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Abstract.

The nonadiabatic transition probabilities in the two-level systems are calculated
analytically by using the monodromy matrix determining the global feature of the
underlying differential equation. We study the time-dependent 2 x 2 Hamiltonian with
the tanh-type plus sech-type energy difference and with constant off-diagonal elements
as an example to show the efficiency of the monodromy approach. The application of
this method to multi-level systems is also discussed.

1. Introduction

Analytic calculation of the time evolution in two-level systems has been studied
by a number of authors for a long time since the beginning years of quantum
mechanics 1, 2, B, 4, Bl 6, [, 8, 9, [0, [T, 12, 3, [[4]. These results have been applied to
various areas of physics including quantum optics, laser spectroscopy, nuclear magnetic
resonance and atomic collisions [15, [16, "7, [T8]. The importance of the study of quantum
time-evolution is still increasing even now; For example, much attention has been
paid recently to the quantum manipulation of qubits [I9] and magnetization process
of magnetic molecules with large spin [20]. Recent rapid development of computers has
enabled massive numerical simulation of quantum dynamics. Nevertheless, it remains
to be important to study analytically solvable models for the following reasons: (1) in
some ranges of physical parameters the numerical simulation becomes too difficult, and
(2) analytic solutions give a clearer description about parameter dependence.

Analytic solutions of quantum dynamics can be classified into several classes. Some
of them are obtained by using hypergeometric functions. This was first found by Rosen
and Zener [3], which has then been generalized by several authors [d, 8, @, [0, [Tl T2].
In these studies, the time-variable t is generally transformed into another real variable
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z = z(t), which varies from 0 to 1 monotonically. Then, the Schrédinger equation of
two-level systems can be reduced to the hypergeometric differential equation, and the
transition probability can be related to the connection problem between two pairs of
fundamental solutions around z =0 and z = 1.

One exception is the approach by Carroll and Hioe [I3]. They have studied two
solvable classes, and in one of them they have introduced a new variable z(¢) changing
from —oo to co as t increases and have reduced the Schrodinger equation to the Riemann-
Papperitz equation. Recently, Ishkhanyan has pointed out that the Carroll-Hioe model
can be understood in terms of the hypergeometric functions by considering a complex-
valued path z(t) = (y(t)+1)/2i where y(¢) is a real variable [I4]. By this complex-valued
path, Ishkhanyan also found a new solvable class, but he did not obtain results for the
transition probability.

In this paper, we show that for the complex-valued path, the transition probability
can be calculated efficiently from the ‘monodromy’ matrices of the corresponding
differential equations. Monodromy is one of the global properties of differential
equations, and has attracted much attention by mathematicians, for example, through
the deep connection with the Painlevé equations [2I]. Hence, we expect that the
monodromy approach is valuable not only because it enables one to calculate the
transition probability for various models but also because it establishes a connection
between physical phenomena and global features of differential equations.

In this paper, as a concrete example, we mainly consider the following time-
dependent two-level Schrodinger equation and obtain the transition probability using
the monodromy associated with the solution:

. ay e(t) Vit ay

1( o ) - ( V((t)) —5((t)) ) < as ) ’ )
where the matrix elements are given by

e(t) = Ey sech(t/T) + E; tanh(t/T), (2)

V(t) = Vo (3)

Here, the coefficients, Fy, F; and Vj, are assumed to be real constants. This is one of
the solvable class reported by Ishkhanyan [I4]. However, the transition probability for
the model has not been obtained. It should be noted that this model is equivalent to
the Rosen-Zener model [B] in the case £y = 0 f, and that it also includes the special
case of the second Demkov-Kunike model [7] in the case Ey = 0. Hence, this model can
give a smooth connection between the two known results.

The plan of the paper is as follows. We give the relation between the transition
probability and the monodromy of the hypergeometric function in § 1, and the transition
probability is calculated explicitly in § Bl The extension to the multi-level problems is
I In the original Rosen-Zener model, £(¢) is a constant, while V(¢) has a sech-type pulse form. This

Hamiltonian, however, is reformed by a proper unitary transformation of the wave function to coincide
with the present model.
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addressed in § . Finally, the results are summarized in § Bl In[Appendix A} we describe

the generalization of the present model and its relationship to the Carroll-Hioe’s model.

2. Hypergeometric function and monodromy

The diagonal elements in the model ([Il) are eliminated by the following change of

¢1 = aj exp (i /Ot 5dt> , (4)
Cy = Qg €Xp <—i/0t 5dt> . (5)

Then, the Schrodinger equation is expressed as
t
ic;; = Vexp (Qi/ z—:dt> Co, (6)
0

t
ico; = Vexp (—21/0 5dt> . (7)

By combining these two equations, we obtain the second-order differential equations for

variables:

c1 and ¢y respectively as
v
Cru + (—2ie(t) - Vt> cro+ V2 = 0, (8)

v
Copt + (Qis(t) — Vt> cor + VZ3ey = 0. (9)

It should be noted that the equation for ¢, is obtained by replacing e(t) by —e(¢) in (&).
Hence, once the solution of the equation for ¢; is obtained, the solution for ¢, is easily
obtained by reversing the sign of the parameters in (t).

The above discussion is general. Now, we consider the specific model given by (2)
and (Bl). By substituting these specific forms of £(¢) and V' (¢) into () and adopting the
change of variable as

A(t) = sinh(t/T) + i’ (10)
21
equation (§) can be reduced to the differential equation of the hypergeometric
function [22],

z(1=2)cr. + (v — (1 + a4+ B)2)e1, — afe; = 0. (11)

Here, the parameters, «, § and ~, are determined as

a=IiT(—E) +/E} + V@), (12)

B=iT(—Ey —\ Ef + V§), (13)
1

T=3 + Byl —1E,T. (14)

In the same way, equation (@) is reduced to the hypergeometric differential equation
with the parameters

o =iT(Ey +\/ E? + V@), (15)
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B =iT(Ey — B + V§), (16)

1

As already mentioned, these parameters are obtained by replacing Fy and F; by —E)
and —F; respectively in ([2)- (). In the following calculation, related to the calculation
for ¢y, the prime indicates that it is obtained by reversing the sign of Ey and E; from
the original quantity without the prime.

From (I0), it can be easily seen that the variable |z| — oo as [t| — oo. Hence, for
discussion about the initial state it is convenient to consider the fundamental solutions
around z = 0o as

&1 = Aifoo(z; @) + Az foo (23 ), (18)
2 = Bifoo(2:0/) + Bafoo(2: 3, (19)
where fo.(z;a) and fo(z; ) are expressed in terms of the hypergeometric functions as
foolz;0) =2"%F(a,a—v+1,a— [+ 1;1/2), (20)
Joolz8) =2 F(B = v+ 1,8, —a+11/2), (21)

with similar definitions for fo(z;¢’) and fo(z,3"). Since a and [ are pure-imaginary
in the present model, we have to choose arg(z) to determine the branch. In this paper,
we choose

/2  (t > —0)

—7/2 (t — +o0) (22)

.

In order to decide the initial state, it is sufficient to study the limit |z| — oo, in which
case we obtain

c1 — Alz_o‘ + AQZ_ﬁ, (23)
¢y — Biz7 + Byz ™7 (24)
From (), 23) and @4)), A;’s and B;’s are determined.

To obtain the transition probability, we assume that the initial state is the ground
state of the Hamiltonian in the limit ¢ — —oo,

—Er W
ne (0. -

It may be noted that the off-diagonal elements in (25) do not vanish. Consequently the
ground state wavefunction does not correspond to |a;| = 1 and as = 0 as it appears
in the usual models. The time-evolution of the ground-state wave function is obtained

( an(t) ) B ( _‘Z | ) I (VEE e (26)

generally as

where

A B+ Ef + V5 2 —Ey + B} +V§ 27
N NS
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The solution (26]) includes an arbitary phase factor ¢, which is chosen zero in this paper.
From (Z8), the time-evolutions of ¢; and ¢; in the limit ¢ — —oo can be easily evaluated
as

t —i( BE1—/E}+V§ |t—igo—ig1
c1(t) = a1 (t) exp <1/ 5dt> — Ae (E E1+Vo)t e ; (28)
0

—i (—El— E%+VO2)t+i¢o+i¢1

t
ea(t) = as(t) exp <—i / adt) T , (29)
0
where the phase factors are given as

do = TEOg, ¢ = TE, log 2. (30)

By using () and by comparing (28)-@9) with (23)-(4)), the constants, A;’s and B;’s
are determined as

Ay = Aeime/2rioriooion Ay =0, (31)
By = — Al FHorhnnia g, — 0 (32)

Y

where the phase factors, ¢; and ¢, are given as
ip; =2alog?2, iy| =2alog2, (33)

though these are not relevant to the calculation of the transition probability.

By the choice of the initial condition, the time-evolution has been described only
by the fundamental solution f.(z;«) around z = oo. To be more accurate, around
z = ico + 1/2 (corresponding to t — —o0) denoted by the point P in Fig. [ (a), the
solution is given by

c1(2) = Aifw(z10), (34)
e2(2) = Bifwo(z:0). (35)

On the other hand, the final state is given by the solution of the hypergeometric
differential equation around z = —ioco 4+ 1/2 (corresponding to ¢ — oo) denoted by
the point Q in Fig. [l (a). The path z(¢) in the complex plane is also drawn in Fig. [
Then, the solution around the point Q) analytically continued from the point P does
not equal to (B4) and (BH); The solution is expressed as linear combinations of the
fundamental solutions around z = oo. This is crucial to the calculation of the transition
probability.

In order to make the situation clearer, let us deform the path of z as shown in
Fig. @ (b). In this deformed path, the analytic continuation of the solution is divided
into two parts, C; and C,. Here, the path C; denotes a round trip to the singular point
at z = 1, while the path C, is a half round trip around z = oo in the clockwise direction.
The analytic continuation along the path Cs is easily performed, and determined only by
the fundamental solutions around z = co. On the other hand, the analytic continuation
along the path Cj is nontrivial, and determined by the global character of the differential
equation called the ‘monodromy’. The monodromy is expressed by the monodromy
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Figure 1. The path along which the analytic continuation is performed; (a) The
original path and (b) deformed path.

matrices as
Y(C1) (fo(z0), fo(258)) = (foo(z10), fos(258)) R, (36)
V(C1) (fool23 @), foo(2:B)) = (foolz3 ), foo(2: 8)) R, (37)

where v(C;) denotes the analytic continuation along the path C;. Denoting the matrix
elements of Q) and @)’ as

a b , a v
R:<Cd>> RZ(C/ d/>> (38)

the solutions around the point Q can be expressed by

Y€1) (e1(2)) =7(Ch) (Arfoo (25 0))

= AlafOO(Z§ O‘) +Alcf00(z§ﬁ)a (39)
Y(C1) (e2(2)) =(C1) (Bifo(z;¢))
= B1d foo(2; &) + Bid fuo (2 3)). (40)

Here, as shown below, the first (second) term in the final entries of ([BY) and (E0)
corresponds to the excited (ground) state in the limit ¢ — oco. Hence, in the calculation
of the transition probability, only the element a (a’) is relevant. This matrix element is
calculated explicitly in the next section.

Let us end this section by deriving the formula for the transition probability, using
the monodromy matrix elements. In the limit ¢ — oo, the equations, (BY) and H), are
evaluated as

. . —i 2 2
or(t) — adyeirtimarz (PVERE) (41)

VAR —i| —F E24+V2 )t
eaft) — a2 (VIR (42)
Here, we have suppressed the second term corresponding to the ground state. From

these equations, the components of the wave function W (t) = (a1(t), as(t))" is obtained
in the limit ¢ — oo as

ar(t) = ex(t) exp {—1 / ta(t)dt}



Analytic calculation of nonadiabatic transition probabilities 7

N aA16i<P+i7ra+i¢1—i¢Oe_i\/ E%“‘Vozt + .. , (43)
t
as(t) = ca(t) exp {+i i 5(t)dt}
0
—s o By el Fime midrtido ,—i/EIRVEL L (44)

By substituting (BII) and (B2), the wave function W(¢) is evaluated as

—2igo+iTa
\If(t)—>< ade e >e-ivE%+Vozt+---. (45)

: s
_a/A/e21¢>0+17ra

On the other hand, the Hamiltonian and the wave function of the excited state Ug g in
the limit ¢ — oo are given as

[ Er W (A
H‘(VO —E1>’ \I’E'S'_<A’>’ o

where A and A’ are given by (7). Then, the transition probability is calculated as
P=|U(t - c0) Upg|?

o s e
— ‘aA2617ra 2i¢o a/A/2e17ra +2i¢g

€1 /2.2 e S22
| (aeel al-l—v e 1€0 _I_ale €1 El-‘rv elEO)
24/e3 4+ v?

2

2
+% <ae€1_ Vet gmieo _ glemmimy/ette? eiao) , (47)
where in the final equation we have introduced new variables,
Eo = 7TTEO, g1 = 7TTE1, V= WT‘/E) (48)

The last equation (HZ) can be used for the practical evaluation of the transition
probability. The remaining task is to calculate the elements of the monodromy matrices.

3. Calculation of the transition probability

One may identify several ways to calculate the monodromy matrices of the
hypergeometric differential equations [21]. Here, we briefly explain the simplest way.

To determine the monodromy matrix, it is crucial to use the integral representation
of the hypergeometric function. By defining the integral

Foa(2) = [t 42711 =771z — ), (49)
p
the following relations hold:
Floo :CloofO(Z;())v FOz :COZfO(Z;1_7)7 (50)
Fooo = c0fi(2;0),  Fr. = cr.fi(z7 —a = 0), (51)
FOl :COIfm(Z;a>7 ono :Czoofoo(z;6>7 (52>

where fo, f1 and f,, denote the fundamental solutions of the hypergeometric differential
equations around z = 0,1, 0o, respectively. Here, the constants, c,,’s, depend only on
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a, (0 and v, and their explicit expressions are irrelevant to the present calculation. By
applying the Cauchy’s theorem to the integral in eq. ([9), the following linear relations
may be identified:
Fo1 + Fleo + Foco = 0, (53)
FOI_FOZ+F12207 (54)
6(/6_7+1)F100_Flz_e(_a)ono:()a ( )
6(a_7)FOOO+FOZ+ono:0a ( )

where e(-) = exp(27i-). By eliminating Fj., and Fj,, we obtain

(F017ono) = (FOOO7FIZ)S7 (57)
g 1
e(—a) —e(B—7)
e(B—7)—e(—) ela+B—2y)—e(B—7)
( 1~ e(~a) (5 —7) —1 ) (58)

On the other hand, since the solution pair (F..o, Fi,) is related to the fundamental
solutions around z = 1, the monodromy matrix for this pair is easily obtained as

1 0
Foo, F1.) = (Fco, F1)I, T'= .
W(Cl)( 000 lz) ( 000> lz) ) ( 0 6(’}/ — _ﬁ) ) (59)
Combining (B8) and (B9), the monodromy matrix for (Fiuo, F1.) is given as
C1)(For, Fano) = (Fon, Froo) R (60)
= (a b\
b (2 1) -srs o

This result is easily related to the fundamental solutions, f.(z;«) and fo(2; 3), by (B2)
as

WC) (fl2:0). Z2ffen)) = (fulzsa) Z2fu( ) ) B (62)

Co1 01

By comparing the above with the original monodromy matrix (B6) along with ([BY), we

finally obtain a = @ (d = d). So, as far as a is concerned, we only need to calculate R.

This can be performed by straightforward but slightly lengthy calculation. As a result,
we obtain the matrix element a as

e(B—7) —e(=y) +e(-a) -1

e(B—7)—ela=v)

The matrix element a’ for the solution ¢, is easily obtained by reversing the sign of Ej

(63)

and £ in the result (63)). From the result for a and o, the transition probability P is
obtained from (H1) as

_ sinh®*(7TEy) cos*(rTEy) . cosh®(nT Ey) sin®(nT Ey)

_l’_
sinh®(7T/E? + V@) cosh?(7T/E? + V@)

(64)
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Figure 2. (a) The Fy-dependence of the transition probability P for #TE; = 1.
From the top to the bottom, #V{T is taken 0.2,0.5,1.0,2.0. (b) The E;-dependence
of P. From the top to the bottom, 7VyT is taken 0.2,0.5,1.0,2.0. The solid(dashed)
lines show the minimum(maximum) value of P at each Ej.

Let us discuss the nature of this result. The transition probability oscillates as
the sech-form pulse area, 7T Ey, changes; the transition probability has minimum and
maximum values as a function of F; as

inh?(7TE
Poin = sinh” (7 TEy) for 7T Ey = nm,

sinh?(xT\/E? + V@)

c(osh2(7r7£E1) & (65)

, for 7TEy=(n+1/2)m,

cosh?(nT\/E? + V@)
where n is an integer. The oscillation behavior of P for Ej is drawn in Fig. 2 (a).

The amplitude of this oscillation becomes small as F; increases. This feature is
shown in Fig. @ (b). In the case ENT > max(V(T, 1), we obtain the ordinary Landau-
Zener formula

P = e—wVOQT/2E1 (66)

Pmax:

independent of Ej.
Finally, we show that the results in the limiting cases coincide with the known
results. In the limit £} — 0, the transition probability is given as
_ sin®(aTEp)
~ cosh?*(nTV)

which corresponds to the Rosen-Zener formula [3]. In the limit Ey — 0, the transition

(67)

probability is given as
sinh?(nTE,)

sinh?(xT\/E? + V2)

pP— (68)
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In this case, the present model is related to the second model in Demkov and Kunike’s
paper [7], which corresponds to the form

e(t) =a+btanh(t/T), (69)
V(t) = e (70)
Their result for a = 0 corresponds to the result (65).

4. Application of monodromy to multi-level problems

The application of the monodromy matrix to the transition probability is not restricted
to the hypergeometric functions. The monodromy approach is also applicable to the
differential equations whose monodromy is known. To show such an example, we
consider the multi-level problem. We expect that more solvable classes can be found by
using the present approach.
In this section, we treat the following time-dependent Hamiltonian:
e(t) (i=j=1)
V;  =land 2<j <N
Hij - J (Z. an _j P ) ) (71)
Vi (j=land2<i<N)
0 (otherwise)
where the time-dependent part £(t) is given as
e(t) = Fytanh(t/T), (72)
and V;’s (2 < j < N) are constants. It should be noted that in the limit £47T —
00, this model is reduced to the extended Landau-Zener model studied by several
authors [23, 24, 25, 26]. To eliminate the diagonal element of the Hamiltonian the

wave function denoted by ¥ (t) = (ay,as,---,an)T is transformed into new variables as
t
¢ =] mexp (1/0 5dt> (i=1) . (73)
The integral in the exponent is then calculated as
t
i / edt = iE,T log(cosh t/T). (74)
0

Thus, the Schrodinger equation is obtained as

> wj(cosht/T)* ¢; (i=1)

Tci,t = =2 ) (75>
vi(cosht/T)%*1¢;  (2<i<N)
where
g1 = 1E1T/2, V; = —I‘GT (76)
By changing the time variable as z = sinh(¢/T'), the equations are modified as
N
2\e1-1/2 L
% _ jz:%vj(l + 2272 (i=1) (77)

vi(1 +2%)~57Y2¢  (2<i<N)
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We make a further change of variables as

] (1 + 22)—61—1/201 ! ' (z = 1) -
i~ Uici_—ki(51+—)z__ld1 2<i<N)’ (78)
Z+1 2) z+1

where \;’s are arbitrary constants satisfying

f; A =1 (79)

Consequently, we finally obtain

dd, 1 al
(z—i)—:—<51+—) i+ d;, (80)
dz 2 ]2 /
and for 2 <i< N
dd; 1 n &
)9y, (2 -2——>d—di—>\i< —) d. 1
(z—i—l)dz (€1+UZ 1)@ 61+2 jz:;j (81)
This is the Okubo equation expressed by
dd -
(21 — C)E = Ad, (82)

where [ is the identity operator, C' is a diagonal matrix, and A is a general matrix. This
equation has been studied by Okubo in detail [27], and it is known that this form of
equation is convenient to study the monodromy.

Thus, it has been shown that at least one specific model of multi-level systems can
be reduced to the differential equation whose monodromy is known. Actual calculation
of the transition probability needs explicit treatment of the monodromy matrices,
and remains as a future problem. The present discussion for multi-level systems is
preliminary, and more detailed study will be needed to clarify the efficiency of the
monodromy approach.

5. Summary

We have calculated the transition probability for the Hamiltonian including the tanh-
type plus sech-type energy difference with constant off-diagonal elements. The obtained
result gives the natural connection between the known results, the Rosen-Zener model
and the second Demkov-Kunike model. This model also includes the Landau-Zener
formula in the limit of the large amplitude of the tanh-type energy difference.

In our calculation, the monodromy of the hypergeometric functions is essential. We
have shown that the monodromy approach is also applicable to the multi-level problems.
We expect that the use of the monodromy in the calculation of the transition probability
does not only helps finding more solvable models but also connects global properties of
the differential equation with the physical phenomena. Details of calculation especially
for the multi-level problem remain as future problems.
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Appendix A. Solvable classes

The model considered in the main part of this paper belongs to one solvable class called
class 1 below. It can be given as

EyT'+ ETydy
et) =———5——,
1+y? dt

VoI dy

V() = NiESTRTR
where y(t) is an ‘arbitrary’ monotonically increasing function satisfying y(t) — +oo for
t — 4+00. When we adopt y(t) = sinh(¢/7T"), we obtain () and (Bl). For this class, the
Schrodinger equation can be reduced to the same hypergeometric differential equation
() through the change of variable z(t) = (y(t) + i)/2i [14]. Hence, all models of
this class give the same transition probability (&4). In this class, however, we have to

(A.1)

(A.2)

define the transition probability carefully. In the limit ¢ — —oco (y — —o0), the matrix
elements become

Eley
e(t) — Ty dt (A.3)
Vi) —» — WL (A4)
y dt

Hence, the wave function of the ground state in this limit has mixed components as
treated in §B The initial state is taken as the ground state in this limiting Hamiltonian,
and the transition probability is defined as square of modulus of the final amplitude of
the excited states.

The application of the monodromy is not restricted to the class 1. As discussed
by Ishkhanyan [I4], as long as the complex path z(t) = (y(t) + i)/2i is used, the
calculation by the monodromy is efficient. For example, the following solvable class

can be considered:

() = ST (A5)
_ WT dy

This class, called here the class 2, has been first studied by Carroll and Hioe [I3].
There, the transition probability has been calculated by solving the Riemann-Papperitz
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equation without resorting to the monodromy. By following the Ishkhanyan’s discussion,
however, our monodromy approach is also efficient for the class 2, and gives an
alternative method.
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