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Abstract

The notion of phase synchronization in time-delay systems, exhibiting highly non-phase-coherent
attractors, has not been realized yet even though it has been well studied in chaotic dynamical sys-
tems without delay. We report the identification of phase synchronization in coupled nonidentical
piece-wise linear and in coupled Mackey-Glass time-delay systems with highly non-phase-coherent
regimes. We show that there is a transition from non-synchronized behavior to phase and then
to generalized synchronization as a function of coupling strength. We have introduced a transfor-
mation to capture the phase of the non-phase coherent attractors, which works equally well for
both the time-delay systems. The instantaneous phases of the above coupled systems calculated
from the transformed attractors satisfy both the phase and mean frequency locking conditions.
These transitions are also characterized in terms of recurrence based indices, namely generalized
autocorrelation function P(t), correlation of probability of recurrence (CPR), joint probability of
recurrence (JPR) and similarity of probability of recurrence (SPR). We have quantified the dif-
ferent synchronization regimes in terms of these indices. The existence of phase synchronization
is also characterized by typical transitions in the Lyapunov exponents of the coupled time-delay

systems.
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Synchronization of chaotic oscillations is one of the most fundamental phe-
nomena exhibited by coupled chaotic oscillators. Since the identification of
chaotic synchronization in identical systems, several different kinds of synchro-
nizations such as generalized, phase, lag, anticipatory and intermittent synchro-
nizations have been identified and demonstrated. Among them chaotic phase
synchronization (CPS) plays a crucial role in understanding a large class of
weakly interacting nonlinear dynamical systems. Even though the notion of
CPS has been well studied in several low-dimensional chaotic dynamical systems
during the past decade, CPS in time-delay systems (which are effectively infinite-
dimensional) has not yet been identified and reported. A main problem here is
to define even the notion of phase itself due to the presence of intrinsic multiple
characteristic time scales of the chaotic attractors. Time-delay systems often
exhibit complicated non-phase-coherent attractors (which do not have proper
rotation around a fixed reference point) with many positive Lyapunov expo-
nents. Hence, the conventional techniques available in the literature to define
phase and to identify CPS cannot be used in the case of time-delay systems.
In order to overcome this difficulty, we have introduced a nonlinear transforma-
tion which transforms the non-phase-coherent chaotic/hyperchaotic attractors
of specific time-delay systems into phase-coherent attractors. The transformed
attractors allow for the use of conventional methods to identify phase and CPS
in time-delay systems. We have also confirmed the onset of phase and the tran-
sition from desynchronized state to phase synchronization and its subsequent
transition to generalized synchronization as a function of coupling strength us-
ing recurrence based indices. These results are also corroborated by the changes

in the Lyapunov exponents of the coupled time-delay systems.

I. INTRODUCTION

Synchronization of chaotic oscillations is a fundamental nonlinear phenomenon observed
in diverse areas of science and technology. Since the first identification of chaotic synchro-
nization, several types of synchronization have been identified and demonstrated both theo-

retically and experimentally |1, 2, 13, |4]. Complete (or identical) synchronization [3, |, 7, 18],



generalized synchronization |9, [10] and phase synchronization |11, 12, [13] are the three main
types of synchronization that have been characterized by the difference in the degree of
correlation between the interacting chaotic dynamical systems. Among these, chaotic phase
synchronization (CPS) has become the focus of recent research as it plays a crucial role
in understanding the behavior of a large class of weakly interacting dynamical systems in
diverse natural systems including circadian rhythm, cardio-respiratory systems, neural os-
cillators, population dynamics, etc [1, 2, 4]. Definition of CPS is a direct extension of the
classical definition of synchronization of periodic oscillations and can be referred to as en-
trainment between the phases of interacting chaotic systems, while the amplitudes remain
chaotic and, in general, non-correlated [14] (see also Appendix [Al).

The notion of CPS has been investigated so far in oscillators driven by external periodic
force [15, [16], chaotic oscillators with different natural frequencies and/or with parameter
mismatches [11, [17, [18, 19], arrays of coupled chaotic oscillators [14, 20] and also in es-
sentially different chaotic systems [21, 22]. In addition CPS has also been demonstrated
experimentally in various systems, such as electrical circuits |21, 23, 24, 125], lasers |26, [27],
fluids [28], biological systems [29, 130], climatology [31], etc. On the other hand CPS in
nonlinear time-delay systems, which form an important class of dynamical systems, have
not yet been identified and addressed. A main problem here is to define even the notion
of phase in time-delay systems due to the intrinsic multiple characteristic time scales in
these systems. Studying CPS in such chaotic time-delay systems is of considerable impor-
tance in many fields, as in understanding the behavior of nerve cells (neuroscience), where
memory effects play a prominent role, in physiological studies, in ecology, in lasers, etc
11,12, 4, 132, 133, 134, 135, 136].

While studying CPS, one usually encounters with the terminologies phase-coherent and
non-phase-coherent chaotic attractors. If the flow of a dynamical system has a proper ro-
tation around a fixed reference point, then the corresponding attractor is termed as phase-
coherent attractor. In contrast, if the flow does not have a proper rotation around a fixed
reference point then the corresponding attractor is called as non-phase-coherent attractor.
(More discussion on the distinction between the phase-coherent and non-phase-coherent
chaotic attractors along with an illustration is given below in Appendix [Al). While methods
have been well established in the literature to identify phase and to study CPS in phase-

coherent chaotic attractors (see again Appendix[Al), methods to identify phase of non-phase-



coherent chaotic attractors have not yet been well established. Even the most promising
approach based on the idea of curvature to calculate the phase of non-phase-coherent at-
tractors is limited to low-dimensional systems and unfortunately methods to identify phase
and to study CPS in time-delay systems which often posses highly complicated hyperchaotic
attractors have not yet been identified and reported.

Recently, we have pointed out briefly the identification of CPS in unidirectionally cou-
pled nonidentical time-delay systems exhibiting hyperchaos with highly non-phase-coherent
attractors [37]. In this paper we present our detailed results on the identification and exis-
tence of CPS in coupled piecewise-linear time-delay systems and in coupled Mackey-Glass
time-delay systems with parameter mismatches. We will show the entrainment of phases of
the coupled systems from asynchronous state and its subsequent transition to generalized
synchronization (GS) as a function of coupling strength. Phases of these time-delay sys-
tems are calculated using the Poincaré method after a newly introduced transformation of
the corresponding attractors, which transforms the original non-phase-coherent attractors
of both the systems into smeared limit cycle like attractors. Further, the existence of CPS
and GS in both the coupled systems are characterized by recently proposed methods based
on recurrence quantification analysis and in terms of Lyapunov exponents of the coupled

time-delay systems. Thus, the main results of our paper are

1. Suitable nonlinear transformation involving delay time can be introduced which trans-
forms a chaotic/hyperchaotic non-phase-coherent attractor to a phase-coherent attrac-
tor. Then it is easier to find the onset of CPS, GS, etc. using these transformed

phase-coherent attractors.

2. Recurrence based indices can be directly used to identify phase, CPS, GS from the

original non-phase-coherent chaotic/hyperchaotic attractors.

3. Lyapunov exponents also work as a good guide for the synchronization transitions

involving chaotic /hyperchaotic non-phase-coherent attractors.

The plan of the paper is as follows. In Sec. II, a brief discussion about the concept of
CPS (the possibility of estimation of the phase in chaotic systems is presented in detail in
Appendix [A]) and details of the time-delay systems, namely, piece-wise linear time-delay

system and Mackey-Glass system under investigation are presented. In Sec. III, we point



out the existence of CPS and GS in unidirectionally coupled piecewise-linear time-delay sys-
tems using the Poincaré section technique (after the introduced transformation), recurrence
quantification analysis and Lyapunov exponents of the coupled systems. We will also discuss
the existence of CPS and GS in unidirectionally coupled Mackey-Glass time-delay systems
in Sec. IV, using the above three different approaches. Finally in Sec. V, we summarize our

results.

II. CPS AND TIME-DELAY SYSTEMS

CPS has been studied extensively during the last decade in various nonlinear dynamical
systems as discussed in the introduction. However, only a few methods have been available
in the literature [1, 4] (for more details see Appendix [A]) to calculate the phase of chaotic
attractors but unfortunately some of these measures are restricted to phase-coherent chaotic
attractors, while the others to non-phase-coherent chaotic attractors of low-dimensional
systems. It is to be noted that these conventional methods available so far in the literature
(as discussed briefly in the Appendix [A]) to identify phase of the phase-coherent /non-phase-
coherent attractors cannot be used in the case of time-delay systems in general, as such
systems will very often exhibit more complicated attractors with more than one positive
Lyapunov exponents. Correspondingly methods to calculate the phase of non-phase-coherent
hyperchaotic attractors of time-delay systems are not readily available. The most promising
approach available in the literature to calculate the phase of non-phase-coherent attractors
is based on the concept of curvature [38], but this is often restricted to low-dimensional
systems. However, we find that this procedure does not work in the case of nonlinear
time-delay systems in general, where very often the attractor is non-phase-coherent and
high-dimensional. Hence defining and estimating phase from the hyperchaotic attractors of
the time-delay systems itself is a challenging task and so specialized techniques/tools have
to be identified to introduce the notion of phase in such systems.

It is to be noted that a variety of other nonlinear techniques such as mutual information,
recurrence analysis, predictability etc. can be used to identify basic types of synchroniza-
tion [39]. In particular, mutual information, predictability and their variants have been used
for characterizing the existence of complete synchronization, generalized synchronization and

the interdependencies among the measured time series of dynamical systems [1, 40, 41, [42].



Mutual information can also be used to measure the degree of PS [43], see also Sec. [ITAl
below, provided that phase is already defined. Recently, recurrence based indices are shown
to be excellent quantifiers [39] of basic kinds of synchronization including CPS in low di-
mensional systems and even in the case of noisy, non-stationary data’s. However, as far as
we know predictability cannot be used either to define or to identify PS. In any case these
measures have not been used so far to identify phase or CPS in time-delay systems.

In order to define/estimate phase and CPS in time-delay systems, in this paper we have
introduced three different approaches. Firstly, we have introduced a nonlinear transforma-
tion involving time-delay variable that transforms the non-phase-coherent attractors into
phase-coherent attractors. After this transformation of the original non-phase-coherent at-
tractor, the transformed attractor allows one to use the conventional techniques. Next, we
have used the recently introduced recurrence based indices for the first time in time-delay
systems to identify the onset of PS and subsequent transition to GS. Finally, the transition
is also confirmed by the changes in the spectrum of Lyapunov exponents of the coupled
time-delay system. Further, we find that all these three approaches are in good agreement
with the indication of onset of CPS.

As prototypical examples of nonlinear time-delay systems, we consider two specific mod-
els, namely, (i) a piece-wise linear time-delay system [44, |45, 146] and (ii) the Mackey-Glass
time-delay system [32,47] and investigate the existence of CPS in the corresponding coupled

systems.

A. Piece-wise linear time-delay system

The following scalar first order delay differential equation was introduced by Lu and

He [44] and discussed in detail by Thangavel et al. [45],

(t) = —ax(t) +0f(x(t — 1)), (1)



where a and b are parameters, 7 is the time-delay and f is an odd piecewise linear function

defined as

0, r < —4/3
—1.52—2, —4/3 <z < —08
flz) = z, —08<z<08 (2)
—152+2, 08<x<4/3
\ 0, r>4/3

Recently, we have reported [46] that systems of the form (II) exhibit hyperchaotic
behavior for suitable parametric values. For our present study, we find that for the choice
of the parameters a = 1.0,6 = 1.2 and 7 = 15.0 with the initial condition z(¢) = 0.9,t €
(—15,0), Eq. (@) exhibits hyperchaos. Detailed linear stability analysis, bifurcation analysis
and transient effects have been studied in ref. |46]. The corresponding pseudoattractor is
shown in the Fig. [h. The hyperchaotic nature of Eq. () is confirmed by the existence of
multiple positive Lyapunov exponents. The first ten maximal Lyapunov exponents for the
above choice of parameters as a function of delay time 7 € (2,29) are shown in Fig. 2h (the
spectrum of Lyapunov exponents in this paper are calculated using the procedure suggested
by Farmer [47]).

Studying synchronization in coupled systems of the form () is particularly appealing
because of the facts that (i) system (II) exhibits a hyperchaotic attractor even for very small
values of the delay time 7 for appropriate values of the system parameters (the spectrum of
Lyapunov exponents as a function of delay time 7 is shown in Fig. Zh) and (ii) it is easily
experimentally realizable as the piece-wise linear function can be constructed readily and

only low values of delay time are required for construction of a hyperchaotic attractor.

B. Mackey-Glass system

The second model we have used for the investigation of CPS is a model of blood produc-
tion due to Mackey and Glass [32]. It is represented again by Eq. () but with the following

functional form for f(z)

f(z) =2t —7)/(1.0 + 2(t — 7)'%). (3)
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FIG. 1: (a) The non-phase coherent hyperchaotic attractor of the drive (Zh) and (b) The non-phase

coherent hyperchaotic attractor of the uncoupled response ([@b)

Here, x(t) represents the concentration of blood at time ¢, when it is produced, and
x(t — 7) is the concentration when the ”request” for more blood is made. In patients with
leukemia, the time 7 may become excessively large, and the concentration of blood will
oscillate, or if 7 is even larger, the concentration can vary chaotically, as demonstrated by
Mackey and Glass [32, 147]. This is a prototype model for delay systems exhibiting highly
non-phase-coherent chaotic attractors and even hyperchaotic attractors for large value of
delay time (7 > 28). The pseudo-chaotic attractor of the Mackey-Glass system (II) and (3]
for the standard parameter values a = 0.1,b = 0.2 and 7 = 20 with the initial condition
x(t) = 0.8,t € (—20,0) is shown in the Fig.[I0h in Sec. IV below. The spectrum of Lyapunov

exponents as a function of delay time 7 € (14, 37) is shown in Fig. Oh (see Sec. IV below).

III. CPS IN COUPLED PIECEWISE-LINEAR TIME-DELAY SYSTEMS

We first consider the following unidirectionally coupled drive z;(t) and response xs(t)

systems, which we have recently studied in detail in [48, |49],

Il(t) = —Cll'l(t) + blf(l'l(t - T)), (4&)
Ty(t) = —axa(t) + baf (w2t — 7)) + b3 f(z1(t — 7)), (4b)

where by, by and bz are constants, a > 0, 7 is the delay time and f(z) is the piece-wise linear

function of the form (2)).



We have chosen the values of parameters as (same values as studied in ref. [37]) a =
1.0,b; = 1.2,bo = 1.1 and 7 = 15. For this parametric choice, in the absence of coupling,
the drive z1(t) and the response z5(t) systems evolve independently. Further in this case,
both the drive x;(t) and the response x4 (t) systems exhibit hyperchaotic attractors with five
positive Lyapunov exponents and four positive Lyapunov exponents, respectively, i.e. both
subsystems are qualitatively different (due to b; # by). The corresponding attractors are
shown in Figs. [Th and [Ib, respectively, which clearly show the non-phase-coherent nature.
The Kaplan and Yorke [47, 50] dimension for the above attractors turn out to be 8.40 and
7.01, respectively, obtained by using the formula

Dy = j+ 2= )
[ Aj+1]
where j is the largest integer for which Ay + ... + A; > 0. The parameter b3 is the coupling

strength of the unidirectional nonlinear coupling ([4b), while the parameters b; and by play
the role of parameter mismatch resulting in nonidentical coupled time-delay systems. The
spectrum of the first ten largest Lyapunov exponents of the uncoupled system (Fh) for the
values of the parameters a = 1.0 and b; = 1.2 in the range of time-delay 7 € (2,29) is shown
in Fig. Zh and that of the system (db) for the parameter value by = 1.1 in the same range of
delay time is also shown in Fig. 2b.

Now the task is to identify and to characterize the existence of CPS in the coupled time-
delay systems (4l), possessing highly non-phase-coherent hyperchaotic attractors, when the
coupling is introduced (b3 > 0). In the following we present three different approaches to

study CPS in coupled piecewise-linear time-delay systems (4)).

A. CPS from Poincaré section of the transformed attractor (Fig. Bb)

We introduce a transformation to successfully capture the phase in the present problem.
It transforms the non-phase coherent attractor (Fig.Bh) into a smeared limit cycle-like form
with well-defined rotations around one center (Fig.[Bb). This transformation is performed

by introducing the new state variable
2(t+71)=2(t+7,7) = 1)1 (t + 7) /21 (t + T), (6)

where 7 is the optimal value of delay time to be chosen (so as to rescale the original non-phase

coherent attractor into a smeared limit cycle-like form), and then we plot the above attractor
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FIG. 2: The first ten maximal Lyapunov exponents A, of (a) the scalar time-delay system ()
and (2] or ([ @h) for the parameter values a = 1.0,b; = 1.2, 7 € (2,29) and (b) the scalar time-delay
system (db) for the parameter values a = 1.0,b; = 1.1 in the same range of delay time in the

absence of the coupling bs.
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FIG. 3: (a) The non-phase coherent hyperchaotic attractor of the uncoupled drive [@h) and (b)
Transformed attractor in the x;(t+7) and z(¢+7) space. Here the Poincaré points are represented

as open circles.

(Fig.Bh) in the (z1(t+7), 2(t + 7)) phase space. The functional form of this transformation
(along with a delay time 7) has been identified by generalizing the transformation used in
the case of chaotic atractors in the Lorenz system [4], so as to unfold the original non-phase-
coherent attractor (Fig. Bh) into a phase-coherent attractor. We find the optimal value of
7 for the attractor (Fig. Bh) of the piecewise linear time-delay system to be 1.6. It is to be
noted that on closer examination of the transformed attractor (Fig.Bb) in the vicinity of the
common center, it does not have any closed loop (unlike the case of the original attractor
(Fig.Bk)) even though the trajectories show sharp turns in some regime of the phase space.
If it is so, such closed loops will lead to phase mismatch, and one cannot obtain exact
matching of phases of both the drive and response systems as shown in Fig. 4 and discussed
below. Now the attractor (Fig. [Bb) looks indeed like a smeared limit cycle with nearly well
defined rotations around a fixed center.

It is to be noted that the above transformation (@) can be applied to the non-phase-
coherent attractors of any time-delay system in general, except for the fact that the optimal
value of 7 should be chosen for each system appropriately through trial and error by requir-
ing the geometrical structure of the transformed attractor to have a fixed center of rotation.
We have adopted here a geometric approach for the selection of 7 and look for an optimum

transform which leads to a phase-coherent structure. This is indeed demonstrated for the

12
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FIG. 4: Phase differences (A¢p = ¢5(t) — ¢5(t)) between the systems (Fh) and @b) for different
values of the coupling strength b3 = 0.0,1.0,1.3,1.4 and 1.5.

attractor of Mackey-Glass system in the next section. The motivation behind this transfor-
mation has came from the transformation (A6]) which is well known in the case of Lorenz
attractor discussed in the Appendix [Al The main point that we want to stress here is that
even for highly non-phase-coherent hyperchaotic attractors of time-delay systems, there is
every possibility to identify suitable transformations of the type (@) to unfold the attractor
and to identify phase as demonstrated in the above two typical cases of time-delay systems.
One may ask a pertinent question here as to whether there exists a deeper underlying math-
ematical structure regarding such a transform. We do not have an answer to this question
at present and this remains an open problem.

Therefore, the phase of the transformed attractor can be now defined based on an appro-
priate Poincaré section which is transversally crossed by all trajectories using Eq. (A4)) given

in Appendix A. Open circles in Fig. Bb correspond to the Poincaré points of the smeared
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limit-cycle-like attractor. Phases, ¢3(t) and ¢3(t), of the drive z1(t) and the response z5(t)
systems, respectively, are calculated from the state variables z;(t+7) and 2o(t+7) according
to Eq. (6). The existence of 1:1 CPS between the systems (4)) is characterized by the phase

locking condition

|91(t) — ¢5(t)] < const. (7)

The phase differences (A¢ = ¢5(t) — ¢5(t)) between the systems ([@h) and [@b) are shown
in Fig. [ for different values of the coupling strength b3. The phase difference A¢ between
the systems (k) and (db) for b3 = 0.0 (uncoupled) increases monotonically as a function of
time confirming that both systems are in an asynchronous state (also nonidentical) in the
absence of coupling between them. For the values of b3 = 1.0 and 1.3, the phase slips in
the corresponding phase difference A¢ show that the systems are in a transition state. The
strong boundedness of the phase difference specified by Eq. () is obtained for b3 > 1.382
and it becomes zero for the value of the coupling strength b3 = 1.5, showing a high quality
CPS.

The mean frequency of the chaotic oscillations is defined as [14, 22]

T

s = {d5,(0)/dt) = Jim [ o)t (8)

T=oo L Jo

and the 1:1 CPS between the drive x;(t) and the response x5(t) systems can also be char-
acterized by a weaker condition of frequency locking, that is, the equality of their mean
frequencies ; = . The mean frequency ratio 25/€; and its difference AQ = Qy —
are shown in Fig. Bh as a function of the coupling strength b3 € (0,3). It is also evident
from this figure that the mean frequency locking criterion (8)) is satisfied for b3 > 1.382 from
which both the frequency ratio 5/ and their difference AQ) show substantial saturation
in their values confirming the strong boundedness in the phases of both the systems.

The above results can be further strengthened by measuring the degree of PS quantita-
tively through the concept mutual information between the cyclic phases [43]

M = L 2

where p; (i) and po(j) are the probabilities when the phases ¢; and ¢, are in the ith and
jth bins, respectively, and p(i, j) is the joint probability that ¢; is in the ith bin and ¢ in

the jth bin. However, it is to be noted that mutual information between the phases can be

14



used only to characterize the degree of PS provided phase has already been defined /known.
Hence mutual information can be used only as an additional quantifier for measuring the
degree of phase synchronization. Mutual information M as a function of coupling strength
by € (0,3) is shown in Fig. Bb, which clearly indicates the high degree of PS for b3 > 1.382
in good agreement with the frequency ratio €25/ and their difference AQ2 shown in Fig. Bh.

B. CPS from recurrence quantification analysis

The complex synchronization phenomena in the coupled time-delay systems (@) can also
be analyzed by means of the very recently proposed methods based on recurrence plots [39,
51]. These methods help to identify and quantify CPS (particularly in non-phase coherent
attractors) and GS.

For this purpose, the generalized autocorrelation function P(t) has been introduced in

[39,151] as

P() = 53 2O~ 11X, = i) (10

where © is the Heaviside function, X; is the ith data corresponding to either the drive
variable z; or the response variable x5 specified by Eqs. () and € is a predefined threshold.
||.|| is the Euclidean norm and N is the number of data points. P(t) can be considered as
a statistical measure about how often ¢ has increased by 27 or multiples of 27 within the
time t in the original space. If two systems are in CPS, their phases increase on average
by K.2m, where K is a natural number, within the same time interval ¢t. The value of K
corresponds to the number of cycles when || X (¢t + 7)) — X (t)|| ~ 0, or equivalently when
|| X (t+T)—X(t)|| < €, where T is the period of the system. Hence, looking at the coincidence
of the positions of the maxima of P(t) for both systems, one can qualitatively identify CPS.

A criterion to quantify CPS is the cross correlation coefficient between the drive, P;(t),

and the response, P5(t), which can be defined as Correlation of Probability of Recurrence

(CPR)
CPR = <P1(t)P2(t)>/0'10'2, (11)

where ]5172 means that the mean value has been subtracted and o; 9 are the standard de-

viations of P;(t) and Py(t) respectively. If both systems are in CPS, the probability of
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recurrence is maximal at the same time ¢t and CPR ~ 1. If they are not in CPS, the maxima
do not occur simultaneously and hence one can expect a drift in both the probability of
recurrences and low values of CPR.

When the systems ([]) are in generalized synchronization, two close states in the phase
space of the drive variable correspond to that of the response. Hence the neighborhood
identity is preserved in phase space. Since the recurrence plots are nothing but a record
of the neighborhood of each point in the phase space, one can expect that their respective
recurrence plots are almost identical. Based on these facts two indices are defined to quantify
GS.

First, the authors of [51] proposed the Joint Probability of Recurrences (JPR),
3 2y Ol = [|1Xi = X,1))0(e, — ||Y; = j||) — RR

P e
JPR 1-RR

(12)

where RR is rate of recurrence, €, and ¢, are thresholds corresponding to the drive and
response systems respectively and X; is the ith data corresponding to the drive variable x
and Y; is the ¢th data corresponding to the response variable x5 specified by Eqs. (). RR
measures the density of recurrence points and it is fixed as 0.02 [51]. JPR is close to 1 for
systems in GS and is small when they are not in GS. The second index depends on the
coincidence of the probability of recurrence, which is defined as Similarity of Probability of

Recurrence (SPR),
SPR=1—{((Pi(t) — Py(t))*) /o102 (13)

SPR is of order 1 if both systems are in GS and approximately zero or negative if they evolve
independently.

Now, we will apply these concepts to the original (non-transformed) attractor (Fig. Bh).
We estimate these recurrence based measures from 5000 data points after sufficient tran-
sients with the integration step h = 0.01 and sampling rate At = 100. The generalized
autocorrelation functions P;(t) and Py(t) (Fig. [6h) for the coupling by = 0.6 show that the
maxima of both systems do not occur simultaneously and there exists a drift between them,
so there is no synchronization at all. This is also reflected in the rather low value of CPR
= 0.381. For b3 € (0.78,1.381), from Fig. [1l we observe the first substantial increase of
recurrence reaching CPR ~ 0.5 —0.6. Looking into the details of the generalized correlation

functions P(t), we find that now the main oscillatory dynamics becomes locked, i.e. the
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main maxima of P, and P, coincide. For by € (1.382,2.2) CPR reaches almost 1 as seen in
Fig. [, while now the positions of all maxima of P, and P, are also in agreement and this is
in accordance with strongly bounded nature of phase differences. This is a strong indication
for CPS. Note, however that the heights of the peaks are clearly different (Fig. Bb). The
differences in the peak heights indicate that there is no strong interrelation in the ampli-
tudes. Further increase of the coupling (here b3 = 2.21) leads to the coincidence of both the
positions and the heights of the peaks (Fig. [Bk) referring to GS in systems (). This is also
confirmed from the maximal values of the indices JPR = 1 and SPR = 1, which is due to
the strong correlation in the amplitudes of both systems. It is clear from the construction of
SPR that it measures the similarity between the generalized autocorrelation functions P;(t)
and P»(t). In the regimes of CPS, as the generalized autocorrelation functions coincide in
almost all the regimes except for the height of its maxima, it is also quantified by larger
values of SPR. The index SPR in Fig. [ also shows the onset of CPS and it fluctuates around
the value 1 in the regime of CPS (b3 € (1.382,2.2)) before reaching saturation confirming
the strong correlation in the amplitudes of both the systems, thereby quantifying the exis-
tence of GS. The transition from non-synchronized state via CPS to GS is characterized by
the maximal values of CPR, SPR and JPR (Fig. ). As expected from the construction of
these functions, CPR refers mainly to the onset of CPS, whereas JPR quantifies clearly the
onset of GS and SPR indicates both the onset of CPS and GS. In this connection, we have
also confirmed the onset and existence of GS by using the auxiliary system approach [52]

introduced by Abarbanel et al for the range of the coupling strength b3 > 2.2.

C. CPS from spectrum of Lyapunov exponents

The transition from non-synchronization to CPS is also characterized by changes in the
Lyapunov exponents of the coupled time-delay systems (]). The spectrum of the eight largest
Lyapunov exponents of the coupled systems is shown in Fig. 8l From this figure one can
find that all the positive Lyapunov exponents, except the largest one ()\g,%?m), corresponding
to the response system suddenly become negative at the value of the coupling strength
bs = 0.78 which is an indication of the onset of transition regime. One may also note
that at this value of b3 already one of the Lyapunov exponents of the response system

attains negative saturation while the another one reaches negative saturation slightly above

17



bs = 0.78. This is a strong indication that in this rather complex attractor the amplitudes
become somewhat interrelated already at the transition to CPS (as in the funnel attractor
[38] of the Réssler system). Also the third positive Lyapunov exponent of the response
system gradually becomes more negative from b3 = 0.78 and reaches its saturation value
at b3 = 1.381 confirming the onset of CPS (which is also indicated by the transition of
the indices of CPR and SPR in Fig. [7 in the range of b3 € (0.78,1.381)). It is interesting
to note that the Lyapunov exponents of the response system )\52) (other than )\ﬁ,%?m) are
changing already at the early stage of CPS (b3 € (0.78,1.381)), where the complete CPS is
not yet attained. This has also been observed for the onset of CPS in phase-coherent and

non-phase-coherent oscillators without time-delay |11, 122, [54].

IV. CPS IN COUPLED MACKEY-GLASS SYSTEMS

In this section, we will bring out the existence of CPS in coupled Mackey-Glass systems

of the form

i1 (t) = — a1 (t) + by (t — 7) /(1.0 + 21 (t — 7)1°), (14a)
To(t) = — axo(t) + boxo(t — 7) /(1.0 + 25 (t — 7)1°)
+b31’1(t—T)/(1.0+l’1(t—7)10), (14b)

where a, by, by are constants, b3 is the coupling parameter, and 7 is the delay time.

We have chosen the parameter values (cf. [32, 47]) as a = 0.1,b; = 0.2,by = 0.205,
7 = 20 and varied the coupling strength b3. The non-phase-coherent chaotic attractor of
the system x(t), Eq. (I4h), for the above choice of parameters is shown in Fig. [[0h and it
possesses one positive and one zero Lyapunov exponents. Similarly, the second system z(t),
Eq. ([[@b), also exhibits a non-phase-coherent chaotic attractor with one positive and one
zero Lyapunov exponents for the chosen parametric values in the absence of the coupling
strength b3. The parameters b; and by contribute to the parameter mismatch between the
systems x1(t) and z5(t). The spectrum of the first four maximal Lyapunov exponents of both
systems (I4h) and (I4b) are shown in Figs. @ and [@b respectively as a function of delay
time 7 € (14, 37) when b3 = 0. The Kaplan and Yorke [47,50] dimension calculated using (&)
for the present systems ((IZh) and (I4b)) work out to be 2.27969 and 2.21096, respectively.
Now, the existence of CPS as a function of the coupling strength in the coupled Mackey-
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Glass systems (I4]) will be discussed using the above three approaches used for identifying

CPS in coupled piecewise-linear time-delay systems ().

A. CPS from Poincaré section of the transformed attractor (Fig. 10b)

The non-phase-coherent chaotic attractor (Fig. I0h) of the Mackey-Glass system is trans-
formed into a smeared limit cycle-like attractor (Fig. [[0b) using the same transformation
([6) as used for the piecewise-linear time-delay systems. For the attractor (Fig. [[0h) of the
Mackey-Glass system, the optimal value of the delay time 7 in Eq. (6]) is found to be 8.0.
The Poincaré points are shown as open circles in the Fig. [0b from which the instantaneous
phase ¢3(t) is calculated using (A4]). The existence of CPS in the coupled Mackey-Glass
systems (I4]) is also characterized by the phase locking condition (7)) as shown in Fig. [l
The phase differences A¢p = ¢%(t) — ¢5(t) between the systems (I4h) and (I4b) for the values
of the coupling strength b3 = 0.04,0.08,0.11,0.12 and 0.3 are shown in Fig.[IIl For the value
of the coupling strength b3 = 0.3, there exists a strong boundedness in the phase difference
showing high quality CPS. The mean frequency ratio {3/ calculated from (R)) along with
the mean frequency difference A€} is shown in the Fig. [2h. The value of mean frequency
ratio {25/€; =~ 1 in the range of b3 € (0.12,0.23) corresponding to the transition regime
(which is also to be confirmed from the indices CPR and JPR in the next subsection), see
the inset of Fig. [2h. Similarly the mean frequency difference is also A2 ~ 0 confirming
the transition regime. For the value of b3 > 0.23 both quantities Q3/€; and AQ acquire the
complete saturation in their values confirming the existence of CPS. Further, the mutual
information calculated using Eq. (@) clearly indicates the increase in the degree of PS for
the value of coupling strength b3 > 0.23 as shown in Fig. [I2b, which is also in agreement

with the frequency ratio €25/; and the mean frequency difference A2 shown in Fig. 12b.

B. CPS from recurrence quantification analysis

The existence of CPS from the original non-phase-coherent chaotic attractors of the
systems ([I4]) is analyzed in this section using the recurrence quantification measures defined
in the section II. B. We have estimated these measures again using a set of 5000 data points,

and the same integration step and the sampling rate as used in the case of coupled piecewise-
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linear time-delay systems (). The maxima of generalized autocorrelations of both the drive
Py (t) and the response Py(t) systems (Fig. [3h) do not occur simultaneously for by = 0.1,
which indicates the independent evolution of both the systems without any correlation and
this is also reflected in the rather low value of CPR = 0.4. For b3 = 0.3, the maxima of
both P;(t) and P»(t) are in good agreement (Fig.[I3b) and this shows the strongly bounded
phase difference. It is to be noted that even though both the maxima coincide, the heights of
the peaks are clearly of different magnitudes contributing to the fact that there is no strong
correlation in the amplitudes of both the systems indicating CPS. Both the positions and the
peaks are in coincidence (Fig. I3k) for the value of coupling strength b3 = 0.9 in accordance
with the strong correlation in the amplitudes of both the systems (I4]) corresponding to GS.
This is also reflected in the maximal values of both JPR=1 and SPR=1. The spectra of
CPR, JPR and SPR are shown in Fig.[T4l The onset of CPS is shown by the first substantial
increase of the index CPR at b3 = 0.11 and the transition regime is shown by the successive
plateaus of CPR in the range b3 € (0.12,0.23). The maximal values of CPR for b3 > 0.23
indeed confirm the existence of high quality CPS. The existence of GS is also confirmed
from both the indices JPR and SPR.

C. CPS from spectrum of Lyapunov exponents

The onset of CPS is also characterized by the changes in the spectrum of Lyapunov
exponents of the coupled Mackey-Glass systems (I4]). The spectrum of the first four largest
Lyapunov exponents of the coupled systems (I4)) is shown in Fig. The zero Lyapunov
exponent of the response system z(t) already becomes negative as soon as the coupling is
introduced and the onset of CPS is indicated by the negative saturation of the zero Lyapunov
exponent at b3 = 0.11. The positive Lyapunov exponent of the response system becomes
gradually negative in the transition regime (b3 € (0.12,0.23)) and it reaches its negative
saturation at b3 = 0.23 at which high quality CPS exists. The transition of the positive
Lyapunov exponent to negativity in this rather complex attractor is again a firm indication
of some degree of correlation in the amplitudes of both systems even before the onset of
CPS. As noted earlier, this behaviour of negative transition of positive Lyapunov exponent

of response system before CPS has also been observed in Refs. [11, 22, 54].
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V. SUMMARY AND CONCLUSION

We have identified and characterized the existence of CPS in both the coupled piecewise-
linear time-delay systems and in the coupled Mackey-Glass systems possessing highly non-
phase-coherent chaotic attractors. We have shown that there is a typical transition from
a non-synchronized state to CPS and subsequently to GS as a function of the coupling
strength in both systems. Similar results are obtained for different sampling intervals At
and for various values of delay time 7.

We have introduced a suitable transformation, which works equally well for both the
systems possessing characteristically distinct attractors (hyperchaotic attractor in piecewise
linear time-delay system and chaotic attractor in the Mackey-Glass system), to capture the
phase of the underling non-phase-coherent attractor. Both the phase and the frequency
locking criteria are satisfied by the instantaneous phases calculated from the transformed
attractors in both the piecewise-linear and the Mackey-Glass time-delay systems. The fre-
quency ratio and its difference as a function of coupling strength clearly shows the onset
of CPS in both cases. We have also characterized the existence of CPS and GS in terms
of recurrence based indices, namely generalized autocorrelation function P(t), CPR, JPR
and SPR and quantified the different synchronization regimes in terms of them. The onset
of CPS and GS are also clearly shown by the spectra of CPR, JPR and SPR. The above
transition is also confirmed by the changes in the spectrum of Lyapunov exponents. The
recurrence based technique as well as the new transformation are also appropriate for the
analysis of experimental data and we are now investigating the experimental verification of
these findings in nonlinear electronic circuits and in biological systems. Also the recurrence
based indices are found to be more appropriate for identifying the existence and analysis of
synchronizations, in particular CPS, and their onset in the case of nonlinear time-delay sys-
tems in general, where very often the attractor is non-phase-coherent and high-dimensional.
It is also to be emphasized that the recurrence based measures are more efficient than other
nonlinear techniques [39] such as mutual information, predictability, etc. These measures
have high potential for applications and we are also investigating the possibility of extending

these techniques to complex networks.
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APPENDIX A: CPSIN CHAOTIC SYSTEMS: PHASE-COHERENT AND NON-
PHASE-COHERENT ATTRACTORS

Definition of CPS in coupled chaotic systems is derived from the classical definition of
phase synchronization in periodic oscillators. Interacting chaotic systems are said to be
in phase synchronized state when there exists entrainment between phases of the systems,
while their amplitudes may remain chaotic and uncorrelated. In other words, CPS exists
when their respective frequencies and phases are locked [1, 4, [14]. To study CPS, one has
to identify a well defined phase variable in both coupled systems. If the flow of the chaotic
oscillators has a proper rotation around a certain reference point, the phase can be defined
in a straightforward way. In this case the corresponding attractor is referred to as a phase-
coherent attractor in the literature |1, 14, [14, [17, 137, I38] and the phase can be introduced

straightforwardly as [1, 4]

¢(t) = arctan(y(t)/x(t)). (A1)

A more general approach to define the phase in chaotic oscillators is the analytic signal

approach |1, 4] introduced in [55]. The analytic signal x(¢) is given by
X(t) = s(t) +8(t) = A(t) exp”™, (A2)

where §(t) denotes the Hilbert transform of the observed scalar time series s(t)

5(t) = %P.V. / h :(_tlzldt’, (A3)

where P.V. stands for the Cauchy principle value of the integral and this method is especially
useful for experimental applications |1, [4].
The phase of a chaotic attractor can also be defined based on an appropriate Poincaré

section which the chaotic trajectory crosses once for each rotation. Each crossing of the
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orbit with the Poincaré section corresponds to an increment of 2w of the phase, and the

phase in between two crosses is linearly interpolated [1, 4],

B(t) = 2k + 2 (h <t < tn) (A4)
let1 — tk
where tj is the time of kth crossing of the flow with the Poincaré section. For the phase
coherent chaotic oscillators, that is, for flows which have a proper rotation around a certain
reference point, the phases calculated by these three different ways are in good agreement |1,
4.

As a typical example, consider the Rossler system

T=—y—z (Aba)
y=x+ay, (A5b)
2=0.2+ z(z — 8.5). (A5c)

The topology of the attractor of the Rossler system is determined by the parameter a. For
a = 0.15, a phase-coherent attractor (see Fig.[I6h) is observed with rather simple topological
properties [56, [57], (where the projection of the chaotic attractor on the (x,y) plane looks
like a smeared limit cycle with the phase point always rotates around a fixed origin with
monotonically increasing phase) and hence the phase can be calculated straightforwardly as
discussed above.

However, in chaotic dynamics one often encounters non-phase-coherent attractors where
the flows are without a proper rotation around a fixed reference point (with the origin
coinciding with the center of rotation), in which case a single characteristic time scale does
not exist in general. In such circumstances it is difficult or impossible to find a proper center
of rotation and it is also intricate to find a Poincaré section that is crossed transversally by
all trajectories of the chaotic attractor. As a consequence such a non-phase-coherent chaotic
attractor is not characterized by a monotonically increasing phase. Hence phase of such a
non-phase-coherent attractor cannot be defined straightforwardly as in the case of phase-
coherent attractor. Therefore the above definitions of phase are no longer applicable for
non-phase-coherent chaotic attractors. So specialized techniques/tools have to be identified
to introduce phase in non-phase-coherent attractors.

It has also been demonstrated that certain non-phase-coherent chaotic attractors can be

transformed into smeared limit-cycle like attractors by introducing a suitable transformation
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of the original variables. For example, in the case of Lorenz attractor, a transformation of

the form

u(t) = a? + y? (AG)

is introduced [1] and the projected trajectory in the plane (u, z) resembles that of the Rossler
attractor. Now phase of the respective attractor is introduced using the above approaches
for phase-coherent attractors.

However, such a transformation does not always exist or can be found in the case of
non-phase-coherent attractors in general. Again, as a typical example consider the Rossler
system specified by Eq. (A3]). The topology of the Rossler attractor changes dramatically
if the parameter a exceeds 0.21 and the phase in this case is not well defined. Funnel (non-
phase-coherent) attractor for the value a = 0.25 is shown in Fig. [[6b. There are large and
small loops (see Fig. [[6b) on the (z,y) plane and it is not evident which phase gain should
be attributed to these loops and hence phase cannot be calculated simply as in the case of
phase-coherent chaotic attractor (Fig. [[6h) or through simple transformations. Therefore,
recently another definition of the phase based on the general idea of the curvature has been
proposed by Osipov et al [38]. For any two-dimensional curve r = (u,v) the angle velocity

at each point is
v = (ds/dt)/R,

where ds/dt = /42 + 2 is the speed along the curve and R = (42 + ©?)%2/(vii — 1) is the
radius of the curvature. If R > 0 at each point, then

. d®  ou—vu

Codt 2402

is always positive and hence the variable

)
o = /l/dt = arctan — (A7)

U
is a monotonically increasing function of time and can be considered as the phase of the
oscillator. These definitions of frequency and phase are general for any dynamical system if
the projection of the phase trajectory on some plane is a curve with a positive curvature. Now

for the non-phase-coherent Rossler attractor in the funnel regime, the projections of chaotic

trajectories on the plane (&, y) always rotate around the origin, and the phase can be defined
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as ® = arctan(y/z) [38]. However, it is not clear whether an appropriate plane can always

be found, on which the projected trajectories rotate around the origin for higher dimensional

chaotic systems as such systems will very often exhibit more complicated attractors with

more than one positive Lyapunov exponent as in the case of typical time-delay systems

discussed in the main part of this paper.
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FIG. 5: (Color online) (a) Mean frequency ratio /€21 and their difference AQ = Q9 — Q; as
a function of the coupling strength b3 € (0,3) and (b) Mutual information M as a function of

coupling strength bs.
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FIG. 8: Spectrum of first eight largest Lyapunov exponents of the coupled systems ([{]) as a function

of coupling strength b3 € (0, 3).
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of the coupling bs.
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FIG. 10: (a) The non-phase coherent chaotic attractor of the uncoupled drive (I4h) and (b)
Transformed attractor in the 1 (t47) and z(t+7) space along with the Poincaré points represented

as open circles.
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FIG. 11: Phase differences (A¢p = ¢7(t) — ¢5(t)) between the systems (IZh) and ([I4b) for different
values of the coupling strength b3 = 0.04,0.08,0.11,0.12 and 0.3.

33



3.2

001 ———— 105
2.4 ¢ : 1 H
e - |
45 16 I O L] 0.95 . | .
g 01 02 03 01 02 03
\(\l -‘\\/
G o8t
(@ |
O ST I I
0 0.2 0.4 0.6 0.8 1
b3
4.2
A
=
38 |
(b)
36 - - - -
0 0.2 0.4 0.6 0.8 1
b3
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function of coupling strength b3 € (0, 1).
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FIG. 16: Phase-coherent and funnel (non-phase-coherent) Rossler attractors with parameters (a)

a=0.15 and (b) a = 0.25
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