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In this paper we take up the quantal two-centre problem where the Coulomb centres have arbitrary
positive charges. In analogy with the symmetric case, treated in the second paper of this series of
papers, we use the knowledge on the quasiclassical dynamics to express the contour integrals in
the first- and third-order approximations of the phase-integral quantization conditions, given in the
first paper of this series of papers, in terms of complete elliptic integrals. For various values of the
distance between these charges the accuracy of the formulas obtained is illustrated by comparison
with available numerically exact results.
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1. INTRODUCTION

In this third paper in a series of papers concerning the two-centre Coulomb problem we take up the general case
in which the positive charge numbers Z; and Z; of the two Coulomb centres are arbitrary. The study of such
general systems is of considerable importance in the field of molecular physics and elementary particle physics. For
example, the calculation of eigenvalues and electronic wave functions for one-electron diatomic molecules with fixed
internuclear separation is the starting point for an accurate description of molecular vibrations and rotations and of
ion-atom scattering , E, , E] Also the calculation of radiative transition probabilities for a 7~ meson moving in the
Coulomb field of two fixed nuclei [f is a good example of the two-centre Coulomb problem dealt with in elementary
particle physics. Such calculations are of physical interest in connection with experimental , ﬂ, E] and theoretical[ﬁ]
research on the absorption of 7~ mesons stopped in substances containing hydrogen.

In the second paper in this series [[L(]] the symmetric case, Z; = Z3, was considered. Using for the two-centre
Coulomb problem the general phase-integral quantization conditions derived in the first paper ], the relevant
contour integrals for the first- and third-order approximations were expressed in terms of complete elliptic integrals
so that numerical evaluation of energy eigenvalues and separation constants can easily be carried out. The evaluation
of the various contour integrals was facilitated through suitable transformations of the ¢- and n-variables, which can
be related to the quasiclassical motion of a particle. In the symmetric case, Z; = Zs, the square of the base function
Q2(n) has a symmetry, as discussed in [L0]. As a result of this, the evaluation of the quantities @ = 3, L, L' and
K pertaining to the n-quantization conditions were performed with the use of particular transformations in a rather
simple way, while for the quantity L in the &-quantization condition rather general transformations are necessary.
However, in the general case, where Z; may be different from Z,, no such symmetric structure exists for Q?(n), and
both Q?%(n) and Q2 (), given by egs.(3.2a,b) in [Iﬁl], can have, besides the poles, the following structure of the zeros:

1. Case A = |m| # 0:

(a) Four real zeros

(b) Two real and two complex conjugate zeros
2. Case A = 0:

(a) Two real zeros

(b) Two complex conjugate zeros
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As a consequence, the evaluation of the contour integrals in the cases of the £-equation and the m-equation are
analogous, except that certain coefficients change in the different subcases. This allows one to use the “universal”
functions H***+Y and H®"*+Y n = 0 or 1, valid for the (2n + 1)th-order approximation, which were defined in
sec. 3.1.2 and sec. 3.2.2 of [E] These functlons depend on five parameters Vi, V2,13, 9 and k, which are expressed
in terms of the zeros of either Q2(n) or Q%(¢), and on the parameter C' and C in the base function Q(£) or Q(n),
respectively; see egs. (3.2a,b) in [ﬂ] Different choices of these parameters allow one to express the relevant quantities
a, B (which may now be different from «), L, L’, K and L in the first- and third-order phase integral approximation
(apart possibly from a sign or a constant factor) as the appropriate “universal” function or its real or imaginary part
with the appropriate parameters inserted. When the contour integrals are evaluated, one can solve the quantization
conditions to obtain the energy levels accurately.

In principle one can specialize the results of the general case when Z; may be different from Z5 to the particular
case when Z; = Z5 in order to obtain the results of m but in practice this is cumbersome due to the different
transformation formulas used for the n-part of the quantization conditions in | m For the &-part such a specialization
implies only that Z; 4+ Z5 is replaced by 2Z; but no essential simplification. ~

The plan of the present paper is as follows. In sec. 2 we express «, 3, L, L', K and L in terms of the “universal”
functions appropriate for the subbarrier case with A = |m| # 0. Then a similar treatment is given for the superbarrier
case. In sec. 3 an analogous procedure is applied to the case A = 0. Finally, in sec. 4 a detailed numerical analysis
of the phase-integral quantization conditions is carried out for Z; = 1 and different values of Zy (=2, 5 and 8), and
comparision is made with existing numerically exact results for the energy and the reduced separation constant.

2. CASE A= |m|#0

In this section we utilize for the case of four zeros of Q2(n) or Q%(¢) the “universal” functions H®2"*t1 n =0 or 1,
introduced in and related to the (2n + 1)th-order contribution, and the “universal” functions H?"+1) n =0 or
1, which will be introduced in sec. 3.2.2. In the different cases one finds, as explained in the introduction, that the
forms of the evaluated contour integrals are similar, except for changes of the parameters. One obtains the expressions
for the “universal” functions HW), H®) HM) and H®) by integrating one specific integral in each case explicitly and
then modifying the definition of the parameters in these functions to obtain the other required quantities.

2.1. Four real zeros of Q2(n) or Q*(¢)

2.1.1. The quantities o, 3 and K pertaining to the n-equation: Subbarrier case [Fig. 8(a) in Ref. 11]

Denoting the zeros 11,12, m3 and n4 by a,b, ¢ and d, we write the base function for this case as

[(n—a)(b—m)(c—m)(d—n)]z (2.1)

Qn) =p 17

Using the transformation on p. 103 in }, we obtain
a — dv?sn’u

1 —visn2u

n= (2.2)

the parameter v? being defined in (2.4) below. Noting that the loop a — b — a, that is 7y — 12 — 11 in the n-plane,
denoted by I'yp, which represents the contour A, in Fig. 3(a) of [@ corresponds to 0 — K — 2K in the u-plane,
one finds that the first-order contribution to « is

1
oV = —/ Q(n)dn
2 Ja,
1
) Q(n)dn
Tap
29 du) 1—n?
2p(a — d)*vi /2K sn?u(1 — sn?u)(1 — k%sn?u)du
g(1—a?) Jo (1 —12sn?u)?(1 —visn?u)(l — visn2u)’




where

Ty T xBTS (2.4)
__ 2 e @=d0-a)
T e—a)t T T @D (25)

Decomposing the integrand in (2.3) into partial fractions and evaluating the integrals by means of recurrence
formulas in [[[2], we obtain

oM = HO vy, 09,03, 9,k,C), (2.6)

where H() is the “universal” function defined in egs.(3.16a,b), (3.17a-c) and (3.18) of [L0] but with C replaced by C
and the parameters v;, i = 1,2, 3, given by @), and g and k2 given by (@) The evaluation of the quantity o) in
the present case is thus similar to the evaluation of the quantity LM in sec. 3.1.2 of .

Proceeding in a similar way, the third-order contribution to « is found to be

ORI 1 dn 1 - @)2
Y= 2/Aa< O+1—n2> 2Q(m)(1 —n?) 16/AQQ 3(n)<dn n

= H(S)(V17V27V3ugukac)7 (27)

where H®) is the “universal” function given in egs.(3.16¢,d), (3.19a-d) and (3.20a-d) of [I] but with C replaced by
—C and the parameters v;, i = 1,2, 3, given by (@), and g and k2 given by (E)

In a similar manner as above we proceed for the calculation of the first- and third-order contributions to 5. The
loop d — ¢ — d, that is n4 — n3 — n4 in the n-plane, denoted by I'y . and represented by the contour Ag in Fig. 3(a)

of [L1], corresponds to 0 — K — 2K in the u-plane, and hence the first- and third-order contributions to 3 are
1
ﬁ(l) =3 Q(n)dn
Ap
1
=3 Q(n)dn
Ta,c
= H(l)(yluy27y3ugukac)7 (28&)
and
6(3) :H(3)(V17V27V3agak7c)u (28b)

where now

d—¢ 5 14b, 5 1-b,

V%: d—b’ V2—1—_|_Cl/1, V3 ::V17 (29)
and g and k? are given by (R.5).
Similarly one obtains
Ko = HW (v1,v2,v3,9,k,C), (2.10a)
niy = HO (v1,v2,v5,9.k, ), (2.10b)

where now

o c—b s 14+d 4 2_1—dy2

Vlzm, 1/2—1+CI/1, V371—c 1 (2.11)
and g is the same as given in (P.5) and k2 is now given by
—b)(d—a)
o ezbd-a) 2.12
(d—=0)(c—a) (2.12)

According to eq. (3.18a) in [[L] the integrals o/ and 3’ for the contours A,/ and Ag in Fig. 3(a) in [[L1] are obtained
from the formulas o = o + AT’T and B/ = B+ %



2.1.2. The quantities L and L' pertaining to the &-equation [Fig. 1 in Ref. 11]

The formulas for the first- and third-order contributions to L and L’ are derived and presented in subsection 3.1.2
of [@], and they remain unchanged in the present case.

2.2. Two real and two complex conjugate zeros of Q*(n) or Q? )

When there are two real and two complex conjugate zeros of Q?(n), the situation of either Fig. 4(a) or Fig. 2 in
[@] may occur. The latter situation has, however, so far not appeared in our applications, and therefore we disregard
it in our treatment below of the n-equation.

2.2.1. The quantities o, B, K, L and L' pertaining to the n-equation: Superbarrier case [Fig. 4(a) or Fig. 2 in Ref. 11]

Denoting the real zeros of Q*(n) by m1 = a and 14 = d and the complex conjugate zeros 1z and 13 by ¢ and c*, we
have the base function

[la—m)(n—d)n—c)(n—c))z

Qn)=p 2.13

() o (213)
Defining

c=by —ia1, " =by+ia, (214)

A=[(a—b)? +a2], (2.153)

B={[(d- b)) +d?]?, (2.15b)

and using the transformation on p. 133 in [@], we get

aB + dA+ (dA — aB)cnu
= . 2.1
g A+ B+ (A - B)cnu (2.16)

Here we exploit the fact that the Jacobian elliptic functions are doubly periodic, one of the periods being complex.
Thus the loop d — a1 + iby — d, that is ny — 73 — 74 in the n-plane, denoted by I'y .-, for the contour Ag in Fig.
4(a) of [, corresponds in the u-plane to the path 0 — K + iK' — 2K + 2iK’, where K and K’ are complete elliptic

integrals of the modulus &, given ) below, and of the complementary modulus k' = /1 — k2, respectively.
(.1d)

Making use of the transformation , we obtain for the integral in the first-order expression for g3
1 1
5 [ Qmdn = 3 Q(n)dn
2 Ja, 2 Jr,
 plvr =) (v —v3) /QKH”{I sn?udn?udu (2.17)
N 29 0 (1 4+ vienu)?2(1 + vecnu) (1 + vacnu)’ '
where
A-B
=— 2.18
V1 A+ Bu ( a‘)
(1+d)A—(14+a)B
= 2.18b
2T 0tdA+(1+a)B (2.18b)



O (= y w rwyE (2.18¢)
1

9= (2.18d)

e o= —(A- B (2.18¢)

4AB

Similarly one can treat the corresponding integrals in the first-order expressions for a, K and L. When one then
evaluates the integrals containing the elliptic functions [cf. (2.17)], one finds that all these integrals can be expressed
in terms of a “universal” function H) that is given by

AW kC) = 2 2 (an2 + vi IT vi k)4 (7 —2k*) K (k)
V1,V2,V3,4, K, -y 2 1- 12 21 vy
vi(1—2k?) +2k% 1y S
202 E(k) + v1k(2j + 1)m — —2 —Jim| + > CiS;
) 4 b Q)4 O~ w277
2 1
+i K%Q 4+ A 2> I < - k’) — 22K (K) + 2E(k’)] } : (2.19)
1—v7 11—
where Oy, Cy and Cs are given by egs. (3.37a-c) in [L(], that is,
Gy — Vi (2u3vy — vivg — 1) (2.20a)
(V1 - Vz)(V1 - VS)
~ (v1 — v3)vs
_ 7 2.20b
2 (1/1 - 1/2)(1/2 - V3) ( )
_ 3
Oy = ) , (2.20c)
(1 —v3)(v3 —12)
and
5 = L2 = o2y k() + 2B — (8 + 2820 (=
T (1 =) K(k) +viE(k) — (K" + vk ") v2 -1’
L (02 -1 = ) (2 + 1y 4 IO - ) 4 K2R
2kv} ! 2 ’ '
; , 1
s {0 () - k)| - B0 i = 1,23 (2:21)
v; -V

j being an integer —1, 0 or +1, depending upon whether the quantity 5V, L) or o) respectively, is evaluated, and
originating from terms tan~'(sdu) and cos~!(dnu) while applying the limits of integration. Note that the quantity
LM given by eq.(3.36a) in [E], is just —2ReH™) with j = 0. For K, which is expressed in terms of the imaginary
part of H®)| the value of j, which appears only in the real part of H() does not matter.

Similarly we also introduce the “universal” function H®) given by

H® (v, 09,13, 9, k,C) = %p [(—4C+ V2V3(Vy121(i2,/;)1(/22_ Vl)) K (k)
1 %ﬂ_
+ (= va)(on = 1) (XK(k) +YE(Kk)+ A )]

2 2
g vi(ve —v3) ) /
+1— —4C + Kk
Zle {( vovs(v1 — v3)(ve — 11) (k)
1

+ {XK(k/) + Y[K(kl) — E(kl)]}:| , (2.22)
(1 —v3)(n1 —1v2)




where C' is the parameter in the square of the base function Q(n) in eq. (3.2b) of [[L1], and

1+4k%  344k2 k'
X = — +3 + +3 (1/12 + 21109 4+ 21103 + I/2V3) — w(17 — 4/€2)V%U2V3
—2u1 (V1 + va + v3) + 2upu3 + 1} (2 + ﬁ) , (2.23a)
V3 170
1 2 ay L Ao 2
Y = %—,2(1 + 8k — 8k%) + §(2k — 1) (V] + 2112 + 20103 + 1o13)
2
Vl Vols 2 4
17 — 8k 8k 2.23b
3k2 ( + )7 ( )
7 = 2u1 (v + vz + disrs), (2.23¢)

where the parameters vy, s, 3, g and k? are defined in a—e). -
Then the first- and third-order contributions to the quantities «, 3 and K (= wK) are

oV =ReHMV  with j =1, (2.24)
B = ReAYV  with j= -1, (2.25)
1Ko = —2ImHM), (2.26)
a® =ReH®  with j =1, (2.27)
BB = ReH®  with j=—1, (2.28)
7Ky = —2ImH®, (2.29)

where vy, 2, v3, g and k? are still defined by (B.18a-e). Since j appears only in the real part of H?"+1  we need not
specify a value of j in (2.26) and (2.29).

The integrals o and (' associated with the contours A, and Ag in Fig. 4(a) in are obtained from « and 3 by
means of the relations (3.18a) in [[LT], that is, o/ = a + A™ and ' = B+ 4F. The integrals L and L' associated with
the contours Ay, and Ay in Fig. 4(a) in [E] can be obtained from « and 8 by means of the formulas L = o+ 3 and
L'=L+ |m|.

2.2.2.  The quantities L and L' pertaining to the &-equation [Fig. 1(a) in Ref. 11]

The formulas for the first- and third-order contributions to L and L’ remain the same as the ones presented in
subsection 3.2.2 of [[I(].

3. CASEA=0
3.1. Two real zeros of Q?(n) or Q*(&)

One should be able to obtain the formulas pertaining to the case A = 0 by considering the limits of the “universal”
functions H® and H®) when a — —1 and d — +1 in the case of the n-equation. These specialization procedures
are, however, much more cumbersome than the direct calculation of the quantities in question, and so we do not carry
them out here. Instead we shall evaluate these quantities directly, and therefore no “universal” functions will appear
in subsection 3.1.



3.1.1.  The quantities o, 3 and K pertaining to the n-equation: Subbarrier case [Fig. 3(b) in Ref. 11]

We denote the two real zeros of Q%(n) by n2 = b and 13 = ¢ and use transformations on p. 103, p. 120 and p.
112 in [@] for calculating the first- and third-order contributions to «, 8 and K, respectively. Here the base function
reads as

(n=b)(c=m)]*
= 3.1
am = |12 (3.1)
The first- and third-order contributions to « are
2
o = L2 ER) - (12 + 02K (k) + (K = vHTIA, ), (3.2a)
qgv
and
4 4
@ _ _9CKk) g PN (142
! » + 2 1—2v°+ 2 K(k) 14 2 E(k)
g 1 1 4 2 4 2 2 4 6vt
327 {3k'2 [ﬁ(ﬁll/ —6v°) + 50" +4v° +8 —k*(4+317%) — o K(k)
+ —8k* 4 (2 + 8 + M k? — 8 4 20 417 — i(zz/l +120%) + 1208 E(k) (3.2b)
3k’ 2 k4 ’ '
where
1/2=—c+1, k2:7(1_ )(1+C), 92—2 - (3.3)
c—1 (1+0)(1-¢) [(1—c)(1+Db)]2
Similarly the first- and third-order contributions to § are
2
B0 = ZLL2ER) + (12 — 2K (k) + (V* — KT, k)], (3.4a)
gv
and
4
p 2p +4p1/2(1—c) k2 () + [K y)+y]k2k/2
9 4 4 2\7.2 4 4
—_—— 3 —|(2 2v4)k* — 3k — 2v°| K(k
16(1—c)p1/2{3k2[( i+ Vi K )
8 4 2 2/ 4 2 vt
+3/€/2 <—(V +v =1+ k@ —v +2)+ﬁ E(k) (3.4b)
with
1-0
2 = 3.5
Y 1-¢’ (3.5)
and k2 and g defined in (B.3). )
The first- and third-order contributions to K (= nK) are
_ 2
Ko = %[(kQ — VK (k) — V2 E(k) — (v* — 207 + KV, k)], (3.6a)
g
and
% CyK (k) 9 202, 2 1 2(1.2 4 2 4
Ky = — — (k" =K (k) + —={k*(k* —v* -2 205 E(k
"y o Ty |~ W) + g R — vt - ) 20
9 2 2 4
- (-2+k — v K(k
24v4p(c — 1) {( R +v7 - 1)K (k)

2kt — 1+ 2+ M2 — v + 20t +1]E(k)}, (3.6b)



with

s b—c s 2(b—c)
CE T M T arna—o (37)

and g defined in (B.3).

3.1.2.  The quantities Land L' pertaining to the &-equation [Fig. 1 in Ref. 11]

The formulas for the first- and third-order contributions to L and L’ are the same as those derived and presented
in subsection 4.1.2 of [Lq].

3.2. Two complex conjugate zeros of Q*(n)

The situation of two complex conjugate transition zeros can occur only for Q2(n) but not for Q2(¢).

3.2.1. The quantities o, 8 and K pertaining to the n equation: Superbarrier case
[Fig. 4(b) in Ref. 11]

Specializing the general formulas ) and ) by putting a = —1,d = +1, we obtain

oy D 1 v? 21— 1?) B
g — E{E(k)—K(k)—f— 1.2 [H(V2—17k> — <—k2+(1—k2)y2> (25 + 1)
.D /

}

—B(K) + oy (3.8a)
1— 2 1—v2’ ’
and
, .
(3 9 _ 4y 1 _ 16v
q 16p{( AC+ —— )K(k)+y2_1<XK(k)+YE(k) T
412 1 .
s (~a0+ ) KW+ o (KRG + VIRW) - B | (3.80)
where
A-B 1 » 4—(A-B)?
V_—A—l-B’ g= =5’ k 1AL (3.9)
with
A=[1-b)%+d%2, B=[1+b)>+dd)]? (3.10)
and
_ 1
X = — g5k (144 90%) +1707), (3.11a)
Y = oy (AR L+ 07) + K2 (5 + 210%) — 1707), (3.11b)

We now have

o =ReAW with j =1, (3.12a)



a®) = ReH® with j =1, (3.12b)
B =ReHW with j = —1, (3.13a)
B3 = ReH® with j = —1, (3.13b)
1Ko = —2ImAW, (3.14a)
7Ky = —2ImH®, (3.14b)

The integral L’ associated with the contour Az in Fig. 4(b) in [[]] is obtained from the formula L' = a + £3.

4. NUMERICAL ILLUSTRATION OF THE ACCURACY OF THE QUANTIZATION CONDITIONS

For the numerical illustration of the asymmetric case we have chosen Z; = 1 and considered three different values of
Zy, viz. Zy =2, 5 and 8. The corresponding physical systems are the ions peHe?t, peB®t and peO8*, respectively,
where p is a proton and e is an electron. For each one of these systems we have calculated the eigenvalue p and the
reduced separation constant A’ for two different o-states and various values of r15.

For the ion peHe?T we have calculated the eigenvalue p and the reduced separation constant A’ for the 1so and
2po states and various values of 715, with appropriate quantization conditions and parameters. The quantization
conditions in [[L] for the 1so state are (3.5a) with = 0 [Fig. 1(a) in Ref. 11] and (3.9) with s = m = 0 [Fig. 4(b) in
Ref. 11] when 712 is sufficiently small, but (3.5b) with § = m = 0 [Fig. 1(b) in Ref. 11] and (3.25b) with sg =m =0
[Fig. 3(b) in Ref. 11] when 715 is sufficiently large. The quantization conditions in [éﬂ for the 2po state are (3.5a)
with § = 0 [Fig. 1(a) in Ref. 11] and (3.9) with s = 1 and m = 0 [Fig. 4(b) in Ref. 11] when 715 is sufficiently small,
but (3.5b) with § = m = 0 [Fig. 1(b) in Ref. 11] and (3.25a) with s, = m = 0 [Fig. 3(b) in Ref. 11] when 73 is
sufficiently large.

For the ion peB°" we have computed the eigenvalue p and the reduced separation constant A’ for the 1so and
the 3so states and various values of r12, with appropriate quantization conditions and parameters. The quantization
conditions in [[L] for the 1so state are (3.5a) with § = 0 [Fig. 1(a) in Ref. 11] and (3.9) with s = m = 0 [Fig. 4(b) in
Ref. 11] when 712 is sufficiently small, but (3.5b) with § = m = 0 [Fig. 1(b) in Ref. 11] and (3.25b) with sg =m =0
[Fig. 3(b) in Ref. 11] when 712 is sufficiently large. The quantization conditions in [L] for the 3so state are (3.5a)
with § = 2 [Fig. 1(a) in Ref. 11] and (3.9) with s = m = 0 [Fig. 4(b) in Ref. 11] when 2 is sufficiently small,
but (3.5b) with § = m = 0 [Fig. 1(b) in Ref. 11] and (3.25b) with sg = m = 0 [Fig. 3(b) in Ref. 11] when rqis is
sufficiently large.

For the ion peO%F we have calculated the eigenvalue p and the reduced separation constant A’ for the 1so and
the 4do states and various values of 715, with appropriate quantization conditions and parameters. The quantization
conditions in [[L] for the 1so state are (3.5a) with § = 0 [Fig. 1(a) in Ref. 11] and (3.9) with s = m = 0 [Fig. 4(b) in
Ref. 11] when 712 is sufficiently small, but (3.5b) with § = m = 0 [Fig. 1(b) in Ref. 11] and (3.25b) with sg =m =0
[Fig. 3(b) in Ref. 11] when 715 is sufficiently large. The quantization conditions in [ﬁ] for the 4do state are (3.5a)
with § =1 [Fig. 1(a) in Ref. 11] and (3.9) with s = 2 and m = 0 [Fig. 4(b) in Ref. 11] when 715 is sufficiently small,
but (3.5b) with § =m = 0 [Fig. 1(b) in Ref. 11] and (3.25b) with sg = 2 and m = 0 [Fig. 3(b) in Ref. 11] when rio
is sufficiently large.

In the calculations for the above mentioned three ions we used the quantization conditions expressed in terms
of complete elliptic integrals, obtained in the present paper, that correspond to the above mentioned quantization
conditions in [EI] In subsection 4.1 we use the same procedure as in subsection 5.1 of [IE] for optimizing the accuracy
of the results obtainable in the first- and third-order approximations. Thus we determine C' and C' as functions of T12
such that the first- and third-order quantization conditions give the same results, and with these values of C and C
we calculate p and A’. In subsection 4.2 we determine C and C' such that the phase-integral quantization conditions
give the numerically exact values of p and A’ obtained by Winter et al. [H] for the ion peHe?t and by Ponomarev
and Puzynina[@] for the ions peB®" and peO3T. It is seen that the values of C' and C obtained in subsection 4.1 are
in qualitative agreement with those obtained in subsection 4.2.
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4.1. Determination of C(r12) and C’(rlz) such that the first- and third-order quantization conditions give the
same values of p and A’

We have determined the values of C' and C for several values of r12 such that the first- and third-order quantization
conditions give the same value of p as well as of A’ . These values are tabulated and compared with the numerically
exact results obtained by Winter et al. [E] for the ion peHe?t and by Ponomarev and Puzynina[@] for the ions pe B>t
and peO3t. In Table I and Table II we give the results for the system peHe?t. Table III and Table IV present the
results for the ion peB>*. For the ion peO®* the results are tabulated in Table V and Table VI. The results in Tables
I - VI are presented graphically in Figs. 1 - 6.

4.2. Determination of C(r12) and C’(rlg) such that the phase-integral quantization conditions reproduce
numerically exact values of p and A’

By determining C' and C for each value of r15 such that the first-order quantization conditions reproduce the
numerically exact values of p and A’ obtained by Winter et al. [E] for the 1so and 2po states of the ion peHe?t and
by Ponomarev and Puzynina for the previously mentioned two states of the ion peB>T and two states of the ion
peO3t we have obtained the values of C' and C presented in Tables VII - XII. The numerical results in these tables
are presented graphically in Figs. 7 - 12.
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TABLE I: For the state 1so of the ion pe He*" (Z1 =1, Z2 = 2) the values of C' and C have been obtained from the requirement
that the first- and third-order phase-integral results coincide for p as well as for A’. With the use of these values of C' and c
the values of p and A’ have then been obtained from the quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large. The numerically exact values (accurate to all digits quoted) calculated by Winter,
Duncan and Lane [4], and obtained as private communication from Professor Winter (see p. 288-289 in [4]), are given in the
columns called pwpr and Ay pp,.

T2 ¢ ¢ p PWDL P — PWDL A’ WDL A — Aypr

Sufficiently small ri2

0.2 0.4296362900 0.4986159300 0.2913835957 0.2909534228 0.000430173 -0.0401742480 -0.0495531186 0.00937887
0.4 0.4938610210 0.4991342047 0.5546735631 0.5544040477 0.000269516 -0.16745905 -0.1752443935 0.007785348
0.6 0.5014529650 0.5021936418 0.7949730256 0.7945061056 0.00046692 -0.3404297821 -0.3475381522 0.00710837
0.8 0.5023672195 0.5045291831 1.018520819 1.018366017 -0.000154802 -0.54176553 -0.5473748938 0.00560936
1.0 0.5032793418 0.5061539132 1.231430173 1.231534107 -0.000103934 -0.75725945 -0.7624147481 0.0051553
2.0 0.5059145550 0.5083606740 2.241478757 2.241514227 -0.00003547 -1.870558067 -1.866548007 -0.00401006

Sufficiently large 712

3.0 0.4951651150 0.5099904870 3.241389959 3.241868168 -0.000478209 -2.918225629 -2.914992386 -0.003233243
4.0 0.4904409110 0.5094308280 4.243060447 4.243211413 -0.000150966 -3.938607817 -3.937060587 -0.00154723
5.0 0.4878197130 0.5085272790 5.244268024 5.244326655 -0.000058631 -4.950729976 -4.949835242 -0.000894734
6.0 0.4861586190 0.5076632010 6.245131490 6.245159553 -0.000028063 -5.958842182 -5.958257005 -0.000585177
7.0 0.4850145200 0.5069119800 7.245774185 7.245789653 -0.000015468 -6.964658345 -6.964245417 -0.000412928
8.0 0.4841801400 0.5062737200 8.246269561 8.246278979 -0.000009418 -7.969033663 -7.968726708 -0.000306955
9.0 0.4835456720 0.5057325250 9.246662366 9.246668544 -0.000006178 -8.972444904 -8.972207821 -0.000237083
10.0 0.4830475910 0.5052712520 10.24698113 10.24698542 -0.00000429 -9.975179205 -9.974990618 -0.000188587
11.0 0.4826466130 0.5048751070 11.24724480 11.24724792 -0.00000312 -10.97741991 -10.97726635 -0.00015356
12.0 0.4823171600 0.5045321160 12.24746643 12.24746878 -0.00000235 -11.97928963 -11.97916218 -0.00012745
13.0 0.4820418880 0.5042327580 13.24765526 13.24765709 -0.00000183 -12.98087344 -12.98076598 -0.00010746
14.0 0.4818086000 0.5039695200 14.24781804 14.24781949 -0.00000145 -13.98223227 -13.98214045 -0.00009182
15.0 0.4818086000 0.5037364370 15.24795978 15.24796097 -0.00000119 -14.98341087 -14.983331513 -0.00007936
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TABLE II: For the state 2po of the ion peHe*t (Z1 = 1,Z2 = 2) the values of C and C have been obtained from the
requirement that the first- and third-order phase-integral results coincide for p as well as for A’. With the use of these values
of C and C the values of p and A’ have then been obtained from the quantization conditions that are appropriate depending
on whether r12 is sufficiently small or sufficiently large. The numerically exact values (accurate to all digits quoted) calculated
by Winter, Duncan and Lane [4], and obtained as private communication from Professor Winter (see p. 288-289 in [4]), are
given in the columns called pwpr and Al pp.

12 c C P PWDL P — PWDL A’ Awpr A — Ao

Sufficiently small 72

0.2 0.5294831952 0.5029173619 0.1517930283 0.1507994078 0.000993621 -2.009318372 -2.013114367 0.003795995
0.4 0.5481736492 0.5102837463 0.3028910382 0.3062680406 -0.003377002 -2.049183021 -2.053824124 0.004641103
0.6 0.5928374081 0.5279102827 0.468491904 0.4698372597 -0.001345355 -2.120325324 -2.125935288 0.0056099640
0.8 0.6493296518 0.5380281837 0.642918371 0.6416038747 0.001314497 -2.226301818 -2.234147173 0.007845355
1.0 0.6918276523 0.5400183926 0.819207383 0.8180287700 0.001178613 -2.382017327 -2.381560387 -0.00045694
2.0 0.7291847142 0.5410643929 1.641039285 1.640235157 0.000804128 -3.839201840 -3.846791567 0.007589727

Sufficiently large 712

3.0 0.7931298547 0.5426329856 2.304295844 2.303194434 0.00110141 -5.443294571 -5.444185235 0.000890664
4.0 0.8368432961 0.5429173921 2.869430632 2.872046343 -0.002615711 -7.447320938 -7.448941809 0.001620871
5.0 0.9439467950 0.5427393690 3.398416434 3.395848335 0.002568099 -9.524254856 -9.526950457 0.002695601
6.0 0.7710812780 0.5422035320 3.913851362 3.901954918 0.011896444 -11.58670782 -11.61569923 0.02899141
7.0 0.7080781570 0.5407494330 4.425841569 4.404864367 0.020977202 -13.63385383 -13.68696569 0.05311186
8.0 0.6709709560 0.5389585440 4.933037475 4.909225930 0.023811545 -15.67683067 -15.73665989 0.05982922
9.0 0.6449125300 0.5370377600 5.438128294 5.414760984 0.02336731 -17.71314008 -17.77106869 0.05792861
10.0 0.6252417660 0.5351150510 5.942311467 5.920460066 0.021851401 -19.74285483 -19.79629610 0.05344127
11.0 0.6098017850 0.5332640160 6.445985745 6.425795942 0.020189803 -21.76715693 -21.81592389 0.04876696
12.0 0.5973476560 0.5315208600 6.949277104 6.930614764 0.01866234 -23.78726983 -23.83184680 0.04457697
13.0 0.5870841030 0.5298992780 7.452239113 7.434919206 0.017319907 -25.80416211 -25.84512132 0.04095921
14.0 0.5784759070 0.5284005350 7.954909402 7.938760040 0.016149362 -27.81854786 -27.85639810 0.03785024
15.0 0.5711495800 0.5270195800 8.457321437 8.442196146 0.015125291 -29.83094919 -29.86611405 0.03516486
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TABLE III: For the state 1so of the ion peB*>" (Z; = 1, Z> = 5) the values of C and C have been obtained from the requirement
that the first- and third-order phase-integral results coincide for p as well as for A’. With the use of these values of C' and c
the values of p and A’ have then been obtained from the quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large. The numerically exact values obtained by Ponomarev and Puzynina [13] are given
in the columns called ppp and App.

r2  C c P ppp__ P —prP A App A" App

Sufficiently small r12

0.2 0.51832 0.48329 0.576736 0.57180 0.004936 -0.102639 -0.106339 0.003694
0.4 0.51568 0.48937 1.093781 1.09319 0.000591 -0.318422 -0.312917 0.005505
0.6 0.51379 0.49583 1.597092 1.59754 -0.000448 -0.539704 -0.533666 -0.006038
0.8 0.51057 0.49961 2.097826 2.09827 -0.000444 -0.753875 -0.749331 -0.004544
1.0 0.50847 0.50137 2.598201 2.59847 -0.000269 -0.962648 -0.959583 -0.003065
2.0 0.50456 0.50273 5.099079 5.09906 +0.000019 -1.980607 -1.97997 -0.000637

Sufficiently large r12

3.0 0.50320 0.50231 7.599399 7.59936 +0.000039 -2.986865 -2.98666 -0.000205
4.0 0.50230 0.50192 10.099513 10.0995 +0.000013 -3.990163 -3.99000 -0.000163
5.0 0.50081 0.50164 12.599680 12.5996 +0.000080 -4.991936 -4.99200 +0.000064
6.0 0.50090 0.50141 15.099774 15.0997 +0.000074 -5.993175 -5.99333 +0.000155
7.0 0.50082 0.50124 17.599832 17.5997 +0.000132 -6.994086 -6.99428 +0.000194
8.0 0.50081 0.50111 20.099870 20.0998 +0.000070 -7.994774 -7.99500 +0.000226
9.0 0.50080 0.50100 22.599897 22.5998 +0.000097 -8.995344 -8.99556 +0.000026
10.0 0.50080 0.50090 25.099916 25.0998 +40.000116 -9.995783 -9.99563 -0.000153
11.0 0.50070 0.50083 27.599930 27.5998 +40.000130 -10.996136 -10.9960 -0.000136
12.0 0.50070 0.50080 30.099941 30.0998 +40.000140 -11.996448 -11.9964 -0.000048
13.0 0.50060 0.50067 32.599950 32.5998 +40.000150 -12.996740 -12.9966 -0.000140
14.0 0.50070 0.50060 35.099957 35.0998 +0.000157 -13.996981 -13.9969 -0.000081
15.0 0.50060 0.50060 37.599962 37.5999 +0.000062 -14.997142 -14.9971 -0.000042
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TABLE IV: For the state 3so of the ion peB*" (Z; = 1, Z> = 5) the values of C and C have been obtained from the requirement
that the first- and third-order phase-integral results coincide for p as well as for A’. With the use of these values of C' and C
the values of p and A’ have then been obtained from the quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large. The numerically exact values obtained by Ponomarev and Puzynina [13] are given
in the columns called ppp and App.

r2  C c P ppp__ P —pPP A App A" — Abp

Sufficiently small 712

0.2 0.46900 0.44400 0.197728 0.196723 +0.001005 0.118904 0.077870 +0.041034
0.4 0.43100 0.42600 0.386620 0.386538 +4-0.000082 0.277525 0.286919 -0.009394
0.6 0.42620 0.42280 0.572037 0.572068 -0.000031 0.570774 0.579790 -0.009016
0.8 0.42800 0.42280 0.754729 0.754721 +0.000008 0.916385 0.921649 -0.005264
1.0 0.43110 0.42460 0.935242 0.935213 +0.000029 1.290323 1.29312 -0.002797
2.0 0.44550 0.43680 1.817203 1.81720 +0.000003 3.347775 3.34845 -0.000675

Sufficiently large 712

3.0 0.45680 0.44762 2.680126 2.68008 +0.000046 5.536925 5.53664 -+0.000285
4.0 0.46400 0.45600 3.533310 3.53328 4-0.000030 7.777719 7.77753 +0.000189
5.0 0.46870 0.46235 4.380874 4.38088 -0.000006 10.045943 10.0461 -0.000157
6.0 0.47320 0.46730 5.224967 5.22494 40.000027 12.331720 12.3314 +0.000320
7.0 0.47608 0.47119 6.066647 6.06662 -+0.000027 14.627793 14.6276 +0.000193
8.0 0.47820 0.47430 6.906648 6.90665 -0.000002 16.931213 16.9313 -0.000087
9.0 0.48042 0.47685 7.745476 7.74546 4-0.000016 19.240602 19.2405 +0.000102
10.0 0.48202 0.47898 8.583369 8.58335 +0.000019 21.553777 21.5537 +0.000077
11.0 0.48337 0.48077 9.420559 9.42055 +0.000009 23.870068 23.8700 -+0.000068
12.0 0.48460 0.48230 10.257201 10.2572 +0.000001 26.188828 26.1888 +0.000028
13.0 0.48553 0.48356 11.093399 11.0934 -0.000001 28.509499 28.5095 -0.000001
14.0 0.48661 0.48471 11.929252 11.9292 +0.000052 30.831947 30.8318 +0.000147
15.0 0.48720 0.48570 12.764781 12.7648 -0.000019 33.155366 33.1554 -0.000034
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TABLE V: For the state 1so of the ion peO3" (Z1 =1, Z2 = 8) the values of C and C have been obtained from the requirement
that the first- and third-order phase-integral results coincide for p as well as for A’. With the use of these values of C' and c
the values of p and A’ have then been obtained from the quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large. The numerically exact values obtained by Ponomarev and Puzynina [13] are given
in the columns called ppp and App.

12 c c P ppp___ P —prP A App A" App

Sufficiently small r12

0.2 0.5019300 0.4809100 0.857612 0.855323 +0.002289 -0.137649 -0.142128 +0.004479
0.4 0.5039400 0.4943700 1.661131 1.66144 +0.000087 -0.366556 -0.361348 -0.005208
0.6 0.5038000 0.4989000 2.461700 2.46187 -0.000170 -0.576667 -0.573808 -0.002859
0.8 0.5033500 0.5004300 3.261920 3.26197 -0.000050 -0.782022 -0.780407 -0.001615
1.0 0.5028000 0.5010000 4.062060 4.06206 0.00000 -0.985331 -0.984350 -0.000981
2.0 0.5017000 0.5012000 8.062283 8.06226 +0.000023 -1.992407 -1.99219 -0.000217

Sufficiently large r12

3.0 0.5013000 0.5010000 12.062372 12.0623 +0.000072 -2.994818 -2.99479 -0.000028
4.0 0.5008300 0.5007800 16.062383 16.0624 -0.000017 -3.996148 -3.99609 -0.000058
5.0 0.5005000 0.5007000 20.062566 20.0624 +0.000166 -4.996555 -4.99687 +0.000315
6.0 0.5004300 0.5005300 24.062567 24.0624 +0.000167 -5.997131 -5.99724 +0.000109
7.0 0.5005000 0.5005000 28.062564 28.0624 40.000164 -6.997498 -6.99764 —+0.000140
8.0 0.5004000 0.5004000 32.062561 32.0624 +0.000161 -7.997818 -7.99793 +0.000112
9.0 0.5005000 0.5004000 36.062557 36.0624 +0.000157 -8.998017 -8.99816 +0.000145
10.0 0.5000000 0.5004000 40.062432 40.0624 -+0.000032 -9.998458 -9.99834 -0.000118
11.0 0.5004000 0.5003000 44.062551 44.0624 -+0.000151 -10.998401 -10.9985 +0.000099
12.0 0.5000000 0.5003000 48.062446 48.0624 -+0.000046 -11.998716 -11.9986 -0.000116
13.0 0.5000000 0.5003000 52.062451 52.0625 -0.000049 -12.998804 -12.9987 -0.000104
14.0 0.5001000 0.5003000 56.062455 56.0625 -0.000045 -13.998861 -13.9988 -0.000061
15.0 0.4999900 0.5002100 60.062459 60.0625 -0.000041 -14.998981 -14.9989 -0.000081
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TABLE VI: For the state 4do of the ion peO%* (Z1 =1, Z> = 8) the values of C' and C have been obtained from the requirement
that the first- and third-order phase-integral results coincide for p as well as for A’. With the use of these values of C' and C
the values of p and A’ have then been obtained from the quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large. The numerically exact values obtained by Ponomarev and Puzynina [13] are given
in the columns called ppp and App.

12 c c P ppp___ P —prP A App A" App

Sufficiently small r12

0.5 0.6421800 0.5329500 0.567784 0.569166 -0.001382 -6.45764 -6.466968 +0.009328
1.0 0.6301800 0.5281010 1.597590 1.16192 -0.002161 -7.813621 -7.82220 +0.008579
2.0 0.6223000 0.5179000 2.248680 2.24564 +0.003040 -11.571664 -11.5899 +0.018236

Sufficiently large r12

3.0 0.5563400 0.5069600 3.260659 3.26096 -0.000301 -15.145897 -15.1384 -0.007497
4.0 0.5434000 0.5090000 4.265089 4.26518 -0.000091 -18.414485 -18.4123 -0.002185
5.0 0.5357000 0.5114000 5.265926 5.26597 -0.000044 -21.567077 -21.5660 -0.001077
6.0 0.5303000 0.5127000 6.265543 6.26552 +0.000023 -24.662029 -24.6617 -0.000329
7.0 0.5262000 0.5131400 7.264703 7.26468 +0.000023 -27.725910 -27.7257 -0.000210
8.0 0.5226000 0.5131000 8.263735 8.26374 -0.000005 -30.771316 -30.7710 -0.000316
9.0 0.5204500 0.5127600 9.262851 9.26283 +0.000021 -33.804409 -33.8043 -0.000109
10.0 0.5186100 0.5123000 10.261986 10.2620 -0.000014 -36.829957 -36.8297 -0.000257
11.0 0.5170000 0.5118000 11.261223 11.2612 +0.000023 -39.849843 -39.8497 -0.000143
12.0 0.5152000 0.5113000 12.260537 12.2605 40.000037 -42.865768 -42.8656 -0.000168
13.0 0.5142000 0.5107500 13.259930 13.2599 +40.000030 -45.878744 -45.8787 -0.000044
14.0 0.5131800 0.5102700 14.259369 14.2594 -0.000031 -48.889604 -48.8896 -0.000004
15.0 0.5122100 0.5098200 15.258859 15.2589 -0.000051 -51.898778 -51.8987 -0.000078
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TABLE VII: For the state 1so of the ion peHe2Jr (Z1 = 1,Z5 = 2) the values of C' and C have been obtained from the
requirement that the first-order phase-integral results, obtained from quantization conditions that are appropriate depending
on whether r12 is sufficiently small or sufficiently large, coincide for p as well as for A’ with the numerically exact results
(accurate to all digits quoted) calculated by Winter, Duncan and Lane [4], and obtained as private communication from

Professor Winter (see p. 288 - 289 in [4]), and quoted in this table as pwpr and Ay py .

T12 PWDL Awpr c c
Sufficiently small r12
0.2 0.2909534228 -0.0495531186 0.51829036 0.509271872

0.4 0.5544040477 -0.1752443935

0.532092811

0.512039821

0.6 0.7945061056 -0.3475381522

0.552948218

0.516402819

0.8 1.018366017 -0.5473748938

0.562018492

0.515629306

1.0 1.231534107 -0.7624147481

0.5529481616

0.513927361

2.0

2.24151

-1.86655

0.5406495155

0.5122852272

Sufficiently large 712

3.0 3.241868168 -2.914992386 0.5148124860 0.5120384660
4.0 4.243211413 -3.937060587 0.5060386160 0.5106252670
5.0 5.244326655 -4.949835242 0.5018822190 0.5092751320
6.0 6.245159553 -5.958257005 0.4994075600 0.5081813590
7.0 7.245789653 -6.964245417 0.4977688690 0.5072953460
8.0 8.246278979 -7.968726708 0.4965834380 0.5065545680
9.0 9.246668544 -8.972207821 0.4957006460 0.5059509020
10.0 10.24698542 -9.974990618 0.4950401840 0.5054199100
11.0 11.24724792 -10.97726635 0.4943322500 0.5050906930
12.0 12.24746878 -11.97916218 0.4940316000 0.5045504220
13.0 13.24765709 -12.98076598 0.4934859900 0.5044230599
14.0 14.24781949 -13.98214045 0.4933158850 0.5041397900

15.0

15.24796097

-14.983331513

0.4931492940

0.5037628620
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TABLE VIII: For the state 2po of the ion peHe*t (Z1 = 1,Z2 = 2) the values of C' and C have been obtained from the
requirement that the first-order phase-integral results, obtained from quantization conditions that are appropriate depending on
whether 712 is sufficiently small or sufficiently large, coincide for p as well as for A’ with the numerically exact results (accurate
to all digits quoted) calculated by Winter, Duncan and Lane [4], and obtained as private communication from Professor Winter

(see p. 288 - 289 in [4]), and quoted in this table as pwpr, and Ay pr.

T12

PwWDL

’
AWDL

c

c

Sufficiently small r12

0.2

0.1507994078 -2.013114367

0.5419280238

0.50829181

0.4

0.3062680406 -2.053824124

0.552930182

0.50920298

0.6

0.4698372597 -2.125935288

0.572019821

0.51028392

0.8

0.6416038747 -2.234147173

0.592038261

0.52978182

1.0

0.8180287700 -2.381560387

0.619273017

0.542910422

2.0 1.640235157 -3.846791567

0.632937162

0.569271625

Sufficiently large 712

3.0

2.303194434

-5.444185235

0.65293027

0.551927319

4.0

2.872046343

-7.448941809

0.6829729310

0.549321938

5.0

3.395848335

-9.526950457

0.7689678921

0.5473760702

6.0

3.901954918

-11.61569923

0.6760630853

0.5461458940

7.0

4.404864367

-13.68696569

0.6153175050

0.5440702840

8.0

4.909225930

-15.73665989

0.5787297600

0.5416277770

9.0

5.414760984

-17.77106869

0.5582392230

0.5391808520

10.0

5.920460066

-19.79629610

0.5461971300

0.5368472710

11.0

6.425795942

-21.81592389

0.5382876680

0.5347039250

12.0

6.930614764

-23.83184680

0.5325850510

0.5327246020

13.0

7.434919206

-25.84512132

0.5281541630

0.5308665610

14.0

7.938760040

-27.85639810

0.5245807700

0.5291925630

15.0

8.442196146

-29.86611405

0.5216764050

0.5276965330
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TABLE IX: For the state 1so of the ion peB*" (Z; = 1, Z» = 5) the values of C and C have been obtained from the requirement
that the first-order phase-integral results, obtained from quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large, coincide for p as well as for A’ with the numerically exact results obtained by
Ponomarev and Puzynina [13] and quoted in this table as ppp and App.

ri2  DPP 'pp C C

Sufficiently small r12

0.2 0.57180 -0.106339 0.525368 0.501193
0.4 1.09319 -0.312917 0.523294 0.500928
0.6 1.59754 -0.533666 0.521226 0.500636
0.8 2.09827 -0.749331 0.516453 0.503010
1.0 2.59847 -0.959583 0.512521 0.503770
2.0 5.09906 -1.97997 0.505470 0.503400

Sufficiently large r12

3.0 7.59936 -2.98666 0.503530 0.502600
4.0 10.0995 -3.99000 0.502580 0.502110
5.0 12.5996 -4.99200 0.502040 0.501740
6.0 15.0997 -5.99333 0.501760 0.501410
7.0 17.5997 -6.99428 0.501420 0.501320
8.0 20.0998 -7.99500 0.501350 0.501030
9.0 22.5998 -8.99556 0.501140 0.501000
10.0 25.0998 -9.99563 0.501400 0.501300
11.0 27.5998 -10.9960 0.501220 0.501230
12.0 30.0998 -11.9964 0.501010 0.501100
13.0 32.5998 -12.9966 0.501000 0.501110
14.0 35.0998 -13.9969 0.500810 0.501000
15.0 37.5999 -14.9971 0.501000 0.500800
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TABLE X: For the state 3so of the ion peB*" (Z; = 1, Z> = 5) the values of C and C have been obtained from the requirement
that the first-order phase-integral results, obtained from quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large, coincide for p as well as for A’ with the numerically exact results obtained by
Ponomarev and Puzynina [13] and quoted in this table as ppp and App.

T2 DPP App 9 9

Sufficiently small 712

0.2 0.196723 0.077870 0.428610 0.440763
0.4 0.386538 0.286919 0.440847 0.437841
0.6 0.572068 0.579790 0.436194 0.431006
0.8 0.754721 0.921649 0.434223 0.428242
1.0 0.935213 1.29132 0.433012 0.426215
2.0 1.81720 3.34845 0.446970 0.437520

Sufficiently large 712

3.0 2.68008 5.53664 0.457260 0.448050
4.0 3.53328 7.77753 0.464410 0.456250
5.0 4.38088 10.0461 0.469530 0.462430
6.0 5.22494 12.3314 0.473400 0.467340
7.0 6.06662 14.6276 0.476400 0.471350
8.0 6.90665 16.9313 0.478790 0.474360
9.0 7.74546 19.2405 0.480780 0.476950
10.0 8.58335 21.5537 0.482370 0.479130
11.0 9.42055 23.8700 0.483710 0.480810
12.0 10.2572 26.1888 0.484920 0.482270
13.0 11.0934 28.5095 0.485910 0.483550
14.0 11.9292 30.8318 0.486720 0.485160
15.0 12.7648 33.1554 0.487600 0.485520
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TABLE XI: For the state 1so of the ion peO8t (Z1 =1, Z2 = 8) the values of C' and C have been obtained from the requirement
that the first-order phase-integral results, obtained from quantization conditions that are appropriate depending on whether
r12 is sufficiently small or sufficiently large, coincide for p as well as for A’ with the numerically exact results obtained by
Ponomarev and Puzynina [13] and quoted in this table as ppp and App.

Ti2  PPP App 9 9

Sufficiently small r12

0.2 0.855323 -0.142128 0.494838 0.483907
0.4 1.66144 -0.361348 0.509680 0.498740
0.6 2.46187 -0.573808 0.506980 0.501340
0.8 3.26197 -0.780407 0.505080 0.501930
1.0 4.06206 -0.984350 0.504010 0.501980
2.0 8.06226 -1.99219 0.501950 0.501460

Sufficiently large ri2

3.0 12.0623 -2.99479 0.501220 0.501160
4.0 16.0624 -3.99609 0.501010 0.500800
5.0 20.0624 -4.99687 0.500800 0.500700
6.0 24.0624 -5.99724 0.500800 0.500800
7.0 28.0624 -6.99764 0.500600 0.500700
8.0 32.0624 -7.99793 0.500500 0.500620
9.0 36.0624 -8.99816 0.500410 0.500600
10.0 40.0624 -9.99834 0.500400 0.500600
11.0 44.0624 -10.9985 0.500300 0.500500
12.0 48.0624 -11.9986 0.500300 0.500500
13.0 52.0625 -12.9987 0.500500 0.500300
14.0 56.0625 -13.9988 0.500400 0.500300
15.0 60.0625 -14.9989 0.500400 0.500200
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TABLE XII: For the state 4do of the ion peO8+ (Z1 = 1,Z2 = 8) the values of C' and C have been obtained from the
requirement that the first-order phase-integral results, obtained from quantization conditions that are appropriate depending
on whether r12 is sufficiently small or sufficiently large, coincide for p as well as for A’ with the numerically exact results
obtained by Ponomarev and Puzynina [13] and quoted in this table as ppp and App.

T2  pPP App C C

Sufficiently small r12

0.5 0.569166 -6.466968 0.639180 0.552970
1.0 1.16192 -7.82220 0.628280 0.547102
2.0 2.24564 -11.5899 0.594960 0.535600

Sufficiently large r12

3.0 3.26096 -15.1384 0.565392 0.511310
4.0 4.26518 -18.4123 0.546141 0.510320
5.0 5.26597 -21.5660 0.537100 0.512080
6.0 6.26552 -24.6617 0.531130 0.513220
7.0 7.26468 -27.7257 0.526900 0.513530
8.0 8.26374 -30.7710 0.523520 0.513370
9.0 9.26283 -33.8043 0.520970 0.513030
10.0 10.2620 -36.8297 0.519020 0.512460
11.0 11.2612 -39.8497 0.516950 0.512100
12.0 12.2605 -42.8656 0.515510 0.511710
13.0 13.2599 -45.8787 0.514440 0.511010
14.0 14.2594 -48.8896 0.513870 0.510060
15.0 15.2589 -51.8987 0.513060 0.509620
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FIG. 1: Plots for the 1so state of the ion peHe*" (Z; = 1, Zo = 2) of (a) C versus r1z2, (b) C versus 712, (¢) |p — pwp1| versus
r12 and (d) |A' — A{,VDL| versus 712, when C' and C' are determined as functions of r12 from the requirement that the first-order
and the third-order phase-integral results for p as well as for A’ coincide. Here p and A’ are the phase-integral values obtained
in Table I, while pwpr and A}y py, are the corresponding numerically exact values (accurate to all digits quoted) calculated by
Winter, Duncan and Lane [4] (see p. 288-289 in [4]), and quoted in Table I. There is a break in each curve between the regions
where the quantization conditions for sufficiently small and sufficiently large values of r12 have been used.
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FIG. 2: Plots for the 2po state of the ion peHe*" (Z; =1, Zo = 2) of (a) C versus r12, (b) C versus 712, (¢) |p— pwpr| versus
r12 and (d) |A' — A{,VDL| versus 712, when C' and C' are determined as functions of r12 from the requirement that the first-order
and the third-order phase-integral results for p as well as for A’ coincide. Here p and A’ are the phase-integral values obtained
in Table II, while pwpr and A}y py, are the corresponding numerically exact values (accurate to all digits quoted) calculated
by Winter, Duncan and Lane [4] (see p. 288-289 in [4]), and quoted in Table II. There is a break in each curve between the

regions where the quantization conditions for sufficiently small and sufficiently large values of r12 have been used.
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FIG. 3: Plots for the 1so state of the ion peB5™ (Z1 =1,Z2 =5) of (a) C versus 712, (b) C versus r12, (¢) |p—ppp| versus riz
and (d) |A' — A'Pp| versus r12, when C' and C are determined as functions of r12 from the requirement that the first-order and
the third-order phase-integral results for p as well as for A’ coincide. Here p and A’ are the phase-integral values obtained in
Table II1, while ppp and A’pp are the corresponding numerically exact values obtained by Ponomarev and Puzynina [13] and
quoted Table III. There is a break in each curve between the regions where the quantization conditions for sufficiently small
and sufficiently large values of r12 have been used.
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FIG. 4: Plots for the 3so state of the ion peB°* (Z; =1, Z2 = 5) of (a) C versus 712, (b) C versus 712, (c) |p — ppp| versus
r12 and (d) |A' — A}ap| versus r12, when C and C are determined as functions of r12 from the requirement that the first-order
and the third-order phase-integral results for p as well as for A’ coincide. Here p and A’ are the phase-integral values obtained
in Table IV, while ppp and App are the corresponding numerically exact values obtained by Ponomarev and Puzynina [13]
and quoted in Table IV. There is a break in each curve between the regions where the quantization conditions for sufficiently
small and sufficiently large values of r12 have been used.
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FIG. 5: Plots for the 1so state of the ion peO®* (Z; =1, Zs = 8) of (a) C versus 712, (b) C versus 712, (c) |p — ppp| versus
r12 and (d) |A' — A}ap| versus r12, when C and C' are determined as functions of r12 from the requirement that the first-order
and the third-order phase-integral results for p as well as for A’ coincide. Here p and A’ are the phase-integral values obtained
in Table V, while ppp and App are the corresponding numerically exact values obtained by Ponomarev and Puzynina [13] and
quoted in Table V. There is a break in each curve between the regions where the quantization conditions for sufficiently small

and sufficiently large values of r12 have been used.
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FIG. 6: Plots for the 4do state of the ion peO*t (Z; = 1, Z = 8) of (a) C versus 712, (b) C versus 712, (c) |p — ppp| versus
r12 and (d) |A' — A}ap| versus r12, when C and C are determined as functions of r12 from the requirement that the first-order
and the third-order phase-integral results for p as well as for A’ coincide. Here p and A’ are the phase-integral values obtained
in Table VI, while ppp and App are the corresponding numerically exact values obtained by Ponomarev and Puzynina [13]
and quoted in Table VI. There is a break in each curve between the regions where the quantization conditions for sufficiently
small and sufficiently large values of r12 have been used.
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FIG. 7: Plots for the 1so state of the ion peHe?" (Z1=1,Z2 =2) of (a) C versus ri12 and (b) C versus r12, when C and C are
determined as functions of 712 from the requirement that the first-order phase-integral results and the numerically exact results
obtained by Winter et al. [4] coincide. There is a break in each curve between the regions where the quantization conditions
for sufficiently small and sufficiently large values of r12 have been used.
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FIG. 8 Plots for the 2po state of the ion pe He?t (Z1=1,Z2 = 2) of (a) C versus r12 and (b) C versus r12, when C and C are
determined as functions of r12 from the requirement that the first-order phase-integral results and the numerically exact results
obtained by Winter et al. [4] coincide. There is a break in each curve between the regions where the quantization conditions
for sufficiently small and sufficiently large values of r12 have been used.
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FIG. 9: Plots for the 1so state of the ion peB%* (Z1=1,Z2 =5) of (a) C versus r12 and (b) C versus r12, when C and C are
determined as functions of 712 from the requirement that the first-order phase-integral results and the numerically exact results
obtained by Ponomarev and Puzynina [13] coincide. There is a break in each curve between the regions where the quantization

conditions for sufficiently small and sufficiently large values of r12 have been used.

0.49
0.48
0.47
0.46
0.45
0.44
0.43

0.42
0

5 10
T12

15

0.49
0.48
0.47
0.46
0.45
0.44
0.43

0.42
0

12

10

15

FIG. 10: Plots for the 3sc state of the ion peB®* (Z1=1,Z2 =5) of (a) C versus r12 and (b) C versus r12, when C and C are
determined as functions of r12 from the requirement that the first-order phase-integral results and the numerically exact results
obtained by Ponomarev and Puzynina [13] coincide. There is a break in each curve between the regions where the quantization

conditions for sufficiently small and sufficiently large values of ri12 have been used.
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FIG. 11: Plots for the 1so state of the ion peO8" (Z1 =1,Z2 = 8) of (a) C versus ri12 and (b) C versus r12, when C and C are
determined as functions of 712 from the requirement that the first-order phase-integral results and the numerically exact results
obtained by Ponomarev and Puzynina [13] coincide. There is a break in each curve between the regions where the quantization

conditions for sufficiently small and sufficiently large values of r12 have been used.
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FIG. 12: Plots for the 4do state of the ion peO%+ (Z1 =1,Z2 = 8) of (a) C versus r12 and (b) C versus r12, when C and C are
determined as functions of r12 from the requirement that the first-order phase-integral results and the numerically exact results
obtained by Ponomarev and Puzynina [13] coincide. There is a break in each curve between the regions where the quantization

conditions for sufficiently small and sufficiently large values of ri12 have been used.



