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Abstract

Existence of a new type of oscillating synchronization that oscillates between three different
types of synchronizations (anticipatory, complete and lag synchronizations) is identified in unidi-
rectionally coupled nonlinear time-delay systems having two different time-delays, that is feedback
delay with a periodic delay time modulation and a constant coupling delay. Intermittent anticipa-
tory, intermittent lag and complete synchronizations are shown to exist in the same system with
identical delay time modulations in both the delays. The transition from anticipatory to complete
synchronization and from complete to lag synchronization as a function of coupling delay with
suitable stability condition is discussed. The intermittent anticipatory and lag synchronizations
are characterized by the minimum of similarity functions and the intermittent behavior is charac-
terized by a universal asymptotic —% power law distribution. It is also shown that the delay time
carved out of the trajectories of the time-delay system with periodic delay time modulation cannot
be estimated using conventional methods, thereby reducing the possibility of decoding the message

by phase space reconstruction.
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Synchronization of chaos is one of the most fundamental phenomena exhib-
ited by coupled chaotic oscillators. Recent studies on chaotic synchronization
has also focussed on nonlinear time-delay systems in view of their hyperchaotic
nature. Further, the concept of delay time modulation has been introduced in
order to understand dynamical systems with time dependent topology such as
internet, world wide web, population dynamics, neurology, etc. It has also been
shown that nonlinear delay systems with time dependent delay can exhibit more
complex dynamics. Consequently, studies on synchronization of such systems
with time dependent delay becomes very important in order to understand their
cooperative dynamics. From this point of view, in this paper we have considered
simple scalar piecewise linear time-delay systems with unidirectional time-delay
coupling in order to explore the various types of synchronized behaviours and
their transitions. The introduction of simple fully rectified sinusoidal modula-
tion in these systems with constant coupling delay can lead to the existence of
a new type of oscillating synchronization that oscillates between three different
types of synchronizations, namely complete, lag and anticipatory synchroniza-
tions. With delay time modulation in both the coupling and feedback delay,
the coupled system displays intermittent lag/anticipatory and complete syn-
chronizations for suitable ranges of values of the delay times and modulational
frequencies. It has also been shown that the decrease in the value of modula-
tional frequency leads to exact and then to lag/anticipatory synchronizations
from their intermittent nature. The existence of different synchronizations are
corroborated by suitable stability condition based on Krasovskii-Lyapunov the-
ory and their corresponding similarity functions. The intermittent regimes are

characterized by a universal asymptotic —% power law distribution.

I. INTRODUCTION

Chaos synchronization has been receiving a great deal of interest for more than two
decades in view of its potential applications in various fields of science |1, 2, 13, |4, I3, 6,
7]. Since the identification of chaotic synchronization, different kinds of synchronizations

have been proposed in interacting chaotic systems, which have all been identified both



theoretically and experimentally. Complete synchronization refers to a perfect locking of
chaotic trajectories so as to remain in step with each other in the course of time, X (t) =
Y (t) [L, 2,13, 4]. Generalized synchronization is defined as the presence of some functional
relationship between the states of the drive and the response, Y (t) = F(X(t)) [8, 19, [10].
Phase synchronization is characterized by entrainment of the phases of the two signals,
whereas their amplitudes remain uncorrelated [11, [12]. Lag synchronization implies that
there is an exact time shift between the evolution of drive and response systems, where the
response lags the state of the drive, Y (t) = X (t—7) [13,14,[15]. Anticipating synchronization
also appears as a coincidence of shifted-in-time states of the two systems, where the response
anticipates the state of drive, Y (t) = X (t 4+ 7) |16, [17, [18, 19, 120]. Recently intermittent lag
synchronization has also been identified [21, 22, 123]. Also it has been shown very recently
in a three-element network module of semiconductor laser system that dynamical relaying
can lead to zero-lag synchronization even in the presence of coupling delays [24].

The notion of time dependent delay (TDD) with stochastic or chaotic modulation in time-
delay systems was introduced by Kye et al [25] to understand the behaviour of dynamical
systems with time dependent topology. These authors have reported that in a time-delay
system with TDD, the reconstructed phase trajectory does not collapse to a simple manifold,
a property different from that of delayed systems with fixed delay time (which is considered
to be a serious drawback of the later type of systems). It has been shown very recently
that a distributed delay enriches the characteristic features of the delayed system over that
of the fixed delay systems [26]. Based on these considerations, current studies on chaotic
synchronization in time-delay systems are focused towards time-delay systems with time
dependent delay [27, 128, 29, [30]. In this connection it is also of considerable interest to
study the effect of simple modulations such as periodic modulation |29, 130] on the nature of
the chaotic attractor.

Recently, we have studied chaotic synchronization in a system of two unidirectionally cou-
pled odd piecewise linear time-delay systems [31] with two different constant delay times:
one in the coupling term and the other in the individual systems, namely, feedback delay. We
have shown that there is a transition from anticipatory to lag synchronization through com-
plete synchronization as a function of a system parameter with suitable stability criterion.
The present work was motivated by the fact that whether there arises any new phenomenon

due to the introduction of periodic delay time modulation in the coupled time-delay system



we have studied earlier and its effects on the various synchronization scenario. Interestingly,
we have found that even with simple periodic modulation, the time-delay system cannot be
collapsed into a simple manifold and that the delay time cannot be extracted using standard
methods. More interestingly, we have also found that the fully rectified sinusoidal modula-
tion of delay time introduces a new type of oscillating synchronization that oscillates between
anticipatory, complete and lag synchronizations for the case of constant coupling delay. This
is further corroborated by suitable stability condition based on Krasovskii-Lyapunov theory.
Intermittent anticipatory and lag synchronizations are also found to exist in the present
system for the case of identical modulation in both the coupling and feedback delay, for a
range of modulational frequencies. In addition, we also find that there exist regions of ex-
act anticipatory and lag synchronizations for lower values of modulational frequencies. The
results have been corroborated by the nature of similarity functions and the intermittent
behavior by the probability distribution of the laminar phase, satisfying universal —% power
law behavior of on-off intermittency [32, 133].

The plan of the paper is as follows. In Sec. II, we introduce the scalar piece-wise linear
time-delay system with delay time modulation and explore the dynamical change in the time
series of the time-delay system due to delay time modulation. In Sec. IIT we have introduced
a unidirectional time-delay coupling with delay time modulation between the two scalar
time-delay systems and we have identified the condition for stability of the synchronized
state following Krasovskii-Lyapunov theory. A new type of oscillating synchronization that
oscillates between anticipatory, complete and lag synchronizations and vice versa is shown to
exist in Sec. IV for the case of constant coupling delay and with modulated feedback delay.
In Sec. V, we have pointed out the existence of intermittent anticipatory synchronization
when the strength of the coupling delay is less than that of the feedback delay with identical
modulations, while in Sec. VI, complete synchronization is realized when the two delays are
equal. Intermittent lag synchronization is shown to set in when the coupling delay exceeds
the feedback delay in Sec. VII. In Sec. VIII we very briefly indicate the possibility of more
complicated oscillating synchronizations in the case of nonidentical modulations. Finally in

Sec. IX, we summarize our results.



II. PIECEWISE LINEAR TIME-DELAY SYSTEM WITH DELAY TIME MODU-
LATION AND DYNAMICAL CHANGES

At first, we will introduce the single scalar time-delay system with piecewise linearity
in the presence of delay time modulation, which has been studied in detail for its chaotic
dynamics in references [34, 135, 136] with constant time-delay. Then some measures to estimate
the delay time will be discussed both in the presence and in the absence of delay time
modulation to show that the imprints of the delay time carved out of the time series of the

chaotic attractor are completely wiped out by the modulation of delay time.

A. The scalar delay system

We consider the following first order delay differential equation introduced by Lu and

He [36] and discussed in detail by Thangavel et al. [34],
#(t) = —ax(t) +bf(x(t — 7)), (1)

where a and b are parameters, 7 is the constant time-delay and f is an odd piecewise linear

function defined as

0, x < —4/3
—152—2, —4/3 <z < 0.8
f(z) = z, —08<z<08 (2)
1542, 08<x<4/3
\ 0, x>4/3

Recently, we have reported [35] that system (II) exhibits hyperchaotic behavior for the pa-

rameter values a = 1.0,b = 1.2 and 7 = 25.0 and the hyperchaotic nature was confirmed by

the existence of multiple positive Lyapunov exponents (see Figures 1 and 2 in ref. [35]).
Now, we wish to replace the time-delay parameter 7 as a function of time for our present

study, instead of the constant time-delay, in the form [29, 130]
T(t) = 7o+ 7, |sin(wt)] , (3)

where 7 is the zero frequency component, 7, is the amplitude and w/7 is the frequency of the

modulation. Note that in the delay term, we have introduced the fully rectified sinusoidal



modulational form (absolute of the sine term) so as to keep the delay time positive even
for values of 7, > 75 so as to avoid acausality problem in Eq. (Il for negative values of 7
when 7, > 75. However, for values of 7y sufficiently greater than 7, the rectification in the

modulation (3]) is not required.

B. Estimation of the effect of delay time modulation

Recently, the concept of time dependent delay with stochastic or chaotic modulation
was introduced by Kye et al. [25] in the time-delay systems and they have shown in the
case of Mackey-Glass system that the delay time carved out of time series of the time-
delay system is undetectable by the conventional measures and hence any reconstruction of
phase space of the delayed system is hardly possible. This fact has motivated some authors
127, 128, 129, 130] to look for delay systems with delay time modulation as an ideal candidate
for secure communication.

Interestingly we find here that even with a fully rectified sinusoidal delay time modulation
of the form (B]), system (II) exhibits the properties studied by Kye et al with stochastic or
chaotic modulation. In order to demonstrate the effect of fully rectified sinusoidal delay
time modulation of the form (B]) on the time series of the piecewise linear time-delay system
which we have considered here, we will calculate (1) filling factor [37], (2) length of polygon
line [38] and (3) average mutual information [25, 139, 40] both in the presence and in the
absence of delay time modulation and show how periodic modulation removes any imprints

of the time-delay.

1. Filling factor

Now we will compute the filling factor [37] for the chaotic trajectory x(t) of the time-
delay system (Il) by projecting it onto the pseudospace (z,z;,4) with P3N equally sized
hypercubes, where the delayed time series x; = x(t — 7) is constructed from x(t) for various
values of 7. The filling factor is the number of hypercubes which are visited by the projected
trajectory, normalized to the total number of hypercubes, P3". Figure [[h shows the filling
factor for constant delay 79 = 10 when 7, = 0 in Eq. (3]), where one can identify the

existence of an underlying time-delay induced instability [37] which induces local minima



in the filling factor at 7 ~ nr, n = 1,2,3.... From the later, one can identify the value of
the time-delay parameter 7 of the system (Il) under consideration. Figure [Ib shows filling
factor with delay time modulation of the form (B with 7y = 10,7, = 90 and w = 0.0001,
where no local minima occurs. Figure [Tk is plotted for 7o = 100 and 7, = 0 to show that
the disappearance of local minima in Fig. [Ib is not due to large delays but only because of
delay time modulation. From the figures one can realize that the imprints of the delay time
embedded in the projected trajectory is completely ironed out due to the presence of delay

time modulation.

2. Length of polygon line

Next, to calculate the length of polygon line [38], the trajectory in (z,x;, &) space is re-
stricted to a two dimensional surface. The restriction in dimension is effected by intersecting
the projected trajectory with a surface k(x,z:, ) = 0. Consequently the number of times
the trajectory traverses the surface and the corresponding intersection points can be calcu-
lated. One then orders the points with respect to the values of x;, and a simple measure for
the alignment of the points is the length L of polygon line connecting all the ordered points.
Figure 2h shows length of polygon line L with constant delay 7y = 10, where the local min-
ima correspond to the delay time of the system we have considered. Figure 2b shows length
of polygon line L with delay time modulation where there is no remnance of information
about delay time from the trajectory, whereas Fig. 2k is plotted for 7 = 100, 7, = 0, to show
that the imprints of delay time carved out in the trajectory vanishes in Fig. Bb only due to

the delay time modulation and not because of large delay.

3. Awverage mutual information

As a final example, we will calculate average mutual information defined by (see for

example, (23,139, 40] and references therein)

I(7) = Z P(z(n),z(n+ 7)) x log,
z(n),x(n+7)

where P(xz(n),z(n + 7)) is the joint probability density for measurements in the chaotic

time series X = (z(1),x(2),...,x(m)) and in the constructed delay time series X; = (z(1 +



7),2(247),...,x(m + 7)) by varying 7, resulting in values z(n) and z(n + 7). P(x(n)) and
P(z(n + 7)) are the individual probability densities for the measurements of X and X;.
Figure [3] shows the average mutual information for the cases of constant delay time with
7o = 10 (Fig.Bh) and with delay time modulation (Fig.Bb). Figure[Bk is plotted for 7 = 100
to show that the absence of local peaks in Fig.[Bb is due to delay time modulation and not
because of large delay. For fixed delay time the average mutual information shows local
peaks at the time-delay 7 = 7y (or multiples of it 7 = n7y) of the system, whereas for the
case of delay time modulation the average mutual information has no such peaks to identify
the delay time of the delayed system.

One can also obtain similar results with other measures such as autocorrelation func-
tion, onestep prediction error and average fitting error |37, 138, 41, |42]. However, we are
not presenting these results here for convenience. In order to perform the phase space re-
construction, the first step is to find out the delay time for the projected trajectories. By
introducing the delay time modulation the imprints of delay time in the projected trajec-
tory is completely removed as seen above for the present system, inhibiting any possibility
of phase space reconstruction. This is essentially consequent of the fact that when the delay
time is modulated by the fully rectified sine term, the delay time effectively gets increased
in which case the number of positive Lyapunov exponent also increases (as noted in Fig. 2
in Ref. [35]. Consequently study of chaos synchronization in a system of such coupled delay

time modulated oscillators will be of considerable interest.

III. COUPLED SYSTEM AND THE STABILITY CONDITION IN THE PRES-
ENCE OF DELAY TIME MODULATION

Now let us consider the following unidirectionally coupled drive x;(t) and response x5 (t)
systems with two different modulated time-delays 71(t) and 7(t) as feedback and coupling

time-delays, respectively (hereafter we write 71 (t) and 75(¢) simply as 71 and 7 respectively),

Il(t) = —a:cl(t) + blf(l'l(t - Tl)), (5&)
To(t) = —axa(t) + baf (v2(t — 7)) + baf (21 (t — 72)), (5b)



where by, by and bg are constants, a > 0, and f(x) is of the same form as in Eq. (2] with

TI = Tio + Tia sin(wit)], (6a)

To = To0 + T2a \sin(u@t)\ y (6b)

where 79 and Ty are the zero frequency components of feedback delay and coupling delay,
T1o and 7o, are the amplitudes of the time dependent components of 7 and 75, respectively,
and wy /7 and wy /7 are the corresponding frequencies of their modulations.

Now we can deduce the stability condition for synchronization of the two time-delay
systems, Egs. (Bh) and ([Bb), in the presence of the delay coupling bs f(x1(t — 72)) with time
delay modulation in both the feedback delay and coupling delay. The time evolution of the
difference system with the state variable A = 1., , — o, where 1, _, = z1(t — (72 — 71)),

can be written for small values of A by using the evolution Eqgs. () as
A= —aA+ (by+bs— b)) f(z1(t — 7)) + bof (21t = T2))Ar, Ar=At—7). (7)

Then A = 0 corresponds to anticipatory synchronization when 7 < 71, identical or complete
synchronization for 7, = 7 and lag synchronization when 7 > 7. In order to study the
stability of the synchronization manifold as in the case of constant time delay case [31], we

choose the parametric condition,
by = by + b, (8)
so that the evolution equation for the difference system A becomes
A = —aA + byf'(1(t — 7)) Ay, 9)

The synchronization manifold is locally attracting if the origin of this equation is stable.
Following Krasovskii-Lyapunov functional approach [43, |44], we define a positive definite
Lyapunov functional of the form
1 0
V(t) = =A% + ,u/ A%(t + 6)db, (10)
2 -
where (1 is an arbitrary positive parameter, 1 > 0. Note that V() approaches zero as A — 0.
To estimate a sufficient condition for the stability of the solution A = 0, we require the
derivative of the functional V() along the trajectory of Eq. (Q),

% = —al? + bof' (21 (t — T2))AD, + p [A2 7]+ A — A2 ], (11)



to be negative. Note that in the case of constant modulation 7| = dstl vanishes. The above

equation can be rewritten as

where I' =[((a—p) /1) = (bo f' (21 (t—72)) /) X + X2 /(1 —7{)], X = A, /A. In order to show
that % < 0 for all A and A, and so for all X, it is sufficient to show that I',,;,, > 0. One
can easily check that the absolute minimum of I occurs at X = by f'(z1(t — 72))/2u(1 — 79)
with T =[4p(a — p)(1 — 71) — B3 f*(21(t — 72))] /4p*(1 — 7{). Consequently, we have the
condition for stability as

b3 f*(x1(t — 7))

a > =) +pu=d(p). (13)

Again ®(u) as a function of p for a given f/(x) has an absolute minimum at pu =
bof'(z1(t=T2)) ith @, . — |»ff(@lmn) q; &> P . — |kflEl-m)
( 9 /(1__7_1,) ) Wi min /—(1_7_1,) mece = min —(1—7—1’)

inequality (I3]), it turns out that the sufficient condition for asymptotic stability is

, from the

ba f' (x1(t —
a 2f (xl( 7-2)) (14)
(1—71)
along with the condition () on the parameters by, by and bs.
Now from the form of the piecewise linear function f(x) given by Eq. (2), we have,
1.5, 0.8 <|z1| < 3
|f (@1 (t = 72))| = ’ (15)
1.0, ‘1’1‘ < 0.8
Consequently the stability condition (I4]) becomes a > 1.5 ‘ \/(11’2_ S > ‘ \/(i”_ S along with

the parametric restriction by = by + bs.

Thus one can take a > by as a less stringent condition for to be valid, while
\ a g @

by

(1 =)

can be considered as the most general condition specified by (I4]) for asymptotic stability

a>1.5 (16)

of the synchronized state A = 0. The condition (I6]) indeed corresponds to the stability
condition for exact anticipatory/lag as well as exact complete synchronizations for a given

value of the coupling delay 7 in a global sense. It may be noted that the stability condition

10



(I6) is valid irrespective of the nature of the coupling delay, that is whether it is constant or
modulated. However, when the feed back delay 7 is constant the condition (@] reduces to
a > 1.5]bs| as discussed in ref. [31]. In the following, we will consider both the possibilities of
constant (19 = 7o) and periodically modulated (75 = 790+ 7o, [sin(wot)|) coupling delays with
a periodically modulated feedback delay (77 = 719 + 714 [sin(wit)]). We demonstrate through
detailed numerical analysis that there exists oscillating synchronization that oscillates be-
tween anticipatory, complete and lag synchronizations for the case of constant coupling delay
Ty = Teo. Intermittent anticipatory/lag and complete synchronizations are shown to exist
for the case of coupling delay with delay time modulation 75 = Tog + 7o, [sin(wot)|, when
Toa = Tiq and wy; = we. For 7, # 7, and w; # wy, more complicated oscillating type

synchronizations occur.

IV. OSCILLATING SYNCHRONIZATION

At first we consider the constant coupling delay, 7 = 7o, and show that there exists
oscillating synchronization that oscillates between anticipatory, complete and lag synchro-
nizations as a function of time for suitable range of parameters.

Now we will choose the delay time modulation in the form (Gh) for the feedback delay (=
T10 + T1a |sin(wit)]) with 79 = 10, 7, = 90 and w; = 10~%. We have fixed the value of 75, = 0
in ([@b), so that the coupling delay becomes constant 7, = 759 = 45 with the parameters
a=1,bp = 1.2 in Eq. (@) and the values of by and b3 are chosen according to the parametric
restriction () depending upon the stability condition to be satisfied. For the chosen values
of 19 and 79,, one can find that 7 oscillates between (71(t) = 719 + 714 |sin(wit)| = 10 +
90 |sin(w;t)|) the values 10 and 100. With the chosen value of constant coupling delay
79 = 45 and time dependent feedback delay 71, as time evolves one finds that the feedback
delay 7 (t) is lesser than the value of constant coupling delay 7 initially for some time (in
which case 7(t) = 7 — 7 (t) > 0, so that there exists lag synchronization z;(t — 7(t)) = x2(t)
with varying lag time 7(t) = 75 — 71(t)). As time evolves, 71(t) increases eventually and it
approaches 7 = 45 at a certain later time (7" = 7 /wy), where 7(t) = 7 — 71 () = 0, so
that x1(t) = x2(t) and a complete synchronization occurs at a specific value of time. As
71(t) increases further above the value of 7, = 45, the delay time 7(f) becomes negative,

T(t) = o — 7 (t) < 0 with x1(t —7(t)) = 22(¢)) and there exists anticipatory synchronization

11



with varying anticipating time 7(t) = 75 —71(¢). This anticipatory synchronization continues
till the value of time dependent feed back delay 71 () decreases to appraoch the value of the
constant coupling delay 7 = 10 after reaching its maximum value of 100. Therefore as time
evolves there is oscillation between lag, complete and anticipatory synchronizations with
time dependent anticipating and lag times.

Figure @b shows the evolution of the drive z(¢) and the response x5(t) at the transi-
tion between lag to anticipatory synchronization via complete synchronization for the value
of by = 0.1, where the general stability condition (I0]) is satisfied, whereas Fig. @b shows
the evolution of the drive x;(¢) and the response z5(t) at the next transition between an-
ticipatory to lag via complete synchronization. In Figs. Bh and [Bb, the difference signals
x1(t —7) —x2(t), 7 > 0 and z1(t — 7) — x2(t), 7 < 0 are plotted respectively for the value of
parameters satisfying the general stability condition corresponding to the Fig. M confirm-
ing the transition between lag to anticipatory synchronization. Thus as a consequence of
delay time modulation there exists a new type of oscillating synchronization that oscillates
between anticipatory, complete and lag synchronizations with varying anticipating and lag

times.

V. INTERMITTENT ANTICIPATORY SYNCHRONIZATION

Now we consider the coupled time-delay system (B]) with delay time modulation of the
form (@) in both the feedback and coupling delays for further studies. We have fixed the
values of the parameters as a = 1,b; = 1.2,7, = Ty = 90,w; = wy = 107° (identical
modulations) and the values of by and bs are chosen according to the parametric restriction
b1 = by +bs depending upon the stability condition to be satisfied. For 7, the zero frequency
component of amplitude is fixed as 79 = 10 and for 73, it is fixed as 799 = 5, so that a constant
difference is maintained between the feedback and the coupling time delays throughout the
time evolution. With the coupling delay 75(= 5+90 |sin(10~°¢)|) being less than the feedback
delay 71 (= 10 4 90 [sin(107°¢)]), that is 79(t) < 71(¢), the value of the anticipating time 7 =
Ty — 71 turns out to be negative such that the relation between drive z;(¢) and the response
x2(t) now becomes x1(t — 7) = x5(t), 7 < 0, demonstrating anticipatory synchronization,

provided the stability condition (I6]) is satisfied with the parametric restriction specified by

Eq. (8).
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Now let us choose the parameter by as the control parameter, whose value determines the

stability condition given by Eq. (I4).

1. For b, = 0.7, 1.5‘ bo > a > b2__| the less stringent condition is satisfied

with /1 — 7/ =~ 1 for the chosen values of w and 7,. One can observe intermittent

anticipatory synchronization as shown in Fig. [0, exhibiting typical features of on-off
intermittency [32, 33] with the off state near the laminar phase and the on state
showing a random burst. For this value of by the amplitude of the laminar phase

corresponding to the synchronized state is approximately zero (of the order 107°).

ba bo
\/l—'r{ \/l—'r{

isfied and correspondingly the numerical analysis reveals that here the intermittent

2. For b = 0.1, a > 1.5 >

, the general stability condition (I6]) is sat-

anticipatory synchronization is such that the amplitude of the laminar phases corre-
sponding to the synchronized state is exactly zero (in the sense that the difference
A =zy(t — 1) — 22(t),7 < 0 is of the order 107!6 in the laminar phases) as shown in

Fig. [0

To analyze the statistical features associated with the intermittent nature in Fig. [0 for
the value of by = 0.1, we have calculated the distribution of laminar phases A(t) with
the amplitude less than a threshold value A < 107! and we have observed a universal
asymptotic —% power law distribution as shown in Fig. 8 which is quite typical for on-off
intermittency [32, 133]. One can also find a similar power law distribution for the value of
by = 0.7 discussed above but now with a larger threshold value (A < 107*) of the laminar
region.

Now using the notion of similarity function introduced by Rosenblum et al. [11] to
characterize lag synchronization, one can also characterize anticipatory synchronization.
Similarity function for anticipatory synchronization is defined as the time-averaged difference
between the variables z; and xo (with mean values being subtracted) taken with the time
shift |7/,

([za(t +17]) — 22(1)])

[(=(0)) (3]

where, (z) means time average over the variable . If the minimum value of S,(7) reaches

Sa(r) =

(17)

zero, that is S,(7) = 0, then there exists a time shift |7| between the two signals z(¢) and

13



xo(t) such that x;(t + |7|) = 22(t), demonstrating the existence of anticipatory synchroniza-
tion between the drive x; and the response x5 signals. Figure [ shows the similarity function
S.(7) as a function of the difference between the feedback and the coupling delays, 7 = m,—7y
for three different values of by, the parameter whose value determines the stability condition

(I4). In Fig.[@, the Curve 3 is plotted for the value of by = 1.1, (1.5

b bo
\/1—7'{‘ = \/1—7'1’

where both the less stringent condition and the most general condition are violated. From

> a),

the curve 3 one can find that the minimum value of S,(7) is greater than zero for all values
of 7, resulting in the lack of exact time shift (anticipating time) between the drive and
the response signals. On the other hand the curve 2 corresponds to the value of by = 0.7
such that the less stringent condition is satisfied while the general stability criterion (I6])
is violated as seen above. Curve 2 shows that the minimum of similarity function S,(7) is
approximately zero (of the order 107*) for 7 < 0, as may be seen in the inset of Fig. [
indicating the existence of intermittent anticipatory synchronization with the amplitude of
the laminar phases of the difference signal A = z1(t —7) — 25(t), 7 < 0, being approximately
zero (< 107°). On the other hand, the curve 1 is plotted for by = 0.1, satisfying the general
stability criterion Eq. (6], which shows that the minimum of similarity function is much
closer to zero (of order 1078), 7 < 0, indicating that there exists an intermittent anticipatory
synchronization with the amplitude of the laminar phase of the difference signal becoming
exactly zero with the anticipating time equal to the difference between the two time delays
T =Ty — Ty

Next, by reducing the value of the modulational frequencies w = w; = wy further, we find
that the lengths of the laminar phases increase gradually with a corresponding decrease in the
number of turbulent phases. Finally at an appropriate value of the modulational frequency
all the turbulent phases disappear and there exists only exact anticipatory synchronization
without any intermittent bursts provided the exact stability condition is satisfied. Corre-
spondingly the similarity function S,(7) becomes zero exactly (which is of the order 10716)

for 7 < 0 in this case, as shown in [31].

VI. COMPLETE SYNCHRONIZATION

Complete synchronization follows the anticipatory synchronization when the value of the

coupling time-delay 7, equals the feedback time-delay 7y, that is 75 = 71, where the antici-

14



pating time becomes T = 7, — 13 = 0. Here also, the same stability criterion Eq. (I6]) holds
good with the same parametric restriction specified by (8). In this case of complete synchro-
nization (7 = 71), the delay time modulation does not induce any intermittent nature in
the dynamical behavior of the coupled systems for any value of the modulational frequency
(w1 = wo) as inferred from Eq. (6). Figure [[0a shows as an illustration the plot of z(t) vs
xo(t) for the values of by = 0.7 and w; = wy = 1072, such that the less stringent condition is
satisfied and the general stability criterion (I6) is violated. The plot shows small deviations
from the localized diagonal line implying an approximate synchronization, whereas Fig. [I0b
shows an entirely localized sharp diagonal line for the value of by = 0.1, where the general

stability condition (I0) is satisfied, indicating the complete synchronization.

VII. INTERMITTENT LAG SYNCHRONIZATION

When the value of the coupling delay 7 is increased above the value of the feedback delay
T1(m2 > 71), then the value of the retarded time 7 = 75 — 7 turns out to be positive such
that the relation between the drive x;(t) and the response z5(t) now becomes z1(t — 1) =
xo(t), 7 > 0, depicting the existence of lag synchronization, provided the general stability
condition ([I6) is satisfied along with the parametric condition ().

We have fixed the same values for all the parameters as in the case of intermittent
anticipatory synchronization except for the zero frequency component 75 of coupling delay
To which is fixed at 79 = 15. Figure [[1l shows the intermittent lag synchronization for the
value of by = 0.7, in which case only the less stringent stability condition is satisfied, where
the laminar phase has an amplitude which is nearly zero (of the order 107°). Figure
shows intermittent lag synchronization for the value of by = 0.1, where the amplitude of the
laminar phase vanishes exactly. In the later case the most general stability criterion (I6])
is satisfied. The statistical behavior associated with the intermittent nature in this case
of intermittent lag synchronization is also characterized by the probability distribution of
laminar phases having amplitude less than a threshold value A < 1071° corresponding to a
universal asymptotic —% power law distribution as shown in the Fig. [I3]

The figure shows the probability distribution A(¢) of intermittent lag synchronization
for the value of by = 0.1. One can also verify that the intermittent lag synchronization

for the value of by = 0.7 has also similar power law distribution for larger threshold value
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(A < 107*)of amplitude of the laminar phases.
The existence of intermittent lag synchronization is also characterized by a similarity

function S;(7) defined as

2oy (= Ir]) =z
S = RO

Figure [[4] shows the similarity function S;(7) for intermittent lag synchronization as a func-

(18)

tion of the retarded time 7 = 75 — 7. Curve 3 is plotted for the value of by = 1.1 (which is
greater than both ay/1 —7{ and ay/1 — 7{/1.5), where the minimum of similarity function
Si(T) occurs at a finite value of S;(7) > 0 and hence there is a lack of lag synchronization
between the drive and the response signals indicating asynchronization. Curve 2 corresponds
to the value of by = 0.7, (which is less than a+/1 — 7{ but greater than a/1 — 7]/1.5), where
the minimum of similarity function S;(7) is approximately zero (of the order of 1074, as may
be seen in the inset of Fig. [[4]) indicating the existence of intermittent lag synchronization
with the amplitude of the laminar phase being approximately zero. However, for the value of
by = 0.1, for which the general condition (I6) is obeyed, the minimum of similarity function
for Curve 1 becomes much closer to zero (of the order 107®) which corresponds to intermit-
tent lag synchronization with exact time shift between the two signals during the laminar
phase.

Next, as in the case of intermittent anticipatory synchronization, by reducing the value
of modulational frequency one can find that the lengths of the laminar phases increase with
vanishing turbulent phases and finally at an appropriate value of the modulational frequency
there exists exact lag synchronization without any intermittent bursts provided the exact
stability condition is satisfied. Correspondingly the similarity function S;(7) becomes zero

exactly (which is of the order 107'%) for 7 > 0 in this case.

VIII. COMPLEX OSCILLATING SYNCHRONIZATION

Finally, when 71, # 7y, or/and w; # wsy the frequencies as well as amplitudes of the
modulated feedback delay 71(t)(= 719 + 714 |sin(wit)|) and the modulated coupling delay
To(t) (= T2o + Taa [sin(wat)]) differ from each other resulting in a more complicated variation
of the anticipating/lag time 7(t) = 72(¢) — 71(¢). This in turn results in the existence of

more complex oscillating synchronization than the one presented in Sec. IV. It is clear that
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one can also introduce other kinds of modulations instead of periodic modulation to obtain

varying forms of oscillating synchronizations.

IX. SUMMARY AND CONCLUSIONS

In this paper, we have shown that there exists a new type of oscillating synchronization
that oscillates between anticipatory, complete and lag synchronization and vice versa for
the case of constant coupling delay with varying anticipating and lag times. We have also
shown that there exists regions of intermittent anticipatory synchronization, intermittent
lag synchronization and complete synchronization in the parameter space of w and 75 with
appropriate stability condition for the synchronized state in a system of two piecewise linear
time-delay systems with delay time modulation in both the feedback and coupling delay. For
a fixed value of w, we have shown that there is a transition from intermittent anticipatory to
intermittent lag synchronization through complete synchronization with the coupling delay
Ty as the only control parameter, while all the other parameters are kept fixed. We have
also found that on further reducing the value of w, one can observe transition towards ex-
act anticipatory/lag synchronizations from their intermittent behaviour. The signature of
the intermittent behavior in both the intermittent anticipatory and intermittent lag syn-
chronizations are characterized by probability distribution of laminar phases satisfying a
universal asymptotic —% power law distribution. The existence of intermittent anticipatory
and intermittent lag synchronizations are characterized by their corresponding similarity
functions.

Further, we have observed that in the region where the stringent stability condition ()
is satisfied, the minimum of the similarity functions S,(7) and S;(7) approaches very closely
zero for all values of 5 < 7 and 7 > 7, respectively. The range of zero values corresponding
to the minimum of similarity functions S,(7) and S;(7) shows the existence of anticipatory
and lag synchronizations for the values of coupling delay 7 below and above the feedback
delay 11, respectively. We have also shown that the estimation of the delay time carved out
of the time series of the delayed system even with delay time modulations of fully rectified
sinusoidal type is very difficult by conventional methods in the present system for suitable
choice of the parameters (in contrast to the chaotic or stochastic delay time modulation as

studied by Kye et al [25] in Mackey-Glass delay system) and so the messages encoded in such
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systems can be expected to be less amenable for extraction by phase space reconstruction.
We have also confirmed numerically that the phenomena reported in this paper occur in
other time-delay systems such as Mackey-Glass and Ikeda systems also to corroborate the
generic nature of the results. Also the model system discussed in the present manuscript
is amenable for experimental realization in terms of suitable nonlinear electronic circuits in
view of its piecewise linear nature and we are pursuing the experimental verification of it.
It is hoped that the study of such modulated systems will lead to a better understanding
of the dynamics of systems with time dependent topologies such as neural networks, world

wide web, etc.
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Figure captions

1. Filling factor as a function of delay time 7 (of delayed time series z:). (a) with
constant delay 79 = 10 when 7, = 0, (b) with delay time modulation of the form ({3])
with 79 = 10,7, = 90 and w = 10~* and (c¢) with large constant delay 7o = 100(7, = 0).

2. Length of polygon line as a function of delay time 7 (of delayed time series z;). (a) with
constant delay 79 = 10(7, = 0), (b) with delay time modulation of the form (3] with

the same parameters as in Fig. [[land (c) with large constant delay 7 = 100(7, = 0).

3. Average mutual information as a function of delay time 7 (of delayed time series
xz). (a) with constant delay 7o = 10,7, = 0, (b) with delay time modulation of the
form (B]) with the same parameters as in Fig. [I] and (c¢) with large constant delay

70 = 100, 7, = 0.

4. Oscillating synchronization for the constant coupling delay m = 45 with time depen-
dent feedback delay of the form (k) with 79 = 10,7, = 90 and w = 1074 (a)
Oscillating from lag to anticipatory synchronization via complete synchronization in
the region ¢ € (3970,4020) and (b) Oscillating from anticipatory to lag synchronization
at the next transition in the region t € (27400, 27450).

5. (a) Difference between z1(t — 7),7 > 0 and xz5(t), showing lag synchronization for
certain time and (b) difference between x;(t—7), 7 < 0 and x5(t), showing anticipatory
synchronization for the following period of time for by = 0.1 satisfying the general
stability condition (I6]). Note that complete synchronization occurs in the transition

regime.

6. The time series x1(t — 7) — x5(t), 7 < 0, for by = 0.7 and b3 = 0.5 (so that the less
stringent condition a > |by/+/1 — 71| is satisfied while (€] is violated) corresponding
to intermittent anticipatory synchronization with the amplitude of the laminar phase

approximately zero.

7. The time series x1(t — 7) — x2(t),7 < 0, for by = 0.1 and b3 = 1.1. Here the general
stability criterion (@) is satisfied corresponding to intermittent anticipatory synchro-

nization with the amplitude of the laminar phase exactly zero.
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10.

11.

12.

13.

14.

The statistical distribution of laminar phase satisfying —% power law scaling for by =

0.1 and b3 = 1.1, where the general stability criterion (I6) is satisfied.

Similarity function for intermittent anticipatory synchronization S,(7) for different
values of by, the other system parameters are a = 1.0,0; = 1.2 and w = 107°. (Curve 1:

by = 0.1,b3 = 1.1, Curve 2: by = 0.7,b3 = 0.5 and Curve 3: by = 1.1,b3 = 0.1).

Complete synchronization between x(t) vs xo(t) when 7y = 9. (a)Approximate

complete synchronization for by = 0.7 and (b) Exact complete synchronization for

bg == 01

The time series x;(t — 7) — xa(t), 7 > 0, for by = 0.7 and b3 = 0.5 (so that the less
stringent condition a > |by/+/1 — 7| is satisfied while (@) is violated) corresponding
to intermittent lag synchronization with the amplitude of the laminar phase approxi-

mately zero.

The time series z1(t — 7) — x2(t), 7 > 0, for by = 0.1 and b3 = 1.1. Here the general
stability criterion (@) is satisfied corresponding to intermittent lag synchronization

with the amplitude of the laminar phase exactly zero.

The statistical distribution of laminar phase satisfying —% power law scaling for by =

0.1 and b3 = 1.1, where the general stability criterion (I6) is satisfied.

Similarity function for intermittent lag synchronization Sj(7) for different values of
by, the other system parameters are a = 1.0, = 1.2 and w = 107°. (Curve 1:

by =0.1,b3 = 1.1, Curve 2: by = 0.7,b3 = 0.5 and Curve 3: by = 1.1,b3 = 1.0).
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