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Abstract.

The nonadiabatic transition probabilities in the two-level systems are calculated

analytically by using the monodromy matrix determining the global feature of the

underlying differential equation. We study the time-dependent 2×2 Hamiltonian with

the tanh-type plus sech-type energy difference and with constant off-diagonal elements

as an example to show the efficiency of the monodromy approach. The application of

this method to multi-level systems is also discussed.

1. Introduction

Analytic calculation of the time evolution in two-level systems has been studied

by a number of authors for a long time since the beginning years of quantum

mechanics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. These results have been applied to

various areas of physics including quantum optics, laser spectroscopy, nuclear magnetic

resonance and atomic collisions [15, 16, 17, 18]. The importance of the study of quantum

time-evolution is still increasing even now; For example, much attention has been

paid recently to the quantum manipulation of qubits [19] and magnetization process

of magnetic molecules with large spin [20]. Recent rapid development of computers has

enabled massive numerical simulation of quantum dynamics. Nevertheless, it remains

to be important to study analytically solvable models for the following reasons: (1) in

some ranges of physical parameters the numerical simulation becomes too difficult, and

(2) analytic solutions give a clearer description about parameter dependence.

Analytic solutions of quantum dynamics can be classified into several classes. Some

of them are obtained by using hypergeometric functions. This was first found by Rosen

and Zener [3], which has then been generalized by several authors [7, 8, 9, 10, 11, 12].

In these studies, the time-variable t is generally transformed into another real variable

http://arXiv.org/abs/quant-ph/0309075v1
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z = z(t), which varies from 0 to 1 monotonically. Then, the Schrödinger equation of

two-level systems can be reduced to the hypergeometric differential equation, and the

transition probability can be related to the connection problem between two pairs of

fundamental solutions around z = 0 and z = 1.

One exception is the approach by Carroll and Hioe [13]. They have studied two

solvable classes, and in one of them they have introduced a new variable z(t) changing

from −∞ to ∞ as t increases and have reduced the Schrödinger equation to the Riemann-

Papperitz equation. Recently, Ishkhanyan has pointed out that the Carroll-Hioe model

can be understood in terms of the hypergeometric functions by considering a complex-

valued path z(t) = (y(t)+i)/2i where y(t) is a real variable [14]. By this complex-valued

path, Ishkhanyan also found a new solvable class, but he did not obtain results for the

transition probability.

In this paper, we show that for the complex-valued path, the transition probability

can be calculated efficiently from the ‘monodromy’ matrices of the corresponding

differential equations. Monodromy is one of the global properties of differential

equations, and has attracted much attention by mathematicians, for example, through

the deep connection with the Painlevé equations [21]. Hence, we expect that the

monodromy approach is valuable not only because it enables one to calculate the

transition probability for various models but also because it establishes a connection

between physical phenomena and global features of differential equations.

In this paper, as a concrete example, we mainly consider the following time-

dependent two-level Schrödinger equation and obtain the transition probability using

the monodromy associated with the solution:

i

(

a1t

a2t

)

=

(

ε(t) V (t)

V (t) −ε(t)

)(

a1

a2

)

, (1)

where the matrix elements are given by

ε(t) = E0 sech(t/T ) + E1 tanh(t/T ), (2)

V (t) = V0. (3)

Here, the coefficients, E0, E1 and V0, are assumed to be real constants. This is one of

the solvable class reported by Ishkhanyan [14]. However, the transition probability for

the model has not been obtained. It should be noted that this model is equivalent to

the Rosen-Zener model [3] in the case E1 = 0 ‡, and that it also includes the special

case of the second Demkov-Kunike model [7] in the case E0 = 0. Hence, this model can

give a smooth connection between the two known results.

The plan of the paper is as follows. We give the relation between the transition

probability and the monodromy of the hypergeometric function in § 2, and the transition

probability is calculated explicitly in § 3. The extension to the multi-level problems is

‡ In the original Rosen-Zener model, ε(t) is a constant, while V (t) has a sech-type pulse form. This

Hamiltonian, however, is reformed by a proper unitary transformation of the wave function to coincide

with the present model.
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addressed in § 4. Finally, the results are summarized in § 5. In Appendix A, we describe

the generalization of the present model and its relationship to the Carroll-Hioe’s model.

2. Hypergeometric function and monodromy

The diagonal elements in the model (1) are eliminated by the following change of

variables:

c1 = a1 exp
(

i
∫ t

0

εdt
)

, (4)

c2 = a2 exp
(

−i
∫ t

0

εdt
)

. (5)

Then, the Schrödinger equation is expressed as

ic1t = V exp
(

2i
∫ t

0

εdt
)

c2, (6)

ic2t = V exp
(

−2i
∫ t

0

εdt
)

c1. (7)

By combining these two equations, we obtain the second-order differential equations for

c1 and c2 respectively as

c1tt +
(

−2iε(t) − Vt

V

)

c1t + V 2c1 = 0, (8)

c2tt +
(

2iε(t) − Vt

V

)

c2t + V 2c2 = 0. (9)

It should be noted that the equation for c2 is obtained by replacing ε(t) by −ε(t) in (8).

Hence, once the solution of the equation for c1 is obtained, the solution for c2 is easily

obtained by reversing the sign of the parameters in ε(t).

The above discussion is general. Now, we consider the specific model given by (2)

and (3). By substituting these specific forms of ε(t) and V (t) into (8) and adopting the

change of variable as

z(t) =
sinh(t/T ) + i

2i
, (10)

equation (8) can be reduced to the differential equation of the hypergeometric

function [22],

z(1 − z)c1zz + (γ − (1 + α + β)z)c1z − αβc1 = 0. (11)

Here, the parameters, α, β and γ, are determined as

α = iT (−E1 +
√

E2
1 + V 2

0 ), (12)

β = iT (−E1 −
√

E2
1 + V 2

0 ), (13)

γ =
1

2
+ E0T − iE1T. (14)

In the same way, equation (9) is reduced to the hypergeometric differential equation

with the parameters

α′ = iT (E1 +
√

E2
1 + V 2

0 ), (15)
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β ′ = iT (E1 −
√

E2
1 + V 2

0 ), (16)

γ′ =
1

2
− E0T + iE1T. (17)

As already mentioned, these parameters are obtained by replacing E0 and E1 by −E0

and −E1 respectively in (12)-(14). In the following calculation, related to the calculation

for c2, the prime indicates that it is obtained by reversing the sign of E0 and E1 from

the original quantity without the prime.

From (10), it can be easily seen that the variable |z| → ∞ as |t| → ∞. Hence, for

discussion about the initial state it is convenient to consider the fundamental solutions

around z = ∞ as

c1 = A1f∞(z; α) + A2f∞(z; β), (18)

c2 = B1f∞(z; α′) + B2f∞(z; β ′), (19)

where f∞(z; α) and f∞(z; β) are expressed in terms of the hypergeometric functions as

f∞(z; α) = z−αF (α, α − γ + 1, α − β + 1; 1/z), (20)

f∞(z; β) = z−βF (β − γ + 1, β, β − α + 1; 1/z), (21)

with similar definitions for f∞(z; α′) and f∞(z, β ′). Since α and β are pure-imaginary

in the present model, we have to choose arg(z) to determine the branch. In this paper,

we choose

arg(z) =

{

π/2 (t → −∞)

−π/2 (t → +∞)
. (22)

In order to decide the initial state, it is sufficient to study the limit |z| → ∞, in which

case we obtain

c1 → A1z
−α + A2z

−β, (23)

c2 → B1z
−α′

+ B2z
−β′

. (24)

From (10), (23) and (24), Ai’s and Bi’s are determined.

To obtain the transition probability, we assume that the initial state is the ground

state of the Hamiltonian in the limit t → −∞,

H =

(

−E1 V0

V0 E1

)

. (25)

It may be noted that the off-diagonal elements in (25) do not vanish. Consequently the

ground state wavefunction does not correspond to |a1| = 1 and a2 = 0 as it appears

in the usual models. The time-evolution of the ground-state wave function is obtained

generally as
(

a1(t)

a2(t)

)

=

(

A

−A′

)

e
−i

(

−

√
E2

1
+V 2

0

)

t+iϕ
, (26)

where

A =

√

√

√

√

√

E1 +
√

E2
1 + V 2

0

2
√

E2
1 + V 2

0

, A′ =

√

√

√

√

√

−E1 +
√

E2
1 + V 2

0

2
√

E2
1 + V 2

0

. (27)
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The solution (26) includes an arbitary phase factor ϕ, which is chosen zero in this paper.

From (26), the time-evolutions of c1 and c2 in the limit t → −∞ can be easily evaluated

as

c1(t) = a1(t) exp
(

i
∫ t

0

εdt
)

→ Ae
−i

(

E1−

√
E2

1
+V 2

0

)

t−iφ0−iφ1

, (28)

c2(t) = a2(t) exp
(

−i
∫ t

0

εdt
)

→ −A′e
−i

(

−E1−

√
E2

1
+V 2

0

)

t+iφ0+iφ1

, (29)

where the phase factors are given as

φ0 = TE0

π

2
, φ1 = TE1 log 2. (30)

By using (10) and by comparing (28)-(29) with (23)-(24), the constants, Ai’s and Bi’s

are determined as

A1 = Aeiπα/2−iφ1−iφ0−iϕ1 , A2 = 0, (31)

B1 = −A′eiπα′/2+iφ1+iφ0−iϕ′

1 , B2 = 0, (32)

where the phase factors, ϕ1 and ϕ′

1, are given as

iϕ1 = 2α log 2, iϕ′

1 = 2α′ log 2, (33)

though these are not relevant to the calculation of the transition probability.

By the choice of the initial condition, the time-evolution has been described only

by the fundamental solution f∞(z; α) around z = ∞. To be more accurate, around

z = i∞ + 1/2 (corresponding to t → −∞) denoted by the point P in Fig. 1 (a), the

solution is given by

c1(z) = A1f∞(z; α), (34)

c2(z) = B1f∞(z; α′). (35)

On the other hand, the final state is given by the solution of the hypergeometric

differential equation around z = −i∞ + 1/2 (corresponding to t → ∞) denoted by

the point Q in Fig. 1 (a). The path z(t) in the complex plane is also drawn in Fig. 1.

Then, the solution around the point Q analytically continued from the point P does

not equal to (34) and (35); The solution is expressed as linear combinations of the

fundamental solutions around z = ∞. This is crucial to the calculation of the transition

probability.

In order to make the situation clearer, let us deform the path of z as shown in

Fig. 1 (b). In this deformed path, the analytic continuation of the solution is divided

into two parts, C1 and C2. Here, the path C1 denotes a round trip to the singular point

at z = 1, while the path C2 is a half round trip around z = ∞ in the clockwise direction.

The analytic continuation along the path C2 is easily performed, and determined only by

the fundamental solutions around z = ∞. On the other hand, the analytic continuation

along the path C1 is nontrivial, and determined by the global character of the differential

equation called the ‘monodromy’. The monodromy is expressed by the monodromy
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P

0

Q

1

(a) P

0

Q

1

(b)

C1

C2

Figure 1. The path along which the analytic continuation is performed; (a) The

original path and (b) deformed path.

matrices as

γ(C1) (f∞(z; α), f∞(z; β)) = (f∞(z; α), f∞(z; β))R, (36)

γ(C1) (f∞(z; α), f∞(z; β)) = (f∞(z; α′), f∞(z; β ′))R′, (37)

where γ(C1) denotes the analytic continuation along the path C1. Denoting the matrix

elements of Q and Q′ as

R =

(

a b

c d

)

, R′ =

(

a′ b′

c′ d′

)

, (38)

the solutions around the point Q can be expressed by

γ(C1) (c1(z)) = γ(C1) (A1f∞(z; α))

= A1af∞(z; α) + A1cf∞(z; β), (39)

γ(C1) (c2(z)) = γ(C1) (B1f∞(z; α′))

= B1a
′f∞(z; α′) + B1c

′f∞(z; β ′). (40)

Here, as shown below, the first (second) term in the final entries of (39) and (40)

corresponds to the excited (ground) state in the limit t → ∞. Hence, in the calculation

of the transition probability, only the element a (a′) is relevant. This matrix element is

calculated explicitly in the next section.

Let us end this section by deriving the formula for the transition probability, using

the monodromy matrix elements. In the limit t → ∞, the equations, (39) and (40), are

evaluated as

c1(t) → aA1e
iϕ+iπα/2e

−i

(

E1+
√

E2

1
+V 2

0

)

t
+ · · · , (41)

c2(t) → aB1e
iϕ′+iπα′/2e

−i

(

−E1+
√

E2

1
+V 2

0

)

t
+ · · · . (42)

Here, we have suppressed the second term corresponding to the ground state. From

these equations, the components of the wave function Ψ(t) = (a1(t), a2(t))
T is obtained

in the limit t → ∞ as

a1(t) = c1(t) exp
{

−i
∫ t

0

ε(t)dt
}
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→ aA1e
iϕ+iπα+iφ1−iφ0e−i

√
E2

1
+V 2

0
t + · · · , (43)

a2(t) = c2(t) exp
{

+i
∫ t

0

ε(t)dt
}

→ a′B1e
iϕ′+iπα′

−iφ1+iφ0e−i
√

E2

1
+V 2

0
t + · · · . (44)

By substituting (31) and (32), the wave function Ψ(t) is evaluated as

Ψ(t) →
(

aAe−2iφ0+iπα

−a′A′e2iφ0+iπα′

)

e−i
√

E2

1
+V 2

0
t + · · · . (45)

On the other hand, the Hamiltonian and the wave function of the excited state ΨE.S. in

the limit t → ∞ are given as

H =

(

E1 V0

V0 −E1

)

, ΨE.S. =

(

A

A′

)

, (46)

where A and A′ are given by (27). Then, the transition probability is calculated as

P = |Ψ(t → ∞) · ΨE.S.|2

=
∣

∣

∣aA2eiπα−2iφ0 − a′A′2eiπα′+2iφ0

∣

∣

∣

2

=

∣

∣

∣

∣

∣

ε1

2
√

ε2
1 + v2

(

aeε1−

√
ε2

1
+v2

e−iε0 + a′e−ε1−

√
ε2

1
+v2

eiε0

)

+
1

2

(

aeε1−

√
ε2

1
+v2

e−iε0 − a′e−ε1−

√
ε2

1
+v2

eiε0

)

∣

∣

∣

∣

∣

2

, (47)

where in the final equation we have introduced new variables,

ε0 = πTE0, ε1 = πTE1, v = πTV0. (48)

The last equation (47) can be used for the practical evaluation of the transition

probability. The remaining task is to calculate the elements of the monodromy matrices.

3. Calculation of the transition probability

One may identify several ways to calculate the monodromy matrices of the

hypergeometric differential equations [21]. Here, we briefly explain the simplest way.

To determine the monodromy matrix, it is crucial to use the integral representation

of the hypergeometric function. By defining the integral

Fpq(z) =
∫ q

p
dt tα−γ(1 − t)γ−β−1(z − t)−α, (49)

the following relations hold:

F1∞ = c1∞f0(z; 0), F0z = c0zf0(z; 1 − γ), (50)

F∞0 = c∞0f1(z; 0), F1z = c1zf1(z; γ − α − β), (51)

F01 = c01f∞(z; α), Fz∞ = cz∞f∞(z; β), (52)

where f0, f1 and f∞ denote the fundamental solutions of the hypergeometric differential

equations around z = 0, 1,∞, respectively. Here, the constants, cpq’s, depend only on
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α, β and γ, and their explicit expressions are irrelevant to the present calculation. By

applying the Cauchy’s theorem to the integral in eq. (49), the following linear relations

may be identified:

F01 + F1∞ + F∞0 = 0, (53)

F01 − F0z + F1z = 0, (54)

e(β − γ + 1)F1∞ − F1z − e(−α)Fz∞ = 0, (55)

e(α − γ)F∞0 + F0z + Fz∞ = 0, (56)

where e(·) = exp(2πi·). By eliminating F1∞ and F0z , we obtain

(F01, Fz∞) = (F∞0, F1z)S, (57)

S =
1

e(−α) − e(β − γ)

×
(

e(β − γ) − e(−γ) e(α + β − 2γ) − e(β − γ)

1 − e(−α) e(β − γ) − 1

)

. (58)

On the other hand, since the solution pair (F∞0, F1z) is related to the fundamental

solutions around z = 1, the monodromy matrix for this pair is easily obtained as

γ(C1)(F∞0, F1z) = (F∞0, F1z)Γ, Γ =

(

1 0

0 e(γ − α − β)

)

. (59)

Combining (58) and (59), the monodromy matrix for (F∞0, F1z) is given as

γ(C1)(F01, Fz∞) = (F01, Fz∞)R̃ (60)

R̃ =

(

ã b̃

c̃ d̃

)

= S−1ΓS. (61)

This result is easily related to the fundamental solutions, f∞(z; α) and f∞(z; β), by (52)

as

γ(C1)
(

f∞(z, α),
cz∞

c01

f∞(z, β)
)

=
(

f∞(z, α),
cz∞

c01

f∞(z, β)
)

R̃. (62)

By comparing the above with the original monodromy matrix (36) along with (38), we

finally obtain a = ã (d = d̃). So, as far as a is concerned, we only need to calculate R̃.

This can be performed by straightforward but slightly lengthy calculation. As a result,

we obtain the matrix element a as

a =
e(β − γ) − e(−γ) + e(−α) − 1

e(β − γ) − e(α − γ)
. (63)

The matrix element a′ for the solution c2 is easily obtained by reversing the sign of E0

and E1 in the result (63). From the result for a and a′, the transition probability P is

obtained from (47) as

P =
sinh2(πTE1) cos2(πTE0)

sinh2(πT
√

E2
1 + V 2

0 )
+

cosh2(πTE1) sin2(πTE0)

cosh2(πT
√

E2
1 + V 2

0 )
. (64)
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Figure 2. (a) The E0-dependence of the transition probability P for πTE1 = 1.

From the top to the bottom, πV0T is taken 0.2, 0.5, 1.0, 2.0. (b) The E1-dependence

of P . From the top to the bottom, πV0T is taken 0.2, 0.5, 1.0, 2.0. The solid(dashed)

lines show the minimum(maximum) value of P at each E1.

Let us discuss the nature of this result. The transition probability oscillates as

the sech-form pulse area, πTE0, changes; the transition probability has minimum and

maximum values as a function of E0 as

Pmin =
sinh2(πTE1)

sinh2(πT
√

E2
1 + V 2

0 )
, for πTE0 = nπ,

Pmax =
cosh2(πTE1)

cosh2(πT
√

E2
1 + V 2

0 )
, for πTE0 = (n + 1/2)π,

(65)

where n is an integer. The oscillation behavior of P for E0 is drawn in Fig. 2 (a).

The amplitude of this oscillation becomes small as E1 increases. This feature is

shown in Fig. 2 (b). In the case E1T ≫ max(V0T, 1), we obtain the ordinary Landau-

Zener formula

P = e−πV 2

0
T/2E1 (66)

independent of E0.

Finally, we show that the results in the limiting cases coincide with the known

results. In the limit E1 → 0, the transition probability is given as

P =
sin2(πTE0)

cosh2(πTV0)
, (67)

which corresponds to the Rosen-Zener formula [3]. In the limit E0 → 0, the transition

probability is given as

P =
sinh2(πTE1)

sinh2(πT
√

E2
1 + V 2

0 )
. (68)
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In this case, the present model is related to the second model in Demkov and Kunike’s

paper [7], which corresponds to the form

ε(t) = a + b tanh(t/T ), (69)

V (t) = c. (70)

Their result for a = 0 corresponds to the result (68).

4. Application of monodromy to multi-level problems

The application of the monodromy matrix to the transition probability is not restricted

to the hypergeometric functions. The monodromy approach is also applicable to the

differential equations whose monodromy is known. To show such an example, we

consider the multi-level problem. We expect that more solvable classes can be found by

using the present approach.

In this section, we treat the following time-dependent Hamiltonian:

Hij =























ε(t) (i = j = 1)

Vj (i = 1 and 2 ≤ j ≤ N)

Vi (j = 1 and 2 ≤ i ≤ N)

0 (otherwise)

, (71)

where the time-dependent part ε(t) is given as

ε(t) = E1 tanh(t/T ), (72)

and Vj’s (2 ≤ j ≤ N) are constants. It should be noted that in the limit E1T →
∞, this model is reduced to the extended Landau-Zener model studied by several

authors [23, 24, 25, 26]. To eliminate the diagonal element of the Hamiltonian the

wave function denoted by Ψ(t) = (a1, a2, · · · , aN)T is transformed into new variables as

ci =











a1 exp
(

i
∫ t

0

εdt
)

(i = 1)

ai (2 ≤ i ≤ N)
. (73)

The integral in the exponent is then calculated as

i
∫ t

0

εdt = iE1T log(cosh t/T ). (74)

Thus, the Schrödinger equation is obtained as

Tci,t =















N
∑

j=2

vj(cosh t/T )2ε1cj (i = 1)

vi(cosh t/T )−2ε1c1 (2 ≤ i ≤ N)

, (75)

where

ε1 = iE1T/2, vj = −iVjT. (76)

By changing the time variable as z = sinh(t/T ), the equations are modified as

dci

dz
=















N
∑

j=2

vj(1 + z2)ε1−1/2cj (i = 1)

vi(1 + z2)−ε1−1/2c1 (2 ≤ i ≤ N)

. (77)
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We make a further change of variables as

di =











(1 + z2)−ε1−1/2c1 (i = 1)
vici

z + i
− λi

(

ε1 +
1

2

)

z − i

z + i
d1 (2 ≤ i ≤ N)

, (78)

where λj’s are arbitrary constants satisfying

N
∑

j=2

λj = 1. (79)

Consequently, we finally obtain

(z − i)
dd1

dz
= −

(

ε1 +
1

2

)

d1 +
N
∑

j=2

dj, (80)

and for 2 ≤ i ≤ N

(z + i)
ddi

dz
= λi

(

ε2
1 + v2

i −
1

4

)

d1 − di − λi

(

ε1 +
1

2

) N
∑

j=2

dj . (81)

This is the Okubo equation expressed by

(zI − C)
d~d

dz
= A~d, (82)

where I is the identity operator, C is a diagonal matrix, and A is a general matrix. This

equation has been studied by Okubo in detail [27], and it is known that this form of

equation is convenient to study the monodromy.

Thus, it has been shown that at least one specific model of multi-level systems can

be reduced to the differential equation whose monodromy is known. Actual calculation

of the transition probability needs explicit treatment of the monodromy matrices,

and remains as a future problem. The present discussion for multi-level systems is

preliminary, and more detailed study will be needed to clarify the efficiency of the

monodromy approach.

5. Summary

We have calculated the transition probability for the Hamiltonian including the tanh-

type plus sech-type energy difference with constant off-diagonal elements. The obtained

result gives the natural connection between the known results, the Rosen-Zener model

and the second Demkov-Kunike model. This model also includes the Landau-Zener

formula in the limit of the large amplitude of the tanh-type energy difference.

In our calculation, the monodromy of the hypergeometric functions is essential. We

have shown that the monodromy approach is also applicable to the multi-level problems.

We expect that the use of the monodromy in the calculation of the transition probability

does not only helps finding more solvable models but also connects global properties of

the differential equation with the physical phenomena. Details of calculation especially

for the multi-level problem remain as future problems.
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Appendix A. Solvable classes

The model considered in the main part of this paper belongs to one solvable class called

class 1 below. It can be given as

ε(t) =
E0T + E1Ty

1 + y2

dy

dt
, (A.1)

V (t) =
V0T√
1 + y2

dy

dt
, (A.2)

where y(t) is an ‘arbitrary’ monotonically increasing function satisfying y(t) → ±∞ for

t → ±∞. When we adopt y(t) = sinh(t/T ), we obtain (2) and (3). For this class, the

Schrödinger equation can be reduced to the same hypergeometric differential equation

(11) through the change of variable z(t) = (y(t) + i)/2i [14]. Hence, all models of

this class give the same transition probability (64). In this class, however, we have to

define the transition probability carefully. In the limit t → −∞ (y → −∞), the matrix

elements become

ε(t) → E1T

y

dy

dt
, (A.3)

V (t) → − V0T

y

dy

dt
. (A.4)

Hence, the wave function of the ground state in this limit has mixed components as

treated in § 2. The initial state is taken as the ground state in this limiting Hamiltonian,

and the transition probability is defined as square of modulus of the final amplitude of

the excited states.

The application of the monodromy is not restricted to the class 1. As discussed

by Ishkhanyan [14], as long as the complex path z(t) = (y(t) + i)/2i is used, the

calculation by the monodromy is efficient. For example, the following solvable class

can be considered:

ε(t) =
E0T + E1Ty

1 + y2

dy

dt
, (A.5)

V (t) =
V0T

1 + y2

dy

dt
. (A.6)

This class, called here the class 2, has been first studied by Carroll and Hioe [13].

There, the transition probability has been calculated by solving the Riemann-Papperitz
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equation without resorting to the monodromy. By following the Ishkhanyan’s discussion,

however, our monodromy approach is also efficient for the class 2, and gives an

alternative method.

References

[1] Landau L D 1932 Phys. Z. Sov. 2 46

[2] Zener C 1932 Proc. R. Soc. A 137 696

[3] Rosen N and Zener C 1932 Phys. Rev. 40 502

[4] Rabi I I 1937 Phys. Rev. 51 652

[5] Nikitin E E 1962 Opt. Spektrosk. 13 761 (Engl. tansl. Opt. Spectrosc. 13 431)

[6] Demkov Yu N 1963 Zh. Eksp. Teor. Fiz. 45 195 (Sov. Phys.-JETP 18 138)

[7] Demkov Yu N and Kunike M 1969 Vestn. Leningr. Univ. Fis. Khim. 16 39; Suominen K-A and

Garraway B M 1992 Phys. Rev. A 45 374

[8] Bambini A and Berman P R 1981 Phys. Rev. A 23 2496

[9] Bambini A and Lindberg M 1984 Phys. Rev. A 30 794

[10] Hioe F T 1984 Phys. Rev. A 30 2100

[11] Hioe F T and Carroll C E 1985 Phys. Rev. A 32 1541

[12] Hioe F T and Carroll C E 1985 J. Opt. Soc. Am. B 2 497

[13] Carroll C E and Hioe F T 1986 J. Phys. A: Math. Gen. 19 3579

[14] Ishkhanyan A M 2000 Opt. Commun. 176 155

[15] Allen L and Eberly J H 1975 Optical Resonance and Two-Level Atoms (New-York: Wiley)

[16] Nikitin E E and Umanskii S Ya 1984 Theory of Slow Atomic Collisions (Berlin: Springer Verlag)

[17] Stenholm S 1996 Simple quantum dynamics Quantum Dynamics of Simple Systems - The Forty

Fourth Scottish Universities Summer School in Physics (Great Britain: The Scottish Universities

Summer School in Physics) ed G.-L. Oppo et al

[18] Nakamura H 2002 Nonadiabatic Transition: Concepts, Basic Theories and Applications

(Singapore: World Scientific)

[19] Nielsen N A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:

Cambridge University Press)

[20] Chudnovsky E M and J. Tejada 1998 Macroscopic Quantum Tunneling of the Magnetic Moment

(Cambridge: Cambridge University Press)

[21] Iwasaki K, Kimura H, Shimomura S and Yoshida M 1991 From Gauss to Painlevé - A Modern
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