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Estimation of System Parameters in Discrete Dynamical Systems from Time Series
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We propose a simple method to estimate the parameters involved in discrete dynamical systems
from time series. The method is based on the concept of controlling chaos by constant feedback.
The major advantages of the method are that it needs a minimal number of time series data and is
applicable to dynamical systems of any dimension. The method also works extremely well even in
the presence of noise in the time series. The method is specifically illustrated by means of logistic
and Henon maps.

PACS numbers: 05.45.-a,47.52.+j

In recent years, studies on chaotic dynamical systems
have become extremely relevant from a physical point of
view due to their potential applications in secure com-
munication [1-5], cryptography [6], and so on. Also,
much attention has been given to time series analysis
since many physical, chemical, and biological systems
exhibit chaotic motion in nature. The main objectives
of time series analysis are to identify the structure of the
equations which govern the temporal evolution of the dy-
namical system, the number of independent variables in-
volved, and parameters which control the dynamics of
the system [7]. Several methods have been developed
for modeling the dynamical systems by different authors
[8, 9, 10, 11, 12, 13]. A number of methods have also been
proposed for estimating the system parameters based
on the concept of synchronization [14, 15, 16, 17, 18],
Bayesian approach [19, 20] and least squares approach
[21]. In this Letter, a very simple and practical method
for estimating the system (control) parameters of discrete
dynamical systems from the time series is developed us-
ing the concept of controlling chaos [22, 23, 24, 25]. This
method is applicable to time series obtained from a dis-
crete system of any dimensions and can be extended to
continuous systems also without much difficulty. The
method can also be used for the time series which con-
tains considerable amount of noise as well as with scalar
time series. Further this method can be used in the field
of controlling chaos to find the exact values of controlling
constants (κi).

Consider an arbitrary N -dimensional discrete chaotic
dynamical system (the original map),

x
(n+1)
i = fi(x

(n)
1 , x

(n)
2 , ..., x

(n)
N ;p), (1)

where i = 1, 2, 3, ...N , p denotes the system parameters
of dimension M to be determined and the discrete index
n stands for denoting the iterations. We also assume that
the function f is sufficiently smooth. Let us construct a
modified discrete dynamical system (the modified map)
as

y
(n+1)
i = fi(y

(n)
1 , y

(n)
2 , ..., y

(n)
N ;p) + κi, (2)

where κi’s are constants. The crucial idea in the con-
struction of the modified map is that the addition of con-
stants κi in Eq. (1) will not affect the Jacobian of the
original map, but it can change the original map with-
out affecting the parameters (p) into a modified map
exhibiting a different stable fixed point solution (other
than the unstable fixed point of the original map). Also
it is always possible to construct such a modified map
by finding a suitable set of contants (κi’s) which makes
the modified map to exhibit a stable period one fixed
point even for the parameters for which the original map
evolves chaotically.

Now let us start the evolution of the original and
modified systems from a common set of initial states

(i.e., x
(0)
i = y

(0)
i ). After one time interval, the dynam-

ics of the modified system can be represented as

y
(1)
i = fi(y

(0)
1 , y

(0)
2 , ..., y

(0)
N ;p) + κi (3)

and the dynamical variables of the original and modified
systems can be related as

y
(1)
i = x

(1)
i + c

(1)
i , (4)

where c
(1)
i = κi. After the second interval of discrete

time, the dynamics of the modified system can expressed
as

y
(2)
i = fi(x

(1)
1 + c

(1)
1 , x

(1)
2 + c

(1)
2 , ..., x

(1)
N + c

(1)
N ;p) + κi (5)

and, after Taylor expansion, the relation between the
variable of the original and modified systems becomes

y
(2)
i = x

(2)
i + c

(2)
i , (6a)

where

c
(2)
i = κi +

N
∑

j=1

c
(1)
j

∂fi

∂xj

∣

∣

∣

x
(1)

+
1

2!

N
∑

j=1

N
∑

k=1

c
(1)
j c

(1)
k

∂2fi

∂xj∂xk

∣

∣

∣

x
(1)

+ · · · (6b)
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and x is the vector of dimension N . Proceeding further,
the entire time evolution of the modified system can be
obtained from the original system by the relation

y
(n)
i = x

(n)
i + c

(n)
i , n = 0, 1, 2, ... (7a)

where

c
(n)
i = κi +

N
∑

j=1

c
(n−1)
j

∂fi

∂xj

∣

∣

∣

x
(n−1)

+
1

2!

N
∑

j=1

N
∑

k=1

c
(n−1)
j c

(n−1)
k

∂2fi

∂xj∂xk

∣

∣

∣

x
(n−1)

+ · · · (7b)

and c
(0)
i = 0 by our initial assumption y

(0)
i = x

(0)
i .

Next, let z
(0)
i , z

(1)
i , ..., z

(m−1)
i be the m data set points

of the given chaotic time series obtained for the original
map. Then the trajectory of the modified map (which
is constructed by adding a set of constants κi with the
original map) can be obtained from the above time series
by the relation

y
(n)
i = z

(n)
i + c

(n)
i , (8a)

where

c
(n)
i = κi +

N
∑

j=1

c
(n−1)
j

∂fi

∂xj

∣

∣

∣

z
(n−1)

+
1

2!

N
∑

j=1

N
∑

k=1

c
(n−1)
j c

(n−1)
k

∂2fi

∂xj∂xk

∣

∣

∣

z
(n−1)

+ · · · (8b)

and z is a vector of dimension N . If the original system
is one dimensional, then

c(n) = κ + c(n−1) df

dx

∣

∣

∣

z(n−1)
+

1

2
(c(n−1))2

d2f

d2x

∣

∣

∣

z(n−1)
+ · · ·

(9)
Let y∗

i be the period one fixed point of the modified map
obtained by Eq. (8) for the given time series data. Then
the nth and (n + 1)th iterations of the map can be ex-
pressed as

z
(n)
i + c

(n)
i = y∗

i and (10)

z
(n+1)
i + c

(n+1)
i = y∗

i (11)

and by subtracting Eq. (10) from Eq. (11), we get

c
(n+1)
i − c

(n)
i = z

(n)
i − z

(n+1)
i . (12a)

Similarly,

c
(n+2)
i − c

(n)
i = z

(n)
i − z

(n+2)
i , (12b)

where c
(n+2)
i , c

(n+1)
i and c

(n)
i are functions of κi and p.

Thus, we have obtained 2N nonlinear simultaneous alge-
braic equations for (M + N) unknowns (N κi’s and M

TABLE I: Convergence of r and κ in the logistic map

Itera- Using exact time series Using noisy time series

tions r κ r κ

0 10.00000000 -0.50000000 10.00000000 -0.50000000

1 8.99885997 -0.48521330 8.99885540 -0.48552646

2 7.99761227 -0.48347134 7.99760776 -0.48374876

3 6.99636547 -0.48126778 6.99636104 -0.48151029

4 5.99512049 -0.47835604 5.99511616 -0.47856279

5 4.99387963 -0.47426330 4.99387546 -0.47443116

6 3.99265086 -0.46786433 3.99264699 -0.46798613

7 3.69848466 -0.46349089 3.70025299 -0.46361426

8 3.67047439 -0.46283146 3.67212276 -0.46295672

9 3.67000000 -0.46282092 3.67164967 -0.46294621

10 3.67000000 -0.46282092 3.67164967 -0.46294621

p’s), and solving them we can obtain the values of the un-
knowns p and κi, provided the solution exists. After esti-
mating the unknown parameters, one can also check the
accuracy of the estimated parameters as follows. Iterate
the Eq. (8a) with estimated values of the parameters in
Eq. (8b) till a fixed point solution (y∗

i ) is obtained. Then
compare the fixed point (y∗

i ) obtained by the above iter-
ation using the time series of the original map with the
fixed point calculated by Eq. (2) at the estimated param-
eters. The degree of closeness of these fixed points gives
a measure of the accuracy in the estimated parameters.

As an example to our method in one dimension, con-
sider the well known logistic map

x(n+1) = rx(n)(1 − x(n)), 0 ≤ x ≤ 1, 0 ≤ r ≤ 4 (13)

where r is the unknown system (control) parameter.
Then the modified logistic map can be constructed as

y(n+1) = ry(n)(1 − y(n)) + κ, (14)

where κ is a constant to be determined which makes the
modified logistic map to exhibit period one fixed point so-
lution for the parameter where the original map exhibits
chaotic solution.

Let z(0), z(1), z(2),...,z(m−1) be the time series data ob-
tained from the logistic map at some arbitrary time in-
terval for a unknown system parameter (r). Assume z(0)

be the common initial state for both the original and
modified logistic maps (i.e. x(0) = y(0) = z(0)) and so
c(0) = 0 by Eq. (8a). Then after substituting three data
points z(1), z(2) and z(3) (one can take any three succes-
sive data) of the time series and the values of c(1), c(2)

and c(3) calculated by making use of the Eq. (9) into the
Eq. (12), we get

κr(1 − κ − 2z(1)) = z(1)
− z(2), (15a)

κr(1 − 2z(2))[1 + r(1 − κ − 2z(1))]

−κ2r[1 + r(1 − κ − 2z(1))]2 = z(1)
− z(3). (15b)
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The values of κ and the unknown parameter (r) can be
estimated by solving the above two nonlinear simulta-
neous algebraic equations with an initial guess of κ and
r. For illustration purpose, we have used the numeri-
cally generated time series of the logistic map for the
system parameter r = 3.67 and solved the eqns. (15) by
globlally convergent Newton’s method [26] with an ini-
tial guess −0.5 to κ and 10.0 to the parameter r. The
convergences of the system parameter r and κ are shown

in the Table I and it shows that the estimated value r is
3.67 which is the exact value of parameter at which the
time series data of the logistic map is generated.

In order to test the robustness of the method, a noisy
time series generated by considering that the system itself
produces some error in the data in each iteration was also
used in the above illustration. In our analysis a noise of
strength 10−2 is added with the eqution of the system

TABLE II: Convergence of α, β, κ1 and κ2 in the Henon map

Itera- Using exact time series Using noisy time series

tions α β κ1 κ2 α β κ1 κ2

0 2.50000000 1.50000000 -0.10000000 0.00000000 2.50000000 1.50000000 -0.10000000 0.00000000

1 2.25643981 1.18700678 -0.11800073 -0.04888403 2.25664011 1.18682541 -0.11787076 -0.04876757

2 1.99627422 0.88915339 -0.14682621 -0.10147980 1.99662943 0.88880258 -0.14654089 -0.10125436

3 1.72472420 0.60769535 -0.19746953 -0.16839182 1.72522662 0.60715419 -0.19696823 -0.16812574

4 1.44784495 0.35719041 -0.30159310 -0.26710065 1.44850317 0.35640699 -0.30072823 -0.26703903

5 1.32207233 0.28601093 -0.44576804 -0.33566022 1.31986881 0.28336810 -0.44645811 -0.33730112

6 1.41037943 0.30302200 -0.45513595 -0.33541800 1.40939982 0.30087213 -0.45644206 -0.33692901

7 1.40001650 0.30000320 -0.45914419 -0.33391288 1.39875604 0.29768355 -0.46069850 -0.33545169

8 1.40000000 0.30000000 -0.45918942 -0.33389223 1.39873784 0.29767999 -0.46074960 -0.33542922

9 1.40000000 0.30000000 -0.45918942 -0.33389223 1.39873784 0.29767999 -0.46074960 -0.33542922

that generates the time series data. For a particular set
of data the estimated value of r is found to be 3.67164967
after solving eqns. (15) for the same initial guess to κ and
r as before. Also, the values of parameter (r) estimated
from the noisy time series data at various intervals (we
have considered 1000 data points) of time is found to
be distributed around 3.67. We have also carried out
similar analysis for the Moran-Ricker (exponential) map
and verified that the system parameter can be identified
correctly both in the absence and presence of noise.

For the illustration of our method in two dimensional
discrete system, we consider the Henon map,

x
(n+1)
1 = 1 + x

(n)
2 − α(x

(n)
1 )2, (16a)

x
(n+1)
2 = βx

(n)
1 , (16b)

where α and β are control parameters to be determined,
and the modified Henon map can be constructed as

y
(n+1)
1 = 1 + y

(n)
2 − α(y

(n)
1 )2 + κ1, (17a)

y
(n+1)
2 = βy

(n)
1 + κ2, (17b)

where κ1 and κ2 are constants which force the modified
Henon map to exhibit period one fixed point solution for

a set of parameters where the original Henon map shows
chaotic behaviour.

Let (z
(0)
1 , z

(0)
2 ), (z

(1)
1 , z

(1)
2 ),...,(z

(m−1)
1 , z

(m−1)
2 ) be the

data sets of time series obtained from the Henon map
at some arbitrary interval of time for a set of unknown
system parameters (α and β). The starting assump-

tion of common initial state x
(0)
1 = y

(0)
1 = z

(0)
1 and

x
(0)
2 = y

(0)
2 = z

(0)
2 makes c

(0)
1 = c

(0)
2 = 0 by Eq. (8a).

In the case of Henon map, the substitution of c
(1)
1 , c

(2)
1 ,

c
(3)
1 , c

(1)
2 , c

(2)
2 and c

(3)
2 calculated using Eq. (8b) into

Eq. (12) leads to four nonlinear simultaneous algebraic
equations as

− 2α(κ1 − ακ2
1 + κ2 − 2ακ1z

(1)
1 )z

(2)
1

−α(κ1 − ακ2
1 + κ2 − 2ακ1z

(1)
1 )2

+βκ1 + κ2 = z
(1)
1 − z

(3)
1 , (18a)

β(κ1 − ακ2
1 + κ2 − 2ακ1z

(1)
1 ) = z

(1)
2 − z

(3)
2 , (18b)

κ2 − ακ2
1 − 2ακ1z

(1)
1 = z

(1)
1 − z

(2)
1 , (18c)

βκ1 = z
(1)
2 − z

(2)
2 . (18d)

In this illustration, we have used the numerical time se-
ries data of the Henon map generated for the system
parameters α = 1.4 and β = 0.3 and solved the above
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coupled Eq. (18) by the globlally convergent Newton’s
method [26] with an initial guess α = 2.5 β = 1.5,
κ1 = −0.1 and κ2 = 0. The convergence of α, β, κ1

and κ2 are shown in Table II and it also shows that the
estimated values of α and β are 1.4 and 0.3 respectively.
And these estimated values are in exact agreement with
the values of the parameters for which the time series of
the Henon map is generated. As in our previous exam-
ple, we have solved the Eq. (18) using the time series
data containing a random noise of strength 10−2 for the
same initial guess. In this case, the estimated values are
found to be α = 1.39873784 and β = 0.29767999 and
the values of parameters α and β estimated at various
interval of time using the noisy data is found to be dis-
tributed around 1.4 and 0.3, respectively. One can also
verify that the above system parameters can be obtained
from a scalar time series (either z1’s or z2’s) by contruct-
ing four algebraic equations suitably from Eq. (12) and
making use of the system equations. For example, pa-
rameters (α and β) can be estimated from the scalar
time series of z1 using the four algebraic equations which
contain z1 alone in the right hand side, constructed by

making use of c
(1)
1 , c

(2)
1 , c

(3)
1 , c

(4)
1 and c

(5)
1 in Eq. (12).

At this point, one may raise the question, why not
invert directly the map (1) itself using the time series
data so as to find the system parameters. While this
is certainly possible in the case of exact time series, the
extreme sensitiveness of chaotic systems to initial condi-
tions make it an unreliable procedure in the presence of
suitable noise. For example, in the case of logistic map
the estimated value of r is found to be 3.7 while the orig-
inal value is 3.67 when an 1% white noise in the range 0
to 1 is introduced in the time series. On the other hand
in our method described above, no such difficulty arises.

Next, we wish to point out that it is possible to extend
the analysis to identify the system itself in principle, say
an N th degree polynomial for the right hand side of Eq.
(1). By solving sufficient number of Eqs. (12) one can
then identify the form of the map itself. From another
point of view, the procedure outlined here also gives a
method to obtain the values of the controlling constants
(κi) for a chaotic system to a desired periodic orbit. Fi-
nally, we have also extended the same precedure to con-
tinuous dynamical systems for estimating the system pa-
rameters by finding a set of differential equations which
determine the connection between the original and mod-
ified systems. The details will be presented elsewhere.

To conclude, the main advantage of our method is that
a very minimal number of time series data is sufficient
for the accurate determination of the system parameters.
We can check the accuracy of the estimated parameters
by comparing the fixed point obtained by Eq. (8) using
the time series at estimated parameters with the fixed
point of the modified dynamical system at the same pa-
rameters. Thus, we have developed a very simple as well
as useful method for estimating the unknown system pa-

rameters of the discrete dynamical systems of any dimen-
sions and illustrated it by means of logistic and Henon
maps.
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