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Abstract

We introduce a simple method to estimate the system parameters in continuous
dynamical systems from the time series. In this method, we construct a modified sys-
tem by introducing some constants (controlling constants) into the given (original)
system. Then the system parameters and the controlling constants are determined
by solving a set of nonlinear simultaneous algebraic equations obtained from the
relation connecting original and modified systems. Finally, the method is extended
to find the form of the evolution equation of the system itself. The major advantage
of the method is that it needs only a minimal number of time series data and is ap-
plicable to dynamical systems of any dimension. The method also works extremely
well even in the presence of noise in the time series. This method is illustrated for
the case of Lorenz system.
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Time series analysis (both vector and scalar) is of considerable relevance [1,2,3]
to physical, chemical and biological systems as they very often exhibit tem-
poral chaotic motions. The main objective of time series analysis is to study
the detailed structure of the evolution equation of the underlying dynamical
system. This includes the number of independent variables, the form of the
flow functions and parameters involved in the system. In this Letter, the study
is focussed on the last aspect, namely, estimating the system parameters from
the time series when partial information about the system is known (the num-
ber of independent variables and the form of the flow functions), and then
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is not known. A few methods have been proposed [1,2,3] in the literature for
predicting the form of the flow functions. These include two point boundary
value problem approach [4], Euler integration approach to odes [1] and modi-
fications [5]. Also recent literature shows that the methods already proposed
for estimating the system parameters are based on the concept of synchro-
nization [6,7,8,9,10], Bayesian approach [11,12], least squares approach [13]
and by successive integration method [14]. In this Letter, a very simple and
efficient method for estimating the system parameters as well as the form of
the flow functions of continuous dynamical systems from the vector time series
is developed using the concept of controlling chaos [15,16,17], which can also
in principle be extended to scalar time series. In our method we construct a
modified system by inclusion of certain constants (controlling constants) in
the given original system so that the evolution of the modified system is con-
trolled to an equilibrium point. Then we find the dynamical relation between
the original and modified systems and thereby determine the unknown system
parameters and the controlling constants. After accomplishing this task, the
method is extended to determine the form of the evolution equations (flow
functions) itself for the system from which the time series was collected. This
method is applicable to time series obtained from a continuous system of any
dimensions and is also well suited for discrete dynamical systems as shown in
ref. [18] earlier. The method can also be used for the time series which contains
considerable amount of noise. Further this method can be used in the field of
controlling chaos to find the exact values of controlling constants to make the
given chaotically evolving system to be controlled to a required equilibrium
point.

Consider an arbitrary N-dimensional continuous chaotic dynamical system
(the original system),

&; = fi(x1, 22, ..., 2N D), (1)

where 7 = 1,2, 3,...N, and p denotes the system parameters of dimension M to
be determined. Here we assume that the function f is sufficiently smooth. Let
us construct a modified continuous dynamical system (the modified system)
as

Ui = filyr, y2, - yniP) + ki, 1 =12, N, (2)

where r;’s are constants (controlling constants). The crucial idea here is that
the Jacobian matrix which determines the stability of the equilibrium point is
the same for both the cases, namely the original and the modified systems. In
fact, the inclusion of x;’s in Eq. (2) makes the modified system to have an equi-
librium point (either stable or unstable) which is effectively different from the
equilibrium point (unstable) of the original system eventhough the Jacobian



matrix is not affected as stated above. From an examination of many maps
and flows we have found that there is in general a possibility of making the
modified system (2) to exhibit a stable equilibrium point by suitable inclusion
of constants r; eventhough the original system (1) evolves chaotically.

Let u;(t) be the deviation, that is, u;(t) = v;(t) — x;(t), of the trajectory
of the modified system from that of the original system due to the effect of
controlling constants (k;’s). After substituting the above relation in Eq. (2)
and making use of Taylor expansion, we obtain

1 N N 82f
_ g, I =1.2..... N. (3
2;2“1“168%8%){4‘ ! N (3)

Here the noteworthy point is that the above equation contains x whose evo-
lution is characterized by Eq. (1). Thus, while obtaining the solution to Eq.
(3) one has to solve Egs. (1) and (3) simultaneously.

Let us now consider the time evolution of the variables x;(t), y;(t) and w;(t),
statisfying Eqs. (1)-(3), respectively, at discrete tlme intervals. For this pur—
pose, we introduce the notation 2 = z;(JAL), y O = yi(jAL), and w; @) =
u;(jAt), where At is a small time interval and j = 0,1,2,3,.... With this
notation, the relation between the original and modified systems at definite
intervals can be written as

y =29 4 012, (4)

After the transient time kAt, let the modified system approaches an equilib-
rium point y; and hence the above equation becomes,

29 =g =kt LE+2,k+3,. (5)

Let z; ) (1), e zi(m_l) be the m set of data points of the given chaotic time se-

ries sampled at the time interval At from the original system (1). Substituting
this in the above equation, we get

2l =y n=0,1,2,..., (m—1). (6)

In the above relation, it is instructive to note that we need not bother about
the transients because the time series data is collected only after sufficient
transient time. So, the discrete time index (n) now can start from 0, that is



from the first data of the time series. It may be noted that here, u;’s are func-
tions of the parameters p and controlling constants k;, since the derivatives
of u;’s are having specific functional relations with the same parameters and
controlling constants through Eq. (3). Also, ugn)’s are obtained by solving Eq.
(3) numerically with time interval At (or submultiples of At). In general, for a
given set of time series data collected from the system (1) for a particlular set
of parameters, the right hand side of Eq. (6), that is, the equilibrium point,
depends on the value of controlling constants (x;’s) which can be varied by

means of u§°>. This freedom allows us to make any desired point in the region of

the attractor of the system as equilibrium point (y;) by choosing the values for
(0)

%

accordingly. For example, one can easily have z}o) as an equilibrium point
(0)

%

Uu

= 0 in Eq. (6). Similarly, an arbitrary point ¢; in the attractor

can be chosen as an equilibrium point if we start with u§°) =q — zi(o).

by setting u

Now it is possible to obtain the required number (M + N, N for k;’s and
M for p’s) of functional relations (implicit) between the unknown parameters
and controlling constants through Eq. (6). Once we have the required number
of functional relations, the next task is to solve them for the unknowns, that
is for x;’s and p’s, using a suitable numerical technique, for example by the
globally convergent Newton’s method [19].

After estimating the values of the parameters, its accuracy can be checked as
follows. Compare the equilibrium point (for example y; = zi(o) if we assume
u,@ = 0 in Eq. (6)) assumed to be exhibited by the modified system in the
above procedure with the equilibrium point calculated from Eq. (2) with the
values of parameters determined by the above method. The degree of close-
ness of these equilibrium points gives a measure of accuracy of the estimated
parameters.

As an illustration to our method, let us consider the Lorenz system

jfl :O'(LUQ —.]71), (7&)
Zifg =pT1 — Ty — T13, (7b)
1’3 =T1X9 — bl‘g, (7C)

where o, p and b are the unknown system (control) parameters. Then the
modified Lorenz system can be constructed as

1 =0(y2 — y1) + K1, (8a)
Y2 = pY1 — Y2 — Y1y3 + Ko, (8b)
Ys =y1y2 — bys + ks, (8c)

where k1, ko and k3 are constants to be determined which make (8) to exhibit
equilibrium point solution while the original system (with k1 = ko = k3 = 0)



Table 1. Convergence of o, p, b, k1, keand k3 in the Lorenz system

No. o p b K1 K2 K3

0 1.00000000 1.00000000 | 1.00000000 | 1.00000000 1.00000000 1.00000000
1 25.06611000 | -53.43927900 | 5.90702312 | -1.09685478 | -1.64477291 | 5.66012411
2 | 33.88597350 | 5.87195581 | 4.74703140 | -1.70082489 | -2.33269811 | 7.14465601
3 | -24.31336050 | 20.11146620 | 3.81209093 | -3.00648132 | -3.72360435 | 9.50270473
4 31.73494710 | 37.21100300 | 1.76763806 | -7.61414582 | -9.53379493 | 19.84796380
5 | -11.56754590 | 20.78649710 | 3.33689508 | -15.06851440 | -19.96489090 | 38.24238610
6 8.87479048 | 29.65454090 | 2.67975225 | -15.31294170 | -19.87467490 | 38.27824720
7 9.95266093 | 27.99241480 | 2.66686356 | -15.26076520 | -20.11294050 | 38.27375090
8 10.00000000 | 28.00000000 | 2.66666667 | -15.25561980 | -20.11136290 | 38.27364540
9 10.00000000 | 28.00000000 | 2.66666667 | -15.25561980 | -20.11136290 | 38.27364540
50 | 10.00000000 | 28.00000000 | 2.66666667 | -15.25561980 | -20.11136290 | 38.27364540
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Fig. 1. Convergence of the parameters o, p and b towards their exact values in the
Lorenz system.

exhibits chaotic solution. Then the equation (3) for the deviations, u; = y; —;,
1=1,2,3, becomes

—
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U =0 (ug — uy) + K1,
Uy = (p — x3)u1 — Uy — (1 + u1)u3 + Ko, (
123 - (1‘2 + U2)U1 + xiUg — bU3 + k3.

S

o O
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It may be noted that the presence of z1, xo and 3 in (9) indicates that one
has to solve Egs. (7) & (9) simultaneously.

Let (29,29,29), (21, 22, 20), ..., (2™ 20"V 2™ D) be the time series data
obtained from the Lorenz system at some arbitrary time interval with the
sampling rate At for an unknown set of system parameters. After assuming zi(o)
as the equilibrium point for the modified Lorenz system (that is by assigning
u,@ =0 in Eq. (6), so that y} = zi(o)) and substituting three data points zz-(o),

(1) 2

z; 7 and z;”' (one can in fact take any three successive data points but the

first data point has to be used as initial condition for z;) in Eq. (6), we get

I LY LR P )

z%z) + u?’ = z%o), zéz) + ug) = zgo), z§2) + u§2) = z?(,o). (10)

Note that the time derivatives of u;’s have specific functional relations with
the unknown parameters (o, p and b) and controlling constants (k1, ke and
k3) through Eq. (9), and hence u;’s are also functions of the same parameters
and controlling constants. Now we have six (implicit) functional relations for
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Fig. 2. The distribution of the values of the system parameters estimated from the
time series which contains random dynamical noise in the Lorenz system.

the six unknowns namely o, p, b, k1, ko and k3 through Eq. (10), in terms

of the equilibrium point (here z§°)) and the two sets of data points zi(l and

2(2)’ it = 1,2,3. To solve for these unknowns, we have to obtain values of

ugl), ugl), u:(),l), u§2), ug) and u§2) by solving Eqgs. (7)&(9) simultaneously so
that Eq. (10) is satisfied. This can be done, for example, by the globally
convergent Newton’s method [19] provided an initial guess is given to all the
unknown parameters. In this example, while obtaining the value of ugl) initial
EO) = zi(o) and ugo) = 0, respectively. Further,
the evaluation of u§2’ needs to reset SL’Z(I) = zi(l) in the numerical algorithm used
above. Similar procedure has to be followed if any other set of successive data
is used in place of ZZ-(O), zi(l) and 22(2) in Eq. (10). For illustration purpose, we
have used the numerically generated time series of the Lorenz system for the
system parameters ¢ = 10.0, p = 28.0 and b = 8/3 and solved the Eq. (10)
by globally convergent Newton’s method with an initial guess 1.0 to all the
unknowns ki, ks, k3, 0, p and b. The convergence of the system parameters
and controlling constants (x’s) is shown in the Table I, which shows that
the estimated values are indeed the exact values of the parameters at which
the time series data of the Lorenz system is generated. We also note that the
convergence is very rapid, which is further confirmed in Fig. (1). Note that if we
take a different set of data points from the time series as the equilibirium point,
the corresponding controlling contstants (x;’s) will be different eventhough the
system parameters are unaltered.

conditions should be taken as x

In order to show that our method is robust, a time series which contains
random dynamical noise of strength 10~% was additionaly introduced in the
above Lorenz model. In this case, the distribution of the values of the system
parameters estimated using 1000 data points is shown in fig. (2). Also in the
case of random observational noise of same strength, the distribution of the
values of the parameters is shown in fig. (3). The peaks about the true values
of the parameters in the above two figures indicate that our method works
extremely well even in the presence of dynamical noise or in the presence
observational noise in the time series.
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Fig. 3. The distribution of the values of the system parameters estimated from the
time series which contains random observational noise in the Lorenz system.

We have also carried out a similar analysis for the autonomous Chua’s Circuit
[16] in its dimensionless form,

.fIfl :Oé(l'g — T — h(ZIfl)), (11&)

To=1T1 — X9 + X3, (11b)

.fIfg = _/6.:(:2’ (11C)
where

h(z) = b +0.5(a — b)(|lz + 1] — |z — 1),

« and [ are parameters to be determined, and for the Rossler system,

T =—(22 + z3), (12a)
1;2:1'1 +a:)32, (12b)
.TL"3 =b+ (.f(fl — C)Slfg, (12C)

where a, b and ¢ are the parameters to be determined. In both the cases, we
are able to obtain the correct values of the parameters as in the case of the
Lorenz system.

Next, we wish to point out that it is also possible to extend the analysis to
predict the flow function of the system itself in principle, by assuming a poly-
nomial form (here as an illustration) for the functions f;(xy, z3, ...z x; p) in the
right hand side of Eq. (1), with unknown coefficients, and solving sufficient
number of Egs. (6) to determine them. One can as well choose other types
basis functions and our procedure is equally applicable here also. To illustrate
this idea, let us consider the same time series data used in the above exam-
ple of Lorenz system and assume that the form of the underlying dynamical
equations is unknown. Let us assume a general quadratic form for the flow
function (dynamical equations) as



i’l =C1X1 + CoT9 + C3T3 + C4X1T2 + C5T2T3 + CgXL1T3, (13&)
Ty = C7x1 + CgTg + Cok3 + C10T1T2 + C11%2T3 + C12213, (13b)
i’g =(13%1 + C14X9 + C15X3 + C16L1T2 + C17X2T3 + C18T1 X3, (13C)

where ¢;’s, 1 = 1,2, ...18, are parameters to be determined from the time series
data. Again following the method suggested above, we write the form of the
modified system as

Y1 =cC1y1 + CoYo + C3Y3 + Cay1y2 + CsY2y3 + CeYr1y3 + K1, (14a)
Y2 = C7y1 + c8Y2 + CoYz + Croy1Y2 + Cr1Y2y3 + Cray1Y3 + Ko, (14b)
Y3 = C13Y1 + C1aY2 + C15Y3 + Ci6¥1Y2 + C17Y2ys + C18Y1Y3 + Ka, (14c)

where k1, k9 and k3 are again the controlling constants to be determined so
that the above modified dynamical system exhibits a stable equilibrium point.
For this system, Eq. (3) becomes

121 =K1+ Ccluy + coug + C3U3 -+ (C4LL’2 -+ CeT3 + c4u2)u1

+(caz1 + c53 + Csugz)us + (c5xe + cox1 + Couy)us, (15a)
Ug = Ko + Ccruq + cgug + coug + (1022 + C103 + Crous)uq

+(c1071 + c11w3 + crpuz)us + (1129 + c1221 + 12U )us, (15b)
113 = K3 + C13U1 + C14Ug + C15U3 + (016372 + ci18r3 + 016u2)u1

+(c1671 + c17w3 + crrus)us + (1729 + c1871 + C18Uq )us. (15¢)

In order to determine the values of the parameters and controlling constants
(ci,1=1,2,...18, k1, k2 and k3), we have to solve 21 algebraic equations which
are actually constructed by making use of eight successive time series data in
Eq. (6) with assumption that the first one is the equilibrium point. Then the
required equations will be

Pt =" i=1,23 and j=1,2,..,7. (16)

Again we follow exactly the steps mentioned earlier for the Lorenz system
and obtain the values of the unknown parameters. The distribution of the
values of the parameters (¢;’s, i = 1,2, ...,18) obtained by solving Eq. (16)
using 3000 data of time series is shown is Fig. (4). And the values are found
to be distributed around {¢;}}* = {-10, 10, 0, 0, 0, 0, 28, —1, 0, 0, 0, —1,
0,0, —2.67, 1, 0, 0}. Substituting these values in Eq. (13) we obtain the flow
function (evolution equation) of the form

Ty =121 + G, (17a)
Tg = C7T1 + CgTo + C1221 T3, (17b)
T3 = C15T3 + C16T1 T2, (17¢c)
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with 0 = —c; = ¢ = 10.0, p = ¢; = 28.0, b = —c;5 = 2.67 and the remaining
constants c;g = 1.0 and ¢g = ¢35 = —1, which is nothing but the original
Lorenz system.

Finally, we would like to point out that the procedure outlined above also gives
a method to obtain the values of the controlling constants (k;) for a chaotic
system to be controlled to a desired equilibrium point if the form of evolution
equation is known.

To conclude, we have developed a very simple as well as useful method for
estimating the unknown system parameters of the continuous dynamical sys-
tems of any dimensions from the vector time series, if partial information is
known, namely the form of the dynamical equations . It has also been ex-
tended to obtain the form of the system equation itself at least in the case of
polynomial forms. Both the methods have been illustrated by means of vector
time series collected from the Lorenz system, while further confirmation has
been made with other systems including the Chua’s Circuit and Rossler sys-
tems. We have also checked that the method is robust againt dynamical and
observational noise and that the procedure exhibits a rapid convergence.
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