig.[I3b, (b) Enlarged in x scale to show bursts at
periodic intervals when bursts of larger amplitudes A > [0.01]
are considered and (c) Enlarged in y scale to show random
bursts when bursts of smaller amplitudes A < |0.01] are con-
sidered.

the range b3 € (0.2,0.42) confirming the broad range in-
termittency (IGS) transition in a rather wide range of
the coupling strength and this is again due to the grad-
ual stabilization of the unstable periodic orbits of the
response systems because of the less significant contri-
bution of the coupling strength b3 as the error becomes
gradually smaller from the transition regime beyond cer-
tain threshold value of the coupling strength as discussed
in Sec. II. The robustness of the intermittency transi-
tion with the system parameter by and the coupling de-
lay 72 as a function of coupling strength b3 is shown as
3-dimensional plots in Figs. [T
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FIG. 15: The statistical distribution of laminar phases cor-
responding to the Fig.[[4l (a) For threshold value A = |0.1]
and (b) for the threshold value of A =]0.0001].

V. NARROW RANGE INTERMITTENCY
TRANSITION TO GS FOR NONLINEAR
DIRECT FEEDBACK COUPLING OF THE
FORM f(ml(t — TQ))

Now we consider the unidirectional nonlinear coupling
of the form

1(t) = —ax1(t) + b f(x1(t — 1)), (17a)
Ea(t) = — aza(t) + baf(z2(t — 72))

+baf(z1(t — 12)), (17b)
z3(t) = — axs(t) + baf (z3(t — 72))

+bsf(a1(t — 72)). (17¢c)

Choosing the values of the parameters as in the pre-
vious case and following Krasvoskii-Lyapunov functional
approach for the asymptotically stable synchronized state
A = x3(t)—z2(t) = 0, one can obtain the sufficient condi-
tion for asymptotic stability for complete synchronization
of the response x2(t) and the auxiliary z3(t) systems as

a > |b2f/($2(t—7'2))|. (18)
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FIG. 16: (a) The probability of synchronization ®(b3) be-
tween the response z2(¢) (I3b) and the auxiliary z3(t) ([@3k)
systems and (b) Largest Lyapunov exponents of the coupled

drive z1(t) and response z2(t) systems (I3h) and ([I3b).

The above stability condition rapidy leads to immedi-
ate transition to synchronized state even for very feeble
values of the coupling strength b3 for the parameter val-
ues satisfying the stability condition (I8]) as the stability
condition is independent of b3 as in the previous linear
coupling case (Sec. [IIl). Hence it is difficult to identify
the possible dynamical transitions to synchronized state
as a function of the coupling strength bs. Hence we study
the synchronization transition as a function of the cou-
pling strength b3 by choosing the parameters violating
the stability condition as a = 1.0,b; = 1.2,b2 = 1.1 and
T1T = T2 = 15.

As b3 is varied from zero for the above values of the
parameters, transition from desynchronized state to ap-
proximate GS occurs for bs > 0.74. The approximate
GS (IGS) between the drive x4 (t) and the response 3 (t)
variables described by Egs.[I[Th) and (I7b) is shown in
Fig. M8k, whereas Fig. [8b shows the approximate CS
between the response z2(t) and the auxiliary zs(t) vari-
ables (Eqgs. (I7h) and (Ifk)) for the value of the cou-
pling strength b3 = 0.78. Perfect GS and perfect CS are
shown in Figs. I8 and [I8d respectively for b3 = 0.9.
Time traces of the difference x2(t) — x3(t) corresponding
to approximate CS (Fig.[I8b) is shown in Fig. 19 which
shows intermittent dynamics with the entrainment of the
dynamical variables in random time intervals of finite
duration. Fig. [ shows the enlarged picture of part
of Fig. [Oh. The statistical distribution of the laminar
phases again shows a universal asymptotic —1.5 power
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FIG. 17: The probability of synchronization ®(b3) in 3-
dimensional plots (a) as a function of the system parameter
b2 and the coupling strength bs and (b) as a function of the
coupling delay 72 and the coupling strength bs for the case
of nonlinear error feedback coupling configuration given by
Eq. (I3), showing broad range intermittency transition.
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FIG. 18: Dynamics in the phase space of the systems (7).
(a) and (b): Approximate GS and CS, respectively, for the
value of the coupling strength b3 = 0.78. (c) and (d): Perfect
GS and CS, respectively, for the value of the coupling strength
bs =0.9.
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FIG. 20: The statistical distribution of laminar phase for the
Fig. M

law behavior for the threshold value A = |0.0001], typi-
cal for on-off intermittency, as shown in Fig.

As in the previous cases, now we characterize the in-
termittency transition to GS using the notion of prob-
ability of synchronization ®(b3) and from the changes
in the sign of subLyapunov exponents in the spectrum
of Lyapunov exponents of the coupled time-delay sys-
tems (7). Fig. BIh shows the probability of synchro-
nization ®(b3) as a function of the coupling strength

12
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FIG. 21: (a) The probability of synchronization ®(b3) be-
tween the response z2(¢) (Ih) and the auxiliary z3(t) ([I7k)
systems and (b) Largest Lyapunov exponents of the coupled

drive z1(t) and response z2(t) systems ([7h) and (Ib).

bs calculated from the response x2(t) and the auxiliary
x3(t) variables (Egs. (IThb) and (ITk)) for CS between
them. In the range of b3 € (0,0.74), the probability of
synchronization remains approximately zero. Upon in-
creasing the value of b3, ®(b3) oscillates in the narrow
range of by € (0.74,0.78) depicting the existence of in-
termittency transition. This narrow range transition is
also confirmed from the transition of successive largest
subLyapunov exponents. The spectrum of the first nine
largest Lyapunov exponents A4, of the coupled drive
x1(t) and response z5(t) variables (Egs. ([['Th) and (b))
is shown in Fig. BIb. It is also evident from the spectrum
that the subLyapunov exponents suddenly become neg-
ative in the narrow range of b3 € (0.74,0.78), and then
reach saturation values for b3 > 0.78. This confirms the
narrow range intermittency (IGS) transition to GS. This
is also in accordance with the immediate stabilization
of all the UPQ’s of the response system as discussed in
Sec. ([II).

The robustness of the transition with the system pa-
rameter bs and the delay time 75 as a function of coupling
strength b3 is shown as 3-dimensional plots in Fig. 22

VI. CONCLUSION

In conclusion, we have studied intermittency transition
to generalized synchronization from desynchronized state
in unidirectionally coupled scalar piecewise linear time-
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FIG. 22: The probability of synchronization ®(b3) in 3-
dimensional plots (a) as a function of the system parameter
b2 and the coupling strength bs and (b) as a function of the
coupling delay 72 and the coupling strength b3 for the case
of nonlinear direct feedback coupling configuration given by
Eq. (T7) showing narrow range intermittency transition to
GS.

delay systems for different coupling configurations using
the auxiliary system approach. We have shown that the
intermittency transition to GS occurs in a broad range
of coupling strength for both linear and nonlinear error
feedback coupling configurations whereas it occurs in a
narrow range of coupling strength for both the linear and
nonlinear direct feedback coupling configuration. It has
also been shown that the intermittent dynamics displays
periodic intermittent bursts of period equal to the delay
time of the response systems in the former cases and it
takes place in random time intervals in the latter cases.
The robustness of the intermittent dynamics with the
system parameters and the delay time is also studied as
a function of the coupling strength for both error feed-
back and direct feedback (linear and nonlinear) coupling
configurations. Universality of these intermittent behav-
iors [36] (periodic and random) and their (broad and
narrow range) transitions are also confirmed for differ-
ent forms of linear and nonlinear coupling configurations
in other time-delay systems such as Mackey-Glass and
Ikeda systems. These distinct characteristic behaviors
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are analyzed using the analytical stability condition for
synchronized state, probability of synchronization ®(b3)
between the response and the auxiliary systems, and by
the changes in the sign of subLyapunov exponents in the
spectrum of Lyapunov exponents of the drive and the
response systems in both the linear and nonlinearly cou-
pled time-delay systems. In spite of the fact that both
the probability of synchronization and the subLyapunov
exponents have been calculated from different systems,
we have found good agreement between them in showing
intermittency transition in all the cases. We hope this
study will contribute to the basic understanding of the
nature of transition to GS in coupled time-delay systems
and we are now investigating the experimental verifica-
tion of these findings in nonlinear electronic circuits.
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APPENDIX A: STABILITY CONDITION

To estimate a sufficient condition for the stability of the
solution A = 0, we require the derivative of the functional
V(t) along the trajectory of Eq. (),

dv
= (@ 03)A% by f'(@a(t = 72))AA, + pA® — pA
(A1)

to be negative. The above equation can be rewritten as

av

— = —pA°T(X

o = HATX, ),
where X = A, /A, T =[((a+ bs — p)/p)— (ba f (w2(t —
72))/pn)X + X?]. In order to show that 2 < 0 for
all A and A,, and so for all X, it is sufficient to show
that T’y > 0. One can easily check that the absolute
minimum of T’ occurs at X = %bgf’(:tz(t — T9)) with
Dimin = [4p(a+ b — 1) — b3 (w5t = 72))?] /42 Conse-
quently, we have the condition for stability as

b3 f' (za(t — 12))?
4p

(A2)

a+ bz > +p=2(p). (A3)
Again ®(u) as a function of p for a given f’(x) has an ab-
solute minimum at p = (|ba f'(z2(t—72))|) /2 with @i, =
|b2f/($2(t — Tg))l. Since ¢ Z (I)mm = |bzf/($2(t — Tz))|,
from the inequality ([A3]), it turns out that the sufficient
condition for asymptotic stability is

a+ bz > |baf' (z2(t — 72))|. (Ad)



Now from the form of the piecewise linear function f(z)
given by Eq. Bl we have,

15, 0.8 < |z < 2

|fl(x2(t - 7'2))| = { 1.0, |£L'2| <08 (A5)

Note that the region |z2| > 4/3 is outside the dynamics
of the present system (see Eq. (2))). Consequently the
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stability condition (A4)) becomes a + bz > 1.5|ba| > |ba|.

Thus one can take a + bs > |b2| as a less stringent
condition for ([(A4) to be valid, while

a > 1.5|ba], (A6)

as the most general condition specified by (A4) for
asymptotic stability of the synchronized state A = 0.
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