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A system of harmonic oscillators in the presence of interaction, and with an arbitrary number of degrees
of freedom, is considered. The most general form of the Hamiltonian is derived under the restriction that
the states which are initially coherent remain coherent at all times. The equation of motion for the annihila-
tion operator, obtained by using this Hamiltonian, is solved, and the frequency spectrum of the annihilation
operator is discussed. By giving specific examples it is shown that, in general, the annihilation operators (or
their eigenvalues) contain positive as well as negative frequency components and hence are not analytic
signals. Some special cases are also considered where the annihilation operators are analytic signals.

I. INTRODUCTION

EVERAL publications have appeared in recent
years dealing with the properties and applications
of coherent states.'~7 These states are defined as the
eigenstates of the annihilation operator and are analo-
gous to the classical deterministic situation. Since the
annihilation operator is not Hermitian, the eigenvalues
are, in general, complex and the states belonging to
different eigenvalues are not orthogonal. However, these
states form a complete set and can be used as a basis
for expanding arbitrary states and arbitrary operators.
In this connection, they have been found to be very
useful in the description of optical coherence for free-
electromagnetic fields.*%89 It is generally known that
for free fields the time-dependent annihilation operators
have only positive-frequency components so that the
eigenvalue of any linear combination of such operators
is an analytic signal.1% It is of interest to study the time
dependence of the eigenvalues of the annihilation opera-
tors in the presence of interaction. In a recent paper,
Glauber! has shown that if the time derivative of the
annihilation operator does not involve a functional
dependence on the creation operator, i.e., if

da()/dt= f(a(0),0), (1.1)
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then the states which are initially coherent remain
coherent at all times. In another paper' we have shown
that the requirement (1.1) is both necessary and suffi-
cient for the states to remain coherent at all times and
that for a system described by a (Hermitian) Hamil-
tonian, the function fmust be linear in the annihilation
operators. We have also obtained the general form of
the Hamiltonian consistent with this requirement, and
showed that the eigenvalues of the annihilation operator
are in general not analytic signals. In Ref. 12, however,
only systems with one degree of freedom were con-
sidered. In the present paper some of these results are
generalized for systems with an arbitrary number of
degrees of freedom.

In Sec. IT we consider a system of harmonic oscillators
with arbitrary number of degrees of freedom and derive
the general form of the Hamiltonian with the require-
ment that the states which are initially coherent remain
coherent at all times. In Sec. ITI the equation of motion
for the annihilation operator is solved and Sec. IV
deals with the frequency spectrum of the annihilation
operator. In the Appendix we derive the general form
of a unitary matrix U (#) which is an analytic signal and
is such that U(¢) and U(¢') commute for all ¢ and #.

II. TIME EVOLUTION OF COHERENT STATES:
CONDITIONS ON THE HAMILTONIAN

Let us consider a system of harmonic oscillators
which is described by the canonical operators'® ¢, and
P satisfy the commutation relations!4

CanbrvI=d00; [anav1=[pnpr1=0. (2.1)

The system can equally be described in terms of the
canonical annihilation and creation operators 4, and

(11926(6:5 L. Mehta and E. C. G. Sudarshan, Phys. Letters 22, 574
. In this paper we denote all operators by a circumflex, e.g.,
q, 4, 41, etc.

14 We have chosen units such that z=1.
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&t defined by

(\dr+ip) , (2.2)

d)\:
(20))\)1/2

a\f= (dh—1ihy), (2.3)

(Zw)\)llz

w), being the frequency of the oscillator X. The operators
4 and 4" satisfy the commutation relations

Landvt]=dw; [andv]=[a",avT]1=0. (24)

The normalized coherent states which are the right
eigenstates of the annihilation operator 4\ are then
given by?%?

| {v})EI}lvx>=I} exp{ndf—n*ar}[0), (2.5)

and satisfy the relations

al{v})=nl{2}), (2.6)

NI [e_e,.lw ? e%wz} W, @)

(0N

Here the symbol {v} is used to denote the sequence of
complex numbers vy, vg,+ + -0y, -+ (2 being the eigen-
value of @); |0) denotes the vacuum (lowest energy)
state and d/dv, denotes formal partial differentiation
with respect to v, keeping u* and all other variables
fixed.

To study the time evolution of the system, one can
work either in the Heisenberg or in the Schrodinger
picture. In the Heisenberg picture, the state is fixed and
we consider the time evolution of the system in terms
of the time evolution of the operators. The operator dx
satisfies the Heisenberg equation of motion

da(t)

i =[an(®,H®)], (2.8)
dt

and the problem then is to find how the state |{2(0)})
behaves in relation to the time-dependent operator
ér(#). In particular we are interested in finding the
conditions under which the state |{v(0)}) is an eigen-
state of d,(f) for every N\ and for all times ¢ with an
eigenvalue ) (¢). For very small 7, we can write, using
(2.8),

it )= O —irLar(D,H(H)IH0().  (2.9)

If the state |{v(0)}), which is an eigenstate of d@x(¢)
with an eigenvalue v,(f), be also an eigenstate of
a\(t+7) with an eigenvalue v, ({47), we must have

a(t+7)[{2(0)})
=u(t+7)[{2(0)})

()
={’vx(t)+7 > +o<12)}1{v(0>}>. (2.10)
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Using also (2.9) and retaining only the terms which are
of the first order in 7, we obtain the following eigenvalue
relation

N aﬂ)\(t)
Lan(),H @) ][{2(0)})=1

at

Ho(O)}). (2.11)

Since the states |{»(0)}) (which form a complete set)
are simultaneous eigenstates of the operator @, and the
commutator [é),H], we must have

ad .
[d,,,[ax,ﬁjjzﬁ[dx,ﬂko, for all p.  (2.117)

Qu

This implies that the commutator [dx(£),H (£)] must
depend on the annihilation operators {d(f)} alone and
not on any of the creation operators 4, i.e., that

Lax(®,H®]=H{a®D}0), (2.12)

where f, is some function of the set of annihilation
operators {4} and may also depend explicitly on /.
Since Eq. (2.12) is valid for every A, we note that H
can at most be linear in the creation operators, i.e.,
A is of the form

ﬁ=§ ath(ayn+g(ayn, (2.13)

where g is some other function. Further since H is
Hermitian, we see on taking the Hermitian adjoint of
(2.13) that H is also at most, linear in the annihilation
operators {d}. Hence we conclude that H is of the form

ﬁ=; 2 o) ().
—I—;{Fx(t)dﬂ(t)—I-Fx*(t)dx(t)}-l'ﬁ(t), (2.14)

where F) is some arbitrary function, the matrix wy,(?)
is Hermitian and B(¢) is real, i.e., that

Wrp (t) =W (t)* 3 ﬁ(t) :B (t)*

We have thus shown that the necessary condition on
the form of the Hamiltonian consistent with the re-
quirement that the states which are initially coherent
remain coherent at all times is given by (2.14). Though
the condition for sufficiency is also built in the proof,
one can see directly that if the Hamiltonian is of the
form given by (2.14) the states which are initially co-
herent remain coherent at all times.!

The same conclusion can be obtained by working in
the Schrodinger picture. In this case the operators {d}
and {4} are fixed but the state changes. The time
development of the state is governed by the Schrodinger
equation

(2.15)

d
i:i—tl{v(t)})=ﬁl{v(t)}>- (2.16)

15 See for example Ref. 11.
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Let us consider the case when |{v(#)}) is an eigenstate
of @) with an eigenvalue v, (¢) for every A and for all ¢
Again for very small r, we can write, using (2.16),

Ho@+n))= @O —irH|{)})+0().  (2.17)

Since we require that |{v(¢+7)}) is an eigenstate of dy
with eigenvalue v, (/4 7), we also have

a[{o(t41)})

v (l)
r
at

={o()+ +0(@) ! [ {o(+1)}). (2.18)

If we now use (2.17) and retain only the terms which
are of first order in 7, we obtain the eigenvalue relation

()
ot

[anH1l{o(@)})=4

[{2®})- (2.19)

Hence, following an argument similar to that given in
connection with the Heisenberg picture, it is readily
seen that the general form of the Hamiltonian con-
sistent with the requirement that the states which are

initially coherent remain coherent at all times is given
bylﬁ

o =§: 2= o) drta,
+Z)\:{F)\ @) A\t Fy* (t)d)\} +8(@#), (2.20)

where F) is some arbitrary function, the matrix wy,(?)
is Hermitian and 8(¢) is real, i.e., they satisfy Eq. (2.15).

It is interesting to note that if one expresses the
Hamiltonian in terms of the variables (gy,$)) then the
form (2.14) or (2.20) is at most quadratic in ¢\ and py.
For such systems the dynamical brackets of the Wigner-
Moyal'” phase-space formulation of quantum mechanics
(in which the Weyl’s rule of association between opera-
tors and functions is used) reduce to Poisson brackets,
so that quantum and classical equations of motion are
identical.’®1® If the form of the Hamiltonian is given by
(2.14) or (2.20), a similar result holds even if one is
using the phase-space formulation when the rule of
association between operators and functions is that of
normal ordering.!®

16 Apart from the c-number term B(¢), this form of the Hamil-
tonian has been noted as an example by Glauber (Ref. 11).
However, as is shown here, this is the most general form of the
Hamiltonian, consistent with the requirement that the states
which are initially coherent, remain coherent at all times.

17 (a) E. P. Wigner, Phys. Rev. 40, 749 (1932); (b) J. E. Moyal,
Proc. Cambridge Phil. Soc. 45, 99 (1949).

18 (a) M. S. Bartlett and J. E. Moyal, Proc. Cambridge Phil.
Soc. 45, 545 (1949); (b) T. F. Jordan and E. C. G. Sudarshan,
Rev. Mod. Phys. 33, 515 (1961); (c) E. C. G. Sudarshan, Lectures
in Theoretical Physics (W. A. Benjamin Company, Inc., New York,
1962), Vol. 2, p. 178.

1 C. L. Mehta, J. Math. Phys. 5, 677 (1964).
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III. TIME EVOLUTION OF COHERENT STATES
—EXPLICIT SOLUTION

According to Eq. (2.14) the general form of the
Hamiltonian (in the Heisenberg picture) consistent
with the requirement that the states which are initially
coherent remain coherent at all times is given by

ﬁ=% 2 () arT (8) 8, ()
-|—ij{Fx(l)d{f(t)+Fx*(t)dx(t)}+ﬂ(t)- (3.1)

The operator @) therefore satisfies the following equa-
tion of motion:

déy/di=—i[a,H]

——iZa0a0-no. P
Let us rewrite Eq. (3.2) in a matrix notation
dd/dt=—iw()a(t)—iF (), (3.3)
where ¢ and F are the column vectors
210 Fy(f)
a@)= d)\f( L F(t)= in(t) , (3.4)
and o is the Hermitian matrix
o) ()
w(®= wn(ti) e cm(é) ) (3.5)

In order to solve Eq. (3.3), let us first assume
F(#)=0. In this case we have

dé/dt=—iw(t)a(?), (3.6)
whose formal solution is given by?
a()=U)a(0). 3.7
Here U(f) is the unitary matrix
¢
U= {exp[—if()w(t’)dt’]L 3.8)

and the subscript 4 denotes the time-ordering opera-

2 See for example F. R. Gantemacher, Applications of the
Theory of Matrices (Interscience Publishers, Inc., New York,
1959), Chap. IV.
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tion defined by the following relation?:

feso(— / tw(t’)dt’)}Jr

> (—i)"{ f e / tdtnw(ll)"'w(tn)}

=1 n!

© t i1 tn—1
=1+Z(—i)"/dt1/ dlz---/ dt,
n=1 0 0 0

KXo(t)w(ts): - wts).

(3.9)

To verify that (3.7) is the solution of (3.6), one only
has to differentiate (3.7) and use the following relation
which is obtained by differentiating (3.8) and using
(3.9)

Ut)=—i()U (). (3.10)

In the case when the matrices w(f) and w(#) com-
mute, i.e., when

[w(®),0(#)]1=0,

we can write

Ul)= {exp(—i /0 R (t’)dt’)}+
=exp<—i f tw(t’)dt’). (.12)

However in the general case when [w(£),0(#)]50, U (%)
cannot be expressed in such a closed form. On the other
hand if we are given the unitary operator U (f), we can
readily evaluate w () in all cases from the relation

w®)=iUQU()=—iU)U @)
=3H[UOUI()-UOU (1],

which is obtained on multiplying Eq. (3.10) by :U*(¥)
on the right and using the fact that U (¢) is unitary.

One can now write the solution of (3.3) in the more
general case when F(f)5<0

forall ¢, ¢, (3.11)

(3.13)

@)= U(t)d(O)——iU(t)/ UT)F@)dt', (3.14)

2 Such time-ordering operations are also used in quantum field
theory; see for example S. S. Schweber, An Introduction to
Relativistic Quantum Field Theory (Harper and Row, New York,
1961), pp. 330-334.

Alternatively one can write U(f) as a “product integral” in
the form

U(t)={exp(—i /0 ‘w<z')d;')}+= Jim TT expl —istest—nsi)).

— 0 p=

Not =t
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which, when written in the explicit form, reads

ax (t) =2 Une (t) du (O)

—i2 3 Un(2) tUW*(t’)F,,(t')dz'. (3.15)

Equation (3.14) satisfies the boundary condition at =0
and the fact that it satisfies (3.3) can be verified by
direct differentiation and making use of Eq. (3.10).

From (3.15) we see that the eigenvalue of the operator
ax(?9) is given by

n(0) =2 Uu()v.(0)

=222 Un(®) tU,,,T(t')Fa(t’)dt’. (3.16)

Explicit solution can also be obtained in the Schrod-
inger picture. In this case the operator @, is time-
independent ; however, its expectation value does depend
on time and satisfies the equation of motion

d -
i:i;({v(t)}I@xl{v(t)}>=({v(t)}l[d,H][{v(t)}>- 3.17)

If [{v(t)}) is an eigenstate of 4y, we see from (2.20)
that H must be of the form

ﬁ=; > w)\,,(t)d)\’f(i,‘
+§{F%(t)de+Fx*(t)d>\}-|'ﬂ(t). (3.18)

Equation (3.17) then gives

n()=—1i 2 on®)v.()—iFr(0), (3.19)

an equation similar to (3.2). Hence if we proceed in a
similar manner as in connection with (3.2) we obtain

() =2 Uru(t)2,(0)
=122 2 Un(t) tU,wT(t')Fa(t’)dt’, (3.20)

where U (Z) is the unitary matrix given by (3.8).

We see that the eigenvalues obtained in both the
Heisenberg and the Schriodinger pictures [Egs. (3.16)
and (3.20)] are identical.

The state |{2(£)}) which is an eigenstate of dy with
eigenvalue 2, () (for all A and for all £) is thus given by
the following equation

He@H =110 ()

A

=exp{z)‘: (o (@) drt—0n* (t)a)\)} I 0) , (3.21)



1202 MEHTA, CHAND,

where ,(f) is given by (3.20) and |0) denotes the
vacuum state.

IV. FREQUENCY SPECTRUM OF THE
ANNIHILATION OPERATORS

In Sec. III we determined the time dependence of
the annihilation operators in presence of an interaction
such that the states which are initially coherent do not
change their essential character. We see from (3.15)
that this time dependence is given by

AO)=2 Un().(0)
=122 Un(®) / tUuaT(t')F,,(t')dt', (4.1)

where U(f) is the unitary matrix

Una()= {exp(—i ﬁ tw(t’)dt’)}““ 4.2)

and the subscript + denotes time ordering defined by
3.9).

We now wish to study the frequency spectrum b)‘(v)
of the annihilation operator? a4, (). By definition b (v)
and @, (¢) form a Fourier-transform pair

()= / i a(f)ermrtds, (4.3)

()= /m Z;x(v)e*"’””dv . (4.4)

We will first consider the simple case of a one-
dimensional harmonic oscillator.

A. Systems with One Degree of Freedom

In this case we have from (4.1), suppressing the
mode-labeling index A,

O U(t)d(O)—-iU(t)ftU* F@)d, (4.5)

U= exp(—i /0 w (t’)dt').

The frequency spectrum b(») is related to 4(f) by the

where

(4.6)

% 1In this section we work in Heisenberg picture so that the
operator @ is explicitly time-dependent. In Schrodmger picture,
by frequency spectrum of the annihilation operator ¢, we would
mean the Fourier transform of its eigenvalue

ba(r) = f (e,

so that if one wants to work in Schrédinger picture, one would

replace the operator b (v) of the Heisenberg picture by its eigen-
value b(»)

SUDARSHAN, AND VEDAM
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Fourier transform relations

0

b()=| é&@)erirtds, 4.7

)= | bGe2mitdy.

—o0

(4.8)

Let us discuss some special cases:
Case 1. Free Hamilionian. In this case w(f)=wo>0
and F()=0. Equations (4.5) and (4.6) then give

a(f)=e"*4(0), (4.9)
so that

b(v)=8(v—wo/2m)d(0) (4.10)

and we have a single positive frequency at y=wq/2m.
This means that we can refer to the time-dependent
annihilation operator d(¢) as the positive-frequency part
of the canonical variable §= (¢+ ")/ (2w0)"/? and hence
the operator 4(¢) is an “analytic signal.”

Case 2. Forced oscillator. Let us next consider the
case when w(f)=w>0, but F(#)50. In this case Eq.
(4.5) gives t

d(t) = —iwotd(o) _ ie—imot[ e"“’O"F (t’)dt, .

0

(4.11)

Let the frequency spectrum of the forcing term F(#) be
given by f(»), i.e., that F({) is given by

F()= /f(v) —2mividy, (4.12)

Equation (4.11) then gives

00 —wot_e—21rwt
(1) = e=ie0t4(0)+ / ——_————f(v)du. (4.13)

2wy

On taking the Fourier transform of (4.13), we obtain
the following expression for b(»):

soi(r= ) oo [ 777
—F- f_(yz)ﬂ, (4.14)

where P denotes the principal-value function.

Equation (4.14) shows that depending on whether

f(») does or does not vanish for negative frequencies,
b(v) also does or does not vanish for negative fre-
quencies. This means that the annihilation operator
@(#) is an analytic signal if and only if F (¢) is an analytic
signal. If F () is an analytic signal, it must be a complex-
valued function, i.e., that the real or the imaginary
part of F is not identically zero:

F+F*s£0; F—F*5£0. (4.15)
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For, under certain general conditions, the real and
imaginary parts of F(¢) are related by Hilbert trans-
form relations?®!® and hence the identically vanishing
of either implies the identically vanishing of the other.
Now the term containing F (¢) in the interacting Hamil-
tonian can be written as [cf. Eq. (2.14)]

F(at()+F*©)a()

F+-F* F—F*
——(a+an-

= (6—ah. (4.16)

Hence if F satisfies (4.15), the interaction Hamiltonian
contains terms both proportional to the coordinate
[(a+4")/(20)V?] as well as the momentum [—iy/w
X (d—a")/v2]. We therefore conclude the following:
In order that 4(¢) be an analytic signal, it is necessary
that the interaction contains coordinate-dependent as
well as velocity-dependent potentials.

For the usual velocity-independent interactions, F (%)
is real so that (4.15) is not satisfied and hence F(¢) is
not an analytic signal. For such cases of course, d(f)
is also not an analytic signal.

Case 3. Oscillator with time-dependent frequency and
F(#)=0. For this case we have, from Egs. (4.5) and

(4.6),
d(t)=exp(——i/w(t’)dt’)d(O) , (4.17)
so that?* '
b(»)= i exp(——i / w(i’)dt’)e”"”‘dt 4(0). (4.18)

It can be seen that, in general, both positive- and
negative-frequency components exist.

If, however, we require that only positive-frequency
components should occur then exp(—i.folw (#)dt’) is an
analytic signal. Further since w () is real, this function
is unimodular. The most general form of the unimodular
analytic signal exp(—17 /o' (¢)d¢’) is then given by?5

exp( i [ tw(t’)dt’)

t—a®+-
=exp(—iy—iwot) [T
%

iB®

t—a®—ig®’

(4.19)

where wo>0,8%>0; v and a® are real constants and

2 E. C. Titchmarsh, Introduction to the Theory of Fourier Inte-
grals (Clarendon Press, Oxford, England, 1948), 2nd ed., p. 128.

24 The function exp(—z fotw(¢')dt’) is unimodular and hence is
not square integrable. The Fourier transform of such functions
is to be taken in the sense of generalized function theory.

% See for example S. F. Edwards and G. B. Parrent, Jr. [Opt.
Acta 6, 367 (1959)7] where the most general form of unimodular
analytic signal is derived. See also N. G. van Kampen, Phys. Rev.
89, 1072 (1953).
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I1x denotes product over an arbitrary number of factors.
The constant v is so chosen that the boundary condition
at ¢=0 is satisfied. From (4.19), we have

/ ()t
¢ B (k) (6] (k)
=wof—2 % { tan"1<t_a(k)>+ tan‘1<;k—)> } , (4.20)

so that, on differentiation, we obtain

*®
o()=wit2 Xk: (t—a"”’)2+,8<’°)2. (4.21)
Thus we see that when F(£)=0, the annihilation opera-
tor a(f) is an analytic signal if and only if the time
dependence of the frequency of the oscillator w(f) is of
the form (4.21).

To see an explicit example let us consider the case
when only two terms are present under the summation
sign in (4.21). Further, in order that the frequency
spectrum b(v) turn out to be real, we make a special
choice of these two terms such that w(¢) is given by

28 ' 28
(—ay+60 (tHar+s
ﬂ> 0, wo> 0.

w(t)=wit

(4.22)

This behavior of w(f) with respect to ¢is shown in Fig. 1.
In this case we obtain from (4.18)

X » (t—a+18) (t4a+18)
b(»)= et @rr—wo)t - - dt 4(0)
e (t—a—1B) (t+a—1f)
(4.23)
© 4418
=/ ei(2rv—wo)t{ 14 dt (0).
e (t—a—1B) (t+a—1B)

If we carry out the integration on the right-hand side

Bu(t)

5.0

I
|
|
|
1
]
|
]
|
|
L
!
I
|

———————— -3.0 -——!—-— ———————Buw,
|
L 1 1 1 1 l L zc 1 ! 1 1 1 1 ]
-5.0 -cyﬁ.—?/ﬁ‘-. g 50

Fic. 1. Time dependence of the frequency of an interacting
h_arm{)mc oscillator in a special case when 4(f) is an analytic
signal.
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of (4.23) we obtain

8B
+——(a?4B2) 2B @m0 sin{a 27y —wo)
a
—tan(a/B)}02rrv—wo) t; (4.24)
where 6(x) is the Heaviside step function
0(x)=1 if x>0, (4.25)
=0 if x<0. ’

The eigenvalue b(») of the operator b as given by
(4.24) is plotted in Fig. 2.

Let us consider next an explicit case when w(Z) is not
of the form (4.21) but is given by

28 28
(=4 (Hay+6
0)0> 0, ﬁ> 0.

w (l) =Wwo—

(4.26)

If we substitute (4.26) in (4.6) and use Eqs. (4.7) and
(4.5) we obtain, after simplification, the following ex-
pression for b(»):

A wo
b(v)=4(0) {6(1/———)
2w
8B
+——(a?+B2) V2B w020 gin{ o (wo— 27r)
a
—tan~1(a/B)}0(wo—27v) | .

(4.27)

We see from (4.27) that 4(f) has negative-frequency

Y27 Bye)
5.0+
- ! W
/57’—38(u_21f)
(I ! 1 1 1 ! /1\ ! 1 1 3
-1.0
-2 QU-- / 5. 10.0

ao

Fic. 2. Frequency spectrum of &(?) for an interacting harmonic
oscillator with w(f) given as in Fig. 1.
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Bu(t)

—————————— 30|—— ——————— ——Bu,

Fic. 3. Time dependence of the frequency of an interacting
harmonic oscillator in a special case when &(¢) is not an analytic
signal.

components also and hence is no longer an analytic
signal, as was expected. For comparison, we plot w(¢)
given by (4.26) in Fig. 3 and the eigenvalue b(v) of the
operator b which is given by (4.27) in Fig. 4.

Case 4. Forced oscillator with time-dependent frequency.
In the general case when the frequency w is time de-
pendent and the forcing term F ()0, we have [Eq.
4.5)]

t
a@)=U®)a0)—iU®) / U*({F()dt, (4.28)
0
where U({) is given by (4.6). If we denote the Fourier

transforms of U(f) and F(f) by «(v) and f(v) re-
spectively, i.e., if

u(v)=

U (1)62’”'”‘dt ,

—o0

(4.29)

F(t)ez”i"‘dt ,

—o0

f)= (4.30)

we obtain by taking the Fourier transform of (4.28),

bl)
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F16. 4. Frequency spectrum of ¢(#) for an interacting harmonic
oscillator with w(#) given as in Fig. 3.
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the following expression for b():

. ” v)—u(v+v
b=ueaio [ [

Xu*(") " —v)dv'dv". (4.31)

We see from (4.31) that 4(f) has positive- as well as
negative-frequency components in its Fourier repre-
sentation. Further, it can be seen that both the g-number
part and the ¢c-number part of 4(¢) [the first and second
terms, respectively, on the right-hand side of (4.28)]
may contain positive- as well as negative-frequency
components.

It is also evident that if 4(¢) is an analytic signal (i.e.,
if it has only positive-frequency components), both the
g-number part and the ¢c-number parts must separately
be analytic signals, since a negative-frequency con-
tribution from one of them cannot cancel that from the
other. We have seen in case 3 above that the g-number
part, namely the term U(#)4(0), is an analytic signal
if and only if w(#) has the form given by (4.21), viz.,

(k)
= 2y —_— 4.32
w=orklE oo, ()

where wo and B8® are non-negative and a® are real
constants. If we denote the ¢-number part of &(¢), by
A @), i.e., if we write

A@)=—iU () / UKOF@YE,  (4.33)
we have, using also (4.6),
d
F(t)=4iU (t)i{ U*()A(9)}
=id)—w@®)A®@). (4.34)

Hence we conclude that () is an analytic signal if
and only if w(?¢) is given by (4.32) and F(§) is given by

(%)

where 4 (¢) is an arbitrary analytic signal, with the only
restriction 4 (0)=0.

We will now consider briefly systems with several
degrees of freedom.

B. Systems with Several Degrees of Freedom

Let us rewrite Egs. (4.1), (4.3), and (4.4) in matrix
notation

OF COHERENT STATES

1205

()= U(t)d(O)—iU(t)/ Ut@EF@)dt, (4.36)

b(v)= | a()errirdt,

—0

(4.37)

a(t)= I;(V)e"2”i”‘du ,

—0

(4.38)

where d(f) and F(¢), are the column vectors given by
(34), U(?) is the unitary matrix given by (3.8) and
b(v) is the column vector

) 51:(1/)
b(v)= <[},‘:(,,)) .

Further let us denote the Fourier transforms of F(f)
and U (¥) by f(v) and #(»), respectively, i.e.,

(4.39)

)= ooF(t)e””""dt ,

] (4.40)
u(v)= _wU(t)eW”dt, (4.41)
PO [ s, (.42)
UQ@)= °t)u(u)e_?’”""dv. (4.43)

—0

Substituting from (4.38), (4.42), (4.43) and its Her-
mitian adjoint in (4.36) and taking the Fourier trans-
form of the resulting equation, we obtain after some
simplifications the following expression for b(»):

. ” v)—u(v4+v
b=ucrao [ [LH
Xut () [ —=V)dv'dy", (4.44)

ie.,

i (v) = 0u(v+7")

/
14

B )= Z ()80 + f f %>

Xt (0"") f. ("= )dv'dv" . (4.45)

We see again from (4.45) that 4(f) has, in general,
both positive and negative frequency components.

Let us denote the c-number part of d)(f) by A\ (),
i.e., let us write

A)=—iU () / UNOF@Od,  (446)
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where A (¢) is the column vector whose elements are
Ax(#). On differentiating (4.46) with respect to ¢ and
rearranging terms, we then obtain

F)=iA(O)—iU@OUIHA{). (447)

Now, if we require that @,(f) is an analytic signal,
both the terms on the right-hand side of (4.36) must
separately be analytic signals. This will be so if and
only if U () and F (¢) satisfy the following requirements:

(1) The matrix U (f) is an analytic signal,® i.e.,

u(»)=0 for »<O0; (4.48)

(2) F(¢) is given by (4.47) where 4 (¢) is the column
vector whose elements are arbitrary analytic signals
subject to the condition 4 (0)=0.

The general form of a unitary matrix which is an ana-
lytic signal is not known. If, however, the unitary matrix
U (t) also satisfies the property that the commutator

LU@,U)]=0,

it is shown in the Appendix that U (¥) must be of the
form

for all ¢, ¢/, (4.49)

UO=Viemi[BOOV.  (450)
k

Here V is a unitary matrix, v is a real diagonal matrix,
wo is a non-negative definite diagonal matrix and J]x
denotes product over an arbitrary number of Blaschke
matrices

B® ()= (1 —a®+4iB®) (1 —a®—i8®)-1  (4.51)

where 1 is the identity matrix, «® are real diagonal
matrices, and B® are non-negative definite diagonal
matrices. All the matrices V, v, wo, a®, and B8® are
time independent.
It is of interest to note that when U (¢) satisfies (4.49)
or, equivalently, when w (¢) satisfies (3.11), we can write
Up=vu.®)v, (4.52)
where V is some time independent unitary matrix and
Ua(2) is a diagonal matrix. In this case, if we make a
unitary transformation on the canonical annihilation
operators &, (2), viz.,
o) > a' ()= V)\,‘d,.(t) s (4.53)

26 A matrix will be said to be an analytic signal, if all its matrix
elements are analytic signals.
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A

we obtain from (4.1) the following expression for d)’(¢):

i ()= {Ua@ ' (O —i{ Ua(D} / (U

X{VE()hdt'. (4.54)

We note that unlike in (4.1), the different modes are
now uncoupled and the problem becomes similar to
that relating to systems with one degree of freedom.

APPENDIX: GENERAL FORM OF A UNITARY
MATRIX THAT IS AN ANALYTIC SIGNAL

In this Appendix we will show that if a unitary
matrix U(f) is an analytic signal and satisfies the
condition

LU@,UF)]=0 forallyt,

it must be of the form given by (4.50).
Since U (#) commutes with U(#), we can find a time-
independent unitary matrix ¥ such that

U=vu,0v, (A2)

where U,(¢) is a diagonal matrix whose elements are
unimodular. Thus if U(#) is an analytic signal, so is
Uy(¢). The matrix elements of Ug(f), which are now
unimodular analytic signals, must therefore be of the

form?2s
LUa(t) = exp(—ima—iwant) [T Br®.
k

(A1)

(A3)

Here v, is a real constant, woy is a non-negative constant
and J]. denotes product over an arbitrary number of
Blaschke factors

t—an W+, ®

By® = ,
f—an ® — i@, ®)

(A4)

where a) ® are real and 8, ‘¥ are non-negative constants.
We can therefore write

Ua(t)=exp(—iy—iwdt) IT (1—a®+ig®)
k

X (1—a®—ig®)1, (AS)

where v and «® are real diagonal matrices; wo and 3
are non-negative definite diagonal matrices, 1 is the
identity matrix and J] denotes product over an arbi-
trary number of factors.

From (AS5) and (A2), we conclude that U () must be
of the form given by (4.50), viz.,

U(lf) = Jte—ir—iwot H (tl_a(k)_l_iﬁ (k))
k

X ((1—a®—i8®)1Y . (A6)



