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In place of the usual commutation relation [d,d ') = | we consider the generalized commutation relation
characteristic of the para-Bose oscillators, viz., [, ﬁ] = d where H is the Hamiltonian (1/2)dd '+ d 'd).
The number states and the representation of varous operators in the basis formed by these states are
obtained. We then introduce the para-Bose coherent states defined as the eigenstates of 4 for this
generalized case. We consider some of the properties of these coherent states and also show that the
uncertainty product <(A§)™ {(A5)"> in this case could be made arbitrarily small.

1. INTRODUCTION

The classical Hamillonian of a4 harmonic oscillator
of mass m and angular [requency w is given by

H = (1/2m)p'? + tmwiy'?, (1.1)
with the corresponding equations of motion
¢ =p/moand p=—mwdql. (1.2)

The passuage to quantum theory is made in two steps
as [ollows':

(1)We replace in /' the ¢ -number variables g’ and p’ of
the classical theory by the operators ¢’ and p’ respec-
tively. It is being assumed that the operators ¢’ and p’
are Hermitian and that they operate on a Hilbert space
with positive definite metrie.

(2) We postulate the commutation relation
7,3 1= .
For the sake of simplicity, we shall be using in place

of the quantities ¢", p’, and H’ the dimensionless
quantities

(1.3)

q= (mw/ )3, (1.4a)
= (i) 4o 2])' B (1.4n)
=) H . (1.4c¢)

We also introduce the quantities o and o * defined as

o= ([‘r 4 I]J) .\""2_ , O X (q - f[)}rJfV'f.i-. {1 . 5]

The operators corresponding to 4, g, p, «, a* in
quantum theory will be denoled as i, ¢, p, a, @',
respectively. The operator ¢! is the Hermitian adjoint
of . Equations (1.1)—(1.3) then simplily to

W=+ p?) =ara, (1.6)

a=p, p=-q, (1.7a)
or equivalently

& =-ia (1.7b)
and

la, bl=1, (1.8a)

[a,at)=1, (1.8b)
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It may be argued that both of the steps mentioned
above for passage to quantum theory are not completely
unique., Firstly, since 7 and p do not commute with
each other, care must be taken in replacing g and p by
the corresponding operators ¢ and p, respectively. In
[act, depending on different rules of association,® % one
may obtain different expressions for /. Hence for
definiteness, we assume Weyl’s rule? in obtaining the
quantum expression for the Hamiltonian, i.e., we
write

=30+ b (1.9)

=g (e Ta+ adr). (1.10)
Secondly, the commutation relation

[a,a"] -1 (1.11)

is nol a consequence of the equations of motion, In
fact, if one is only inlerested in recovering the equa-
tions of motion (1.7) for the operators in guantum
theory, one must postulate the more general com-
mutation relation

[a,11]=d. (1.12)

It is readily seen that {1.12) follows [rom (1.11) but
the reverse is in general nol true.

The case when the particle operators satisfly the
more pencral commutalion relation (1.12) has been
referred to as the "para-Bose” case.* " Jordan,
Mukunda, and Pepper” have obtained the “Fock” rep-
resentation for the para-DBose operalors, i,e., they
obtained the eigenvalues, and eigenfunctions of the op-
erator /I and the representation of the other operators
in the basis formed by these eigenstates (see also Ref.

8).

In the present paper we are interested in oblaining
the “coherent state” representation of these operators,
and discuss some of the properties of these states. In
analogy with the usual states, "' we define the para-
Bose coherent states as the eigenstates of «,

3

iloy =ala}, (1.13)

where @ satisfies (1.12) with /7 given by Eq. (1.10).
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In See. 2, we give a new derivation for the Fock
representation for para-Bose aperators. In Sec, 3 we
obtain the para-Bose coherenl states and discuss some
of their propertlies such as completeness and diagonal
coherent state representation in Sec. 4. In Sec. 5 we
obtain the uncertainties in the position and mwomentum
variables for the coherent states and observe that in
special cases the product of the uncertainties {(4%)%)
(8% could be made as small as one likes,

2. PARA-BOSE NUMBER STATES

We start with the basic commutation relation (1.12),

(4, 0] =a, 2.1)
where
H=13(a% +aa". (2.2)

From the fact that @' is the Hermitian adjoint of 7 and
using the commutation relation (2.1) we readily find
that

[r:,U]m-—rt, (2.3)
(@,d']=24, (2.3a)
[a% al= - 24", (2.3b)
From induction it then follows that
[P, at] =2na? (2.4a)
[arn ] - = 2natn=t {2.4b)
wherecas
[Pt at] =420 +a,a' [}, (2.5a)
[areet g = ~a®i2u+|a, ')}, {2.5b)

The commutator la, &' commutes with @, 4™, and H
but not necessarily with a or @',

Starting in a strictly analogous manner as in the case
of an ordinary harmonic oscillator we [ind that the en-

orpy cigenvalues differ by integers:

VRN L 2 R | o, o/ Lt

0y

where /i, is the lowest eigenvalue of i. In the present
case we lake i, to be completely arbitrary except for
the fact that it has to be nonnecative, since 1 itself
is a nonnegative definite operator. We thus label the
representation by a parameter ji,, the ground state
eigenvilue of H. The ordinary harmonic oscillator case
is obtained when we take h,=.

We now introduce the number operalor

N=il == avi+ adn) = b, (2.6)
and the number states [n), delined by
N|mg=n|nn,, n=0,1,2, (2.7)

Obviously |, is also the eigenstate of H with the

cigenvilue 4y, Beeause of the relations

[N, d]= = (2.8a)
[Nt ar, (2.8D)

which follow from (2.1) and (2.6), we may interpret
aond o as annihilidion and creation operators, roespece-
tively. In order to obtain the representation for @ and
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&', we write

rﬁeln)hn:lnﬁarul)nﬂ, (2.9}

at [mng = 1,1+ Dy, (2.10)

where A and ;i are some constants to be determined.
From the Ilerm1t1ut3 requirement , {n -1laln )h

=, (nla"in 1)y it follows that
A =nt {(2.11)

L n=1"7
Further on taking the norms of Eqs. (2.9), (2.10) and
adding we obtain

A7+, |2 =200+ hg) (2.12)

Equations (2.11) and (2.12) then determine A and g
apart from the phase factors. For definiteness, we
take these constants to be real. We then find that (cf.
Rels. 5,8),

A, =(2n)H2, (2.13a)

Aapoy ={201 + i} /2, (2.13b)

'”'nzl\n-l’ 5 {2.14)
n=0:1,2,

The Para-Bose number slates thus satisly the [ollow-
ing properties:

J':"fn},,n:ufln).,“, (2.15)

.rﬂ.?,n},, z [21!)“2[2}? =130 (2.164)

al2n+ Ln, =420 + ho} 72 | 200, (2.16bH)

at IZN),.n =120 + Ia,_.l}}”" |20+ 1),,0, {(2.:172)

al| 2 L, A2+ 2802 2 Dy » (2,17)

ot 2y = 2!:,1[2u},, i (2.180)

[a,a'])]2n + 1)y, =200 = i} 20 + Uy (2.18b)
Further, we have the completeness relation

& !n Yo a :} =1} (2.190)
and the orthogonality relation

a, (0t | Mhn, =06, (2.19b)

Relations (2.17) and (2.18) also give
172
|3, = 2~r([n 21+I;{)11Ti[(;:+1) 73]+ 0, )} @ | O,
! £0, (2.20)

where [/] stands for the largest interer smaller than
or equal to K.

It has been mentioned earlier that the constant I, is
an arbitrary nonnegative number. When i, =%, we re-
cover the familiar case of the ordinary oscillator in
which case [ef. Eqs. (2.18}] the commutator [a, @'] be-
comes unity, Relation (2.20) is not valid for the case
when i, =0, In this cuse

a'l0y, =0, (2.21)

{and also .r'r]l)., -0}. We therefore find that |0y, is an
isolated state with no possible interaction with any of
For all practical purposes i]}“ ts Lhen
In fact Lthis situation is identical to the

the olher stales.
the ground state.
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case when hy, =1, so that we may associate the slate
[u)u with the state [n —1),. Henee without any loss of
generality the case hy=0 may be ignored.

3. PARA-BOSE COHERENT STATES

The para-Bose coherent states are defined as the
eigenstates of the annihilation operator a,

r'.-|(‘f},,azn' |ﬁ}*o. (3.1)

The matrix representation of « in the para-Bose number
states has been obtained in the previous section, We
now expand Inr),‘U in terms of these number states

|“>"n P_{x’ ¢ ,,[Hz*

(3.2)

and use (2.16). From (3.1) we then find the recurrence

relations

(:n—.-,{nz_.r‘Z){nUfo+n»l}}"“’ gy (3.3)

Capy = {200+ RN/3C,,. (3.4)
From these relations, we readily obtain

: F(""Li:' 12 o \2n 5

g ® =] C 3.6

Can= {u’l"(u-ﬁh)} ) o (3.5)
and

__ Dln)  VEgayeet
= e = % B
Conn = {u'l(h n+1}} (v 2) o (3.6)

Equations (3.5) and (3,6} muy cquivalently be wrillen
in the form

‘ FU"\?) e

= 7 T ac 3.7
2 (w2l D00+ 1) 2]+ ) Con Bl
where [W] as before stands for the largest integer
saller than or equal to K. We now require the co-

herent state [a), to be normalized,
ha

2 oo, =1. (3.8)

C

Equation (3.8) then determines C, except for a phase
fuctor

L] n} -1/
(‘”:.'{Eu F{[:J 2[ FI}TT[F\‘J:JE 1) 2|+ hy) (% [Q!Q) % :
(3.9)
Let us defline
MW= 4 Fhrals 1)1‘{{‘%1%7) 2]+ hy) (:lg )ﬂ= 3.10)
or cquivalently
F(x) =T (4x) "““{f,.n-lf-“} 4, W}, (3.11)

where [ is the modified Bessel function of the ith

order. !

From Egs. (3.2), (3.7), (3.9), and (3.11) we obtain
the following expressicn for the para-bose coherent
stule

o gy
o, =t [

W I (o) L. hE
w0 2T/ 2]+ DOl +1)/2] + 1)

o f u}kﬂ.
(3.12)
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Using Eq. (2.20) we may also write

[edy, = [iad) A ] e [0} 12] [0y, (3.13)

is re-
. In this case we fmd from

The familiar case of lh<, ordinary oscillator,
u)vm ed when we set b, = |
. {3.10) that

S = exply), (3.14)

Equations (3.13) and (3.14) then give
fﬁ),,gi—‘ﬁ-‘(pf (1/2)] a| ‘I?J o ]m”z, (3.15a)
~expl- (1/2)] o Eﬂ]cxp{mrr}|{})“.¢, {3.15h)

which are the well-known expressions for the ordinary
coherent states,”!?

The Hermitian adjoint of Eq. (3.1) reads

(3.16)

"u.{ e [r‘;"*—.n ’hﬂ':r‘!i,

However, one may readily show that there are no right
cigenstates of 4 | i.e., (here is no stale [ A) which
satisfies a relation of the type

Sty =

ANy, = A A, -

We close this section by giving the average values of
the various operators in the para-Bose coherent states:

o lilay, =, o lit|ay =a, (3.17)
hofir‘r !4'”(});,” = (f\' ':"d'r’)’ (3.13:’

,1',1'(‘,1',h ( ”|2\ + (1 —f(r.j.fn (Tee i ?)

y .
,(0'\(.?[ [a,a']jed, =2

o= BT AT RR T T
(3.19)
Sl = Yoo o Lol U=y ¢ 10 igllo),
(4] *“']U!r.--] t'fhutlﬂ,-}
(3.20)
¢ Lix 3 I {lrf:z
4\ ? 5 e ) e -_— - G.. -
ol |y = |a |2+ (1 =2n,) I Talf+ i, (TaTs"
(3.21)
These relations are readily derived from Eqs. (3.1),

(1.5}, (2.6), (2.18), and (3.12).
4. COMPLETENESS AND THE DIAGONAL

COHERENT STATE REPRESENTATION

In this scction we show that the para-Bose coherent
stales introduced in the last section form a complete
set, in fact an over-complete set.
coherent states

Analogous to ordinary
, we find the possibility of the diagonal'®
para-Bose coherent state representution,

Since @ is nol Hermitian, the colierent states are not
expecled to be orthoronal, From Eq. (3.12) we obtain
the following expression for the scalar product of two
coherent states:

(ley, —rera) a2 pf2 e, (4.1)

L)

We show below that these coherent states forim an over-
complete sel. For this purpeose we assume the ex-
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istence of some function ji{ev) such that

[ v Lt =1, (@.2)
where o =dxdy, x and y being the real and imaginary
parts of @ and the integration is performed over the
whole complex o plane. We substitule for in)hﬂ from
Eq. (3.12) and find that

7 T (k) Sk
22T (n/2]+ 1T ([(a + 1)/2] + k)

I (ho) higd
T {(Om/2]+ DT ((Gn +1)/2] + hy)

xﬁ_;’(icf Fe}}"fr st o )da {u),‘ohu{m [ =] (4.3)

From the orthogonality of the number states [Eq.
(2.19b)], we may write

ﬂ;un )}t amarn(e)d a

27T (/2] + T ({( +1) /2] + ho) i
T hy) P -

If we now use polar coordinates

a=rexp(it), dic=rdrdd, 4.5)

we may readily show that g cannot depend on ¢, and is
thus a function of la|? only. We then write

w(e) = u(|al?). (4.6)
Substituting +*
that

= 25T Pll"f[(ni-l}?]’h}
f ‘{,I(\']}",1"’#»:(.\‘):1’.\' = —— KL” lrI UJ """"""
0

= v, and integrating over ¢, we then {ind

(4.7)
Thus our problem of showing the completeness of the
para-Bose coherent states reduces to determining

#lx) whose moments arc given by {4.7). If we define a

funetion
iy = 3 L) (/2] + D0+ 1) 2]+ Ry}
My) zn e ) , (4.8)
we may write
J{,- { SN x) explivy) dx = M(y). i

The series on the right-hand side of {4,8) is an ub-
solutely convergent series for [yl <1 (and is divergent
for 1yl >1). For Iyl >, we define M{y) by analytic
countinuation, Assuming that M(y) thus defined is well
behaved such that we may take the inverse Fourier
transform of (4.9}, we obtain

nix)= 5= ‘fi!(v)akp—;n ) v,

We thus obtain the resolution of the identity operator

(4.10)

[ !ar}hu,”(affpl:julriz]d“n =iy 4.11)

where ple) is given by (4.10), thereby showing that the
paria-Bose coherent stales are complete,
(4.1) and {4.11) we may write

Using Iigs.
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1 Sle*Bullal?)

B, f [ o A ap7e |2 4% {4.12)
Equalion (4.12) show that these coherent states o facl
form an over complete set, On mulliplying (4.12) by
(y! on the left, we obtain the “self-reproducing”
property'? of f(x):

ﬁ‘(ln" ;M o

ald (4.13)

=f(y*B)

The possibility of the existence of the diagonal co-
herent state representation of an arbitrary operator
may also be considered. If we write

(h,‘;:lf ¢>[|’Y}in)"0hn<&!ﬁ[ a|?)dia (4.14)
we obtain using (3.12),
ama*"dla)nllal?)
f _m:_r!’?} o *or
= kocm G 1 "ai\‘o){r("‘u”'“1
20 ([n/ 2]+ 1) O([(n + 1)/ 2] + i)
x27 (/2] + 1) D{[tn + 1)/ 2]+ )P /2.
(4.15)

Equation (4.15) gives all the moments of ¢la)p(lal®)/
Al l®),

We close this section by observing that the properties
of the usual coherent states are reproduced if we set

by, = 5. In this case we Tind [rom (4.8) that
Miy) 1 : _1‘... ) (4.16)
i T 1=y

and if we Huhbl;lulu this expression in (4.10) we ob-
tain p{v) = 1,/%. This rives

1
- ﬁ”’\l /2 g2l

5 UNCERTAINTY RELATIONS

It is well known that for two Hermitian operators A
and B which satisfy the commutation relation

(4.17)

=1,

[A,B]:i(_:, (5.1)
the uncertainty relation
(AR (aB® = (O ]?

holds. Relation (5.2) is an equality if the state under
consideration is an eirenstate of A + i) h where A is
some real constant. If we identify A and B} with the
position and momentum variables ¢ and f of the para-
Bose operator, we find that

{ag®ap® = (da,pb %,

We may readily verily that relation (5.3) is an equality
for the para-Bose coherent states (being eigenstates of
the operator (7 +ip). From Eq. (1.5) we may write

(5.3)

G= QT )+ an, (5.4)

f: ;‘—{.r'_'v"-?.]-:]{r;-r?'). {5:5)
The commutator of ¢,/ is therefore given by

lq,pl=ila,a"l. (5.6)
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we also have

P+ L@+ @), (5.7)
o=t =@ am), (5.8)
so that
. e . i (5.9)
{(ag)H = Uy =y (a%y+ 3 {an)? +{(aa")}
and
(AP =y - (@Y - H{(aaR +{aa?).  (5.10)

For the coherent state |a), , ((4a)’) =0 and we then

find from Eqs. (3.20) that

ho Lyga{l @1 2) + (1 = ko)l (1 [ F)
1,0_.(1 NMEE: f,lu{mm

((2g)%) =((2p)P) = (5.11)

Comparing (5.11) with (3.19) and using (5. 6) we obtain
aaP apd =4 [a,pD]*. (5.12)

We thus {ind that for para-Bose coherent states, the
uncertainty relation (5.3) reduces to an equality. How-
ever, since [g,p} is in general not a ¢ number the
right-hand side of (5.12) itself depends on the given
slale, Hence the para-Bose coherent states are not the
mininmum uncertainty states in the absolute sense (ex-
cept for the case of ordinary oscillator, h, =} when
(4, 0] becomes a ¢ number). It is obvious thiat one may
find states for which the uncertainty product {{a5)%
*((AD)% is in fact less than ), which is the minlmum
value for the ordinary oscillator. For small values of
fal, we know that'!
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L(alD~Clal?r/T+1), (k#=1,-2,...)
and hence from (5. 11) we oblain

LA -~ (ap) ~h,

and
Lag))ap)?y ~ 2.

Thus for para-Bose operators with iy <%, we find that

the ground state (or the coherent state with ¢ =0)

gives the uncertainty product which is less than §.
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