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Abstract: A review is presented of the early developments in quantum optical coherence.
Some properties of the coherent states particularly their over completeness which led to the
discovery of diagonal coherent state representation by Sudarshan will be discussed. We then
consider some of the important applications of this diagonal coherent state representation.

Classical theory of optical coherence was developed by E. Wolf" by considering optical field as part
of a stochastic process. Coherence functions were essentially correlations between field components at
different space time points. The second order coherence function may thus be written as

L(ry.ry®) = (V' (0.0 (r, +0)) (1a)
(), = [ordvha{v}, (1b)

where V(r,t) is the analytic signal associated with the electromagnetic field component at the point r

and at time t. The averages <()> , are the stochastic averages over the given ensemble. Near about

the same time L. Mandel® studied photo-electron counting statistics and derived the counting formula

as a Poisson transform of the integrated light intensity distribution

w"

P(n,T) = fP(W)—'e aw, (2a)
n!

T
W = {I(t) dr . (2b)

Most features of the photo-counting distribution were well understood by Mandel’s formula.
Several effects known at that time such as propagation of coherence, Brown-Twiss experiments on
bunching of photons and others had been adequately explained by classical approach to light
fluctuations. With the advent of lasers, a need arose for the quantum description of electromagnetic
fields associated with arbitrary light beams. For an optical field described by a density operator p one
then considers the analogous quantum coherence functions:
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L(ry.r,.0) = (EC (0 D EC (0 +7)), 3
with <()>q =Tr[p(...)] and E” and E® being the creation and annihilation parts of the field
operator E. If we take up the usual quantization of electromagnetic field and, for simplicity, restrict

ourselves to one mode case only, we can use the harmonic oscillator number states to describe such
fields. These states are the eigenstates of the number operator a*a :

a+a|n>=n|n>. 4)
The number operator being hermitian, the states |n> are orthogonal

(m|n)=4,, 5)

and form a complete set
N |n)(n[ =1, (6)
so that an arbitrary state |l/}> can be expressed in the form

w)=Yw,

with uniquely determined v, given by

n) 7

W, =(nlw) ®)
Glauber? realized the importance of using eigenstates of the annihilation operator
a|z>=z|z>, &)

|2) = o1 E%W (10)

as the basis states in place of the number states. These so called coherent states are in fact the
minimum uncertainty product states first introduced by Schroedinger®. Since a is not a hermitian
operator, its eigenvalues are in general complex numbers z = x + iy = r " and the eigenstates are not
orthogonal

<z'|z>=0 forz=z". (11)

However they form a complete set,
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1 2,
—fla)zld 21, (12)

where d’z = dx dy = r dr dO denotes integration over the complex z plain. An arbitrary state |1p>

may therefore be expressed linearly in terms of |Z> :

W) =[w(2)|z)d"z (13)

with P (z) = (1/ ﬂ)<z|lp> Further since the states |Z> are not linearly independent, the function

Y (z) is not unique. This assertion is readily verifiable from the obvious relation such as
fz|z>d22=0. (14)
Coherent states may also be used to express operators in the form [cf. Eq.(3) of ref. 3]

0 =fF(Z,Z')|Z><Z’|d22d22' (15)

and the function F(z,z’) is doubly “non-unique”. It was noted by Sudarshan® that these coherent

states are not only complete but are in fact over complete. Sudarshan for the first time made use of this
over completeness property and realized the possibility of a diagonal coherent state representation

p=f¢(z)|z><z|d22. (16)

The generalized function ¢(z) in this expression is then unique. Thus for example the density operator
p in the number representation

P= P

will have the diagonal coherent state representation ¢(z), with z =r e*, given by [cf. Eq. (6) of ref. 5],

n><n'| (17)

[ 1,1 / . n+n'
¢(Z) - 2 mn:p,, e’ +i(n —n)b'(_i) 6(7‘) ‘ (18)

(n+n") 2mr or

This diagonal coherent state representation of the density matrix had far reaching applications. The
expectation value of any normally ordered operator a™ a¥ in the statistical state represented by this
density operator takes on the form

<a+“ av>=fz*‘“ 2" p(z)d’z. (19)
This is the same as the expectation value of the complex classical function z*" z" in a statistical state
described by the probability distribution function ¢(z). This property therefore enables the various
coherence functions to appear in a similar way as in the Wolf- Mandel formulation. Eq. (16) may also
be used to express p,, in terms of ¢(z) and in particular we obtain for p,, the expression
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|z

2n
Po = (nlpIn) = fo(2)e™ = d’z. 20)

Interpreting |Z|2as the intensity W of the field, Eq. (20) reproduces Mandel’s Poisson transform
relation Eq. (2a).

Sudarshan also noted that the hermiticity of p implies that the distribution ¢(z) is real. However the
positivity of p does not imply positivity of ¢ and therefore brings out a clear distinction between
classical and quantum ensembles. It may be emphasized that for all fields, the diagonal coherent state
representation is formally as if it was a classical ensemble, but with the understanding that the
ensemble probability distributions could be non-positive. With this non-positivity of the diagonal
coherent state representation in general, one can deduce specific quantum effects such as anti-

bunching, squeezing etc. Glauber’s off-diagonal representation of p in terms of |Z> <Z'| as in Eq. (15)

can in no way lead to this similarity or difference between the classical and quantum descriptions.

It is to be noted that ¢(z) is unique, though there may be different equivalent forms for ¢(z).
Sudarshan’s original expression for ¢(z) as in Eq.(18) contains derivatives of delta function and as
such appears to be singular. In a subsequent publication Mehta and Sudarshan® discussed the
characteristic function approach to the diagonal coherent state representation, which gives a well
defined and rigorous meaning to ¢(z) as a generalized distribution. Consider the three characteristic
functions defined as:

Xy = (e )= [gu(e e 21a)
X () = <e‘“*”e““+>=f¢A (2)e“ e d’z; (21b)
X, (a)=<e““+'a*“> =f¢W(z)eaz*e‘“*zdzz. (21c)

Hear ¢n(z), dA(z) and ¢y (z) are the phase space distribution functions for the normal, anti-normal and
Weyl’s ordering rules respectively. The distribution ¢y(z) is essentially the diagonal coherent state
representation ¢(z), whereas §,(z), is given by

9.(2)=(1/m)(z|p|z). (22)
_ % foe " atz, (23)
It may be readily seen that the characteristic functions Xy, X, and Xy, are related as follows:
X (@) = X, (@)= X (a). 24)
Since ¢,(z) is well behaved bounded positive real function, its Fourier transform X, is also well

behaved and bounded function. We thus find that ¢(z) is the Fourier transform of

Xy(a) = el x 4,(a), and consequently it can be regarded as the limit of a sequence of tempered
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distributions®. In this sense it is a well defined generalized function. It is of interest to mention an
alternate expression for ¢(z). One readily obtains from Eq. (16) the relation

l? _ 2 e d?
<—a|p|a>e —f(/)(z)exp(—|z| -a z+oz )d’z, (25)
which on taking the inverse Fourier transform gives’

2

P(2) f<—a o] oc>exp(|oc|2 +a’ z-az¥)d’a. (26)
This form of ¢(z) is particularly useful to obtain a well behaved (but equivalent) expression for it

whenever possible. As an illustration, consider the pure coherent state | p > for which the density

operator is given by p =|ﬁ></3’| Making use of Eq. (26) we readily obtain the expression

¢(z)=0(z - P) for the diagonal coherent state representation for this density operator. It is possible
to write a similar expression for the phase space distribution function ¢y(z) using coherent states®:

2 exp(2|z|2)
=

@, (2) f(—a|p|a>exp[2(a*z —az)]d’a (27)

We observed that coherent states form an over complete set of basis states. It is possible that even a
subset of coherent states may suffice to form a complete set. We illustrate this property by observing

that the number state |n> may be written in a form’

Jnle 2

[m =" ﬂe”’>e"”0d6. (28)
0

This completeness property may also be expressed in terms of the resolution of the identity

%(a*a)!zﬁemxem ‘d9=1. (29)

Relations (28) and (29) clearly demonstrates that even a very restricted sub-set of the coherent states,
namely, those on the unit circle (z = ") alone form a complete set. This set is in fact just complete and

no more over complete. An arbitrary coherent state |Z> may uniquely be expressed in terms of this

sub-set as

i0'
|2) = £e'izzfﬁde'. (30)

27 1—ze™

It is believed that the set of coherent states on any closed path in a complex plane would form a
complete set.

It is felt necessary to comment on the Glauber’s work on the so called ‘P representation’.
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In a later publication'® Glauber discusses in much detail the representation of the density operator in
terms of coherent states. In section 6 of this paper he develops the representation given by [cf. Eq. (15)
above]

p=fN(a,a')|a><a'|d2ad2a'. (31)

In section 7, he points out that not all fields require for their description density operators of quite so
general a form. He mentions of a ‘broad class of radiation fields’ for which it becomes possible to
‘reduce’ the density operator to a considerably simpler form which he calls the P representation [Eq.
(7.6) of ref. 10]:

0 =fP(a)|a><a|d2a. (32)

If a density operator is specified by means of the P representation, its matrix elements connecting the
n-quantum states are given by [Eq. (7.12) of ref. 10]

<n|p|m >=(n!m!)-“2fp(a)a"(a*)me““‘zdza. (33)

However he never gives any method of inverting Eq. (32) even for such special fields which permit
his P representation, nor does he mention any way of ‘reducing’ his (o,a’) representation given by Eq.
(31) to that of the ‘P representation’. It is thus clear from his discussion that he acknowledges the
usefulness of his P representation, but fails to derive an explicit expression for it for any given density
matrix. Yet in a discussion of Eq. (32), Glauber states: “In general, however, it is not possible to
interpret the function P(at) as a probability distribution in any precise way since the projection

operators |O£><O£| with which it is associated are not orthogonal to one another for different values of

a.” He thus contradicts himself about the usefulness of P(a) even for cases when it is a well behaved
positive definite function.

I wish to emphasize that in ref. 10, Glauber discusses the inversion of his expression [Eq. (5.6) of ref.
10], viz.,

- fla)S@ B Blexpi-Slaf - J[pf 1 dadp o0
to [Eq. (5.7) of ref. 10]
Nat,B) = {a|T|B)exp ol +- |6l ). G5)
but he never discusses the inversion of his P representation [Eq. (7.6) of ref. 10]

p=fP(a)|a><a|d2a, (36)

even for the simple case of a pure coherent state. He never derives this expression. There is hardly any
justification to say that in special cases his representation (31) ‘reduces’ to the P representation (36),
nor is there any reason whatsoever to dignify it as a ‘representation’ at all. The only source from

6



Sudarshan: Seven Science Quests IOP Publishing
Journal of Physics: Conference Series 196 (2009) 012014 doi:10.1088/1742-6596/196/1/012014

which Glauber gets his so called ‘P-representation’ is Sudarshan’s published work which he copies,
changing ¢ to P and z to a. Despite this, his confusion about the representation is clearly evident
between sections 6 and 7 of his Phys. Rev. paper (ref. 10). It is thus incontrovertible that the credit for
formulating and discovering the diagonal coherent state representation must go to Sudarshan. It is
truly ironic that although these facts are readily accessible, an expression which ought to be called
‘Sudarshan’s diagonal coherent state representation’ is dubbed ‘Glauber’s P representation’. Nor is
it correct even as compromise move , to call it the ‘Glauber-Sudarshan representation’

Sudarshan’s application of the over completeness of coherent states led to a unique expression for
¢(z), the diagonal coherent state representation of the density operator. As such his work is the first
and the only formulation of quantum coherence theory.

I will next give a couple of specific examples where the diagonal coherent state representation takes
on negative values for some complex z and such a situation corresponds to a true quantum feature of

the radiation field. From the Mandel’s Poisson transform relation [Eqgs. (2a) and (20)] one readily
obtains the relation between the fluctuations of number of photons and that of the integrated intensity:

(An?)=(n)+(AW2); (37a)
(n) +<A(|z|2)2> . (37b)

It is evident that for positive ¢(z) the second term on the right hand side of Eq.(37) is positive and we
expect bunching of photons [<An2> 2<n>] for such fields. This for example is the case for blackbody

radiation for which <An2> =<n> + <n>2 . On the other hand if ¢(z) was negative for some values of z,
we may expect the second term on the right hand side of Eq. (37) to be negative. In such cases there
will be anti-bunching of photons [<An2> s<n>] and that is a true quantum feature. Such is a case for

the number state where there are fixed number of photons and hence <An”> is zero. The second term
on the right hand side of (37) is -<n>. Of course a negative ¢(z) for some values of z will not always
lead to anti-bunching of photons, but in such a case one should expect other quantum features
associated with higher order correlations. A squeezed state (such as the squeezed vacuum) is another
example of negative ¢(z) and hence the case of a state having no classical analogue.

Finally T will consider briefly the relationship between operator ordering and coherent state
representations. Very often one is interested in writing a given operator in a well-ordered form such as
a normal, anti-normal or Weyl (completely symmetric) ordered form. Such ordering plays an
important role in phase space representation of quantum mechanics, quantum c-number
correspondence etc. In this context we note the following relations which may readily be verified. If
:fu(a,a®): is the normally ordered form of F(a,a*) then

(z1F(a.a")12)) = f,(2.2) (38)

Similarly if “f, (a,a™)” is the anti-normal ordered form of F(a,a"), then

F(a,a+)=%ffA(z,z*) z><z|dzz. (39)
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These relations may effectively be used for operator ordering. As an illustration, let us assume that we

want to write exp(—Aa”a) in a normally ordered form. We note that

<z| exp(—)wfa)| z> = E <z | exp(-Aa*a) | n> <n | z>
- Ee"‘”‘<z| n>‘2 = exp(—|z|2 +|z|2e‘A) . (40)

n

Hence on making use of Eq. (38) we obtain the required normal ordered form:

exp(-Aa*a)=:exp[-a*ta(l-e™)]:
=E—Hl =N ryrar, @1)
n!

Alternatively if we know the anti-normal ordered form of exp(-Aa*a), viz.,

exp(-Aa*a)="exp[-a*a(e™* -1)]"
=EW—_WG"(G+)"’ (42)

n!

we may immediately write down, using Eq. (39), the diagonal coherent state representation for this
operator:

exp(-Aa*a)= %fexp[—|z|2 (e =D]|z){(z|d’z. (43)

One may use these techniques to obtain desired ordered forms of other operators in general.
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