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Abstract. Coupled nonlinear Schr¨odinger equations (CNLS) very often represent wave propaga-
tion in optical media such as multicore fibers, photorefractive materials and so on. We consider
specifically the pulse propagation in integrable CNLS equations (generalized Manakov systems). We
point out that these systems possess novel exact soliton type pulses which are shape changing under
collision leading to an intensity redistribution. The shape changes correspond to linear fractional
transformations allowing for the possibility of construction of logic gates and Turing equivalent all
optical computers in homogeneous bulk media as shown by Steiglitz recently. Special cases of such
solitons correspond to the recently much discussed partially coherent stationary solitons (PCS). In
this paper, we review critically the recent developments regarding the above properties with particular
reference to 2-CNLS.
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1. Introduction

The recent advances in using the possibility of ultrashort optical pulses in long distance
communication via optical fibers [1] and the observation of self trapping of optical beams
[2] have motivated an intense study of both temporal as well as spatial optical solitons.
From a theoretical point of view, in the context of intense optical pulse propagation, the
governing equation for such wave propagation through single mode optical fibers is repre-
sented by the scalar nonlinear Schr¨odinger family of equations [3,4]. Here the formation of
optical solitons is due to the interplay between the spreading of the pulse and the nonlinear
response of the medium (Kerr effect) which leads to an intensity dependent phase change
(known as self phase modulation(SPM)) of the incident pulse. In the case of birefringent
fiber and multimode fibers, in addition to SPM one has to consider cross phase modula-
tion (XPM) which leads to a phase dependence of each mode on the intensity of the co-
propagating modes. Then the resulting propagation equation is a set of coupled nonlinear
Schrödinger (CNLS) equations [4], which are nonintegrable in general. The CNLS equa-
tions are ubiquitous in the sense that they have diverse applications such as in the theory of
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soliton wavelength division multiplexing [5], multi-channel bit parallel-wavelength optical
fiber networks [6], and so on. They even occur in the study of launching and propagation
of solitons along the three spines of an alpha-helix in protein [7].

The notion of optical spatial solitons is also receiving a great deal of attention recently.
Here the optical spatial solitons are formed due to an exact balance between the diffraction
and the self-focussing due to an optical nonlinearity. Very recently, it has been noted that
in the context of beam propagation in a Kerr-like photorefractive medium, which generally
exhibits very strong nonlinear effects with extremely low optical powers,the governing
equations are a set of N-CNLS equations. In recent years, there is an increasing interest in
studying soliton propagation through such photorefractive media after the observation of
so-called partially incoherent solitons through excitation by partially coherent light [8] and
also with an ordinary incandescent light bulb [9]. Following these observations, various
theoretical approaches like coherent density approach [10,11], diffractionless ray optics
limit approach [12], etc., have been developed. It has been observed both experimentally
and theoretically that the N-CNLS equations support a class of partially coherent stationary
solitons (PCS) [13].These PCS solutions have been interpreted as multisoliton complexes,
which are nonlinear superpositions of several fundamental solitons [14]. Further these PCS
are found to be of variable shape [13].

Though a large number of investigations exist in the literature on the study of soliton
propagation in CNLS equations, exact results are scarce, except for a special parametric
choice of the two coupled nonlinear Schr¨odinger equations, namely the Manakov model
[15]. In a recent work Radhakrishnan, Lakshmanan and Hietarinta [16] have obtained the
explicit 2-soliton solution of the integrable Manakov system and identified a novel shape
changing collision property in it. In a very recent study the present authors [17] have
extended the analysis to the case of integrable 3-CNLS and arbitrary N-CNLS systems,
where a similar property has been identified. In addition, it has been pointed out that the
PCS solutions available in the literature are special cases of these shape changing solitons.
Making use of the above shape changing collision property of the 2-CNLS (Manakov)
system as corresponding to a linear fractional transformation, Jakubowski, Steiglitz and
Squier [18] and later Steiglitz [19] have shown that universal logic gates and an all optical
computer equivalent to a Turing machine can be constructed at least in a mathematical
sense.

Our aim in this paper is to critically review the basic integrability properties of the inte-
grable N-CNLS systems, which are generalized Manakov systems, and point out the recent
developments in this connection. To start with inx2, we quickly point out how CNLS equa-
tions arise in connection with the study of intense optical pulse propagation in multimode
fibers and photorefractive materials. Inx3, we point out the integrability properties of the
2- and N-CNLS systems. Inx4, we deduce the explicit two-soliton solution of the above
systems and point out inx5 how shape changing collision of solitons takes place. By
treating the shape change as equivalent to a bilinear or linear fractional transformation, we
point out inx6 the procedure of Steiglitz [19] to construct universal logic gates and all op-
tical computers in bulk homogeneous media without interconnecting discrete components.
Then inx7, we show how the various stationary PCS solutions follow by particularising
the general soliton solutions of the above N-CNLS equations. Finally inx8 we summarize
our discussions.
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2. CNLS equations as governing equations for intense light propagation in multimode
fibers and photorefractive materials

As a prelude to the CNLS equations, let us consider the intense electromagnetic wave
propagation in a birefringent fiber (see for example, ref. [4]). Due to birefringence, a
single mode fiber can support two distinct modes of polarization which are orthogonal to
each other. These two modes can be viewed as the ordinary ray (O-ray) for which the
refractive index of the medium is constant along every direction of the incident ray and the
other as the extraordinary ray (E-ray) whose refractive index for the medium varies with
the direction of the incident ray. Then the nonlinear phase variation of a particular mode
not only depends on its own intensity but also on that of the co-propagating mode.

The study of such a system starts straight away from the Maxwell’s equations for elec-
tromagnetic wave propagation in a dielectric medium,

∇2~E� 1
c2

∂ 2~E
∂ t2 =�µ0

∂ 2~P
∂ t2 ; (1)

where~E(~r; t) is the electric field,µ0 represents the free space permeability,c is the velocity
of light and~P is the induced polarization which can be separated into two parts:~P =
~PL+

~PNL, where~PL(~r ; t) and~PNL(~r ; t) represent the linear and nonlinear parts of the induced
polarization. It is well known that they can be expressed in terms of the electric field as
[4]

~PL(~r; t) = ε0

Z ∞

�∞
χ (1)(t� t 0)~E(~r; t 0)dt 0; (2a)

~PNL(~r; t) = ε0

Z Z ∞

�∞

Z
χ (3)(t� t1; t� t2; t� t3)

...

~E(~r ; t1)~E(~r; t2)~E(~r ; t3)dt1dt2dt3; (2b)

whereε0 is the free space permittivity andχ ( j) is the jth order susceptibility tensor of rank
( j +1).

Considering wave propagation along elliptically birefringent optical fibers, the electric-
field ~E(~r ; t) can be written in the quasi-monochromatic approximation as

~E(~r ; t) =
1
2

�
ê1E1(z; t)+ ê2E2(z; t)

�
e�iω0t + c:c; (3)

wherez is the direction of propagation,t represents the retarded time and c.c stands for the
complex conjugate and the orthonormal polarization vectors ˆe1 andê2 can be expressed in
terms of the unit polarization vectors ˆx andŷ along thex andy directions respectively as

ê1 =
x̂+ ir ŷ

(1+ r2)1=2
; (4a)

ê2 =
rx̂� iŷ

(1+ r2)1=2
; (4b)

in which the parameterr is a measure of the extent of ellipticity. In eq. (3)E1 andE2 are the
complex amplitudes of the two polarization components at frequencyω 0. Considering the
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medium to be isotropic, the nonlinear polarization~PNL(~r; t) can be obtained by substituting
eqs (3) and (4) in eq. (2b).

Under a slowly varying approximation,E1 andE2 can be written as

Ej(z; t) = Fj(x;y)Qj(z; t)e
iK0 j z; j = 1;2; (5)

whereFj(x;y) andK0 j , j = 1;2; are the fiber mode distributions in the transverse directions
and the propagation constants for the two modes, respectively. Then the resulting evolution
equations forQj(z; t) can be deduced as

iQ1z+
i

vg1
Q1t �

k00

2
Q1tt +µ(jQ1j2+BjQ2j2)Q1 = 0;

iQ2z+
i

vg2
Q2t �

k00

2
Q2tt +µ(jQ2j2+BjQ1j2)Q2 = 0; (6)

wherevg1 andvg2 are the group velocities of the two co-propagating waves respectively,

k00 =
h

∂ 2K
∂ ω2

i
ω=ω0

accounts for the group velocity dispersion,µ is the nonlinearity coeffi-

cient andB= 2+2sin2ϑ
2+cos2 ϑ is the XPM coupling parameter (ϑ - birefringence ellipticity angle

which varies between 0 andπ2 ). Here we have considered the fiber to be lossless and ne-
glected the third order dispersion term. Further, we have also treated the fiber as strongly
birefringent and hence the four-wave mixing terms also can be neglected.

Introducing now the transformationT = t� z
2

�
1

vg1
+ 1

vg2

�
, Z = z, eqs (6) become

iQ1Z +
i
2

ρ̂Q1T �
k00

2
Q1TT +µ(jQ1j2+BjQ2j2)Q1 = 0;

iQ2Z�
i
2

ρ̂Q2T �
k00

2
Q2TT +µ(jQ2j2+BjQ1j2)Q2 = 0; (7)

whereρ̂ =

�
1

vg1
� 1

vg2

�
. Then, by using the transformation ˜q j =

�
T2

0
k00

� 1
2

Qj , j = 1;2; z0 =

jk00jZ
T2

0
, t 0 = T

T0
and redefiningz0 andt 0 asz andt respectively, in the anomalous dispersion

regime (k00 is negative), we end up with the following set of equations,

iq̃1z+ iρq̃1t +
1
2

q̃1tt +µ(jq̃1j2+Bjq̃2j2)q̃1 = 0;

iq̃2z� iρq̃2t +
1
2

q̃2tt +µ(jq̃2j2+Bjq̃1j2)q̃2 = 0; (8)

whereρ =
T0ρ̂
2jk00j andT0 is a measure of the pulse width.

Equations (8) can be further simplified with the transformation

q̃1 = q1e
i

�
ρ2z
2 �ρt

�
; q̃2 = q2e

i

�
ρ2z
2 +ρt

�
(9)

and then redefiningz as 2z, we obtain
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iq1z+q1tt +2µ(jq1j2+Bjq2j2)q1 = 0;

iq2z+q2tt +2µ(jq2j2+Bjq1j2)q2 = 0: (10)

Equation (10) is the 2-CNLS equation in the standard form. It is in general nonintegrable
and fails to satisfy the Painlev´e property unlessB= 1 [20,21]. In the later case, we have
the celebrated Manakov system of equations [15]

iq1z+q1tt +2µ(jq1j2+ jq2j2)q1 = 0;

iq2z+q2tt +2µ(jq1j2+ jq2j2)q2 = 0; (11)

which is a completely integrable soliton system (seex3 below).
Besides the above, there exists other situations also where the above type of CNLS

equations arise. For example, in the case of propagation of two optical fields which are
having different frequencies, the governing equations have a similar form [4] as eq. (10).
Similarly let us consider the simultaneous propagation of N-optical fields (beams) with
different wavelengths in a single mode fiber. This kind of simultaneous propagation of
multiple beams in a single mode fiber is known as wavelength division multiplexed (WDM)
transmission. Here also, by extending the above analysis, one can find that the governing
equations are related to a set of N-CNLS equations [4,6],

iq jz+qjtt +2µ(jqj j2+B
N

∑
p=1(6= j)

jqpj2)qj = 0; j = 1;2; :::N; (12)

whereqj(z; t) is the slowly varying amplitude of the jth wave. In addition, it is also found
that a similar set of N-CNLS equations represents the soliton propagation through an op-
tical fiber array, withqj representing the envelope in thejth core. System (12) is also
found to be nonintegrable, except for the special caseB= 1, when the Painlev´e property is
satisfied [20,21]. Also Lax pair exists for this case [22] and the corresponding integrable
equations can be written as

iq jz+qjtt +2µ
N

∑
p=1

jqpj2qj = 0; j = 1;2; :::N: (13)

Another important medium in which the above type of CNLS equations arise is the
photorefractive medium. Let us consider a beam propagating along thez axis, which is
allowed to diffract along thexdirection only in a photorefractive (PR) medium. The biasing
electric field is also applied externally along thex direction . The space-charge field~Esc=

Esc x̂ induced in the PR medium causes a change in the extraordinary ray index of refraction
ne and the perturbed extraordinary refractive indexn 0

e is given by [23]

n0e = n2
e�n4

er33Esc; (14)

wherene is the unperturbed refractive index andr 33 is the electro-optic coefficient. Consid-
ering the electric field component~E of the optical beam, it is found to satisfy the Helmholtz
equation

∇2~E+(k0n0e)
2~E = 0; (15)
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wherek0 =
2π
λ0

andλ0 is the free-space wavelength of the light wave. In the slowly varying

envelope, approximation�!E can be written as

~E = x̂Q(x;z)eikz; (16)

wherek = k0ne. Substituting eq. (16) in eq. (15) one obtains the following paraxial wave
equation of diffraction,

iQz+
1
2k

Qxx�
k0

2

�
n3

er33Esc
�

Q= 0: (17)

For a strong external biasing condition, starting from the transport model of Kukhtarev
et al [24], Esc can be obtained as

Esc=
E0

�
I∞ + Id

��
I + Id

� ; (18)

whereI is the power density of the optical beam,I d is the so-called dark-irradiance,I∞ is
the power density asx!�∞, which is a constant, andE0 is the induced space-charge field
in that regime (x!�∞).

Incorporation of eq. (18) in eq. (17) and introduction of the transformation,t = x
x0

,

ζ = z
2kx2

0
and q̃ = (

2η0Id
ne

)
1
2 Q, whereη0 = (

µ0
ε0
)1=2 andx0 is an arbitrary spatial width,

yields the following normalized equation,

iq̃ζ + q̃tt �
2µ (1+ρ)q̃
(1+ jq̃j2) = 0; (19)

whereρ =
I∞
Id

andµ =

�
(k0x0)

2n4
er33

2

�
E0.

In the limit jqj2 << 1; which corresponds to the low-amplitude case, with the transfor-
mation q̃ = qe�2iµζ and with the redefinition ofζ asz, the above equation becomes the
nonlinear Schr¨odinger equation,

iqz+qtt +2µ jqj2q= 0: (20)

In the case of incoherent beam propagation in a biased photorefractive crystal, which is
a noninstantaneous nonlinear media, the diffraction behaviour of that incoherent beam is
to be treated somewhat differently rather than as in the previous case. Along the lines of
ref. [10] the diffraction behaviour of an incoherent beam can be effectively described by
the sum of the intensity contributions from all its coherent components. Then under the
assumptions and approximations which we have considered in the above one component
case, the governing equation of N-self-trapped mutually incoherent wave packets in such
a media is given by the N-CNLS equations (13). In this context,q j represents thejth
component of the beam,z andt represent the normalized co-ordinates along the direction
of propagation and the transverse co-ordinates respectively, and∑N

p=1 jqpj2 represents the
change in the refractive index profile created by all the incoherent components of the light
beam and 2µ represents the strength of nonlinearity, as before.
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3. Lax pairs and integrability of CNLS equations

One of the salient features of the integrable systems is the existence of Lax pairs [25].
Manakov had shown that the integrable 2-CNLS eq. (11) admits the following Lax pair
[15],

L =

0
@ �iλ q1 q2
�q�1 iλ 0
�q�2 0 iλ

1
A ; B=

0
BBBBBBBB@

�2iλ 2+ 2λq1 2λq2
iµ(jq1j2+ jq2j2) +iq1t +iq2t

�2λq�1+ iq�1t 2iλ 2 �iµq�1q2
�iµ jq1j2

�2λq�2+ iq�2t �iµq1q
�
2 2iλ 2

�iµ jq2j2

1
CCCCCCCCA
; (21)

whereλ is the constant spectral parameter. It can also be verified that the compatability
condition

Lz�Bt +[L;B] = 0 (22)

leads to the original Manakov system (11). In his work Manakov [15] had obtained the
one-soliton solution of eq. (11) and presented an analysis of the asymptotic properties of
the two-soliton solution by using the Inverse Scattering Transform (IST) technique. The
proof of the Liouville type complete integrability of the Manakov system (11) requires the
existence of an infinite number of involutive integrals of motion and a canonical transfor-
mation to action-angle variables so that the Hamiltonian for the Manakov system can be
expressed as a function of action variables alone. Consequently the resulting Hamilton’s
equations of motion can be trivially integrated and the system becomes completely inte-
grable in the Liouville sense. This can be proved in the following way using the standard
procedure of AKNS type systems [25].

Now let us consider the linear eigenvalue problem and its ‘z-evolution’ associated with
the Manakov system,

Vt = LV; (23a)

Vz = BV; (23b)

where

V = (v1;v2;v3)
T : (23c)

In its component form the linear eigenvalue problem (23a) reads as

v1t =�iλv1+q1v2+q2v3; (24a)

v2t = iλv2�q�1v1; (24b)

v3t = iλv3�q�2v1: (24c)

Now eq. (24a) can be rewritten as

ln(v1eiλ t) =

Z t

�∞
dt 0
h
q1Γ(1)+q2Γ(2)

i
; (25a)
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whereΓ(1) =
v2
v1

andΓ(2) =
v3
v1

. From the analytical properties of the functionv1eiλ t , we

can introduce the scattering coefficienta(λ ) as

a(λ ) = v1eiλ t jt!∞: (25b)

Further, from the analytical properties ofa(λ ) and the fact that it is independent ofz as
may be deduced from eq. (23b), one can expand ln[a(λ )] as

ln[a(λ )] =

∞

∑
n=1

cn

λ n : (26)

On the other hand, expandingΓ (1) andΓ(2) as power series in1λ as

Γ(a) =

∞

∑
n=1

Γ(a)
n λ�n; a= 1;2 (27)

and using (26) and (27) in eq. (25a), one can obtain an infinite number of conserved
quantities, as

cn =

Z ∞

�∞
dt(q1Γ(1)

n +q2Γ(2)
n ); n� 1: (28)

The quantitiesΓ(a)
n can be easily shown to satisfy the following set of recursion equations

by writing down the coupled set of Riccati equations satisfied byΓ (1) andΓ(2) as deduced
from the linear eigenvalue problem (24). Its form reads

2iΓ(1)
n+1

= Γ(1)
nt +q1

n�1

∑
i=1

Γ(1)
n�i

Γ(1)
i

+q2

n�1

∑
i=1

Γ(1)
n�i

Γ(2)
i
; (29a)

2iΓ(2)
n+1

= Γ(2)
nt +q2

n�1

∑
i=1

Γ(2)
n�i

Γ(2)
i

+q1

n�1

∑
i=1

Γ(2)
n�i

Γ(1)
i
; (29b)

with Γ(a)
1

=
�iq�

a
2 , a= 1;2. As a consequence, we can write the infinite number of conserved

quantities straightaway. The first three of them for the Manakov system read as

c1 =� i
2

Z +∞

�∞
dt(jq1j2+ jq2j2); (30a)

c2 =� i
4

Z +∞

�∞
dt[�i(q1q�1t +q2q�2t)] (30b)

and c3 =� i
8

Z +∞

�∞
dt[(q1q�1tt +q2q�2tt)+(jq1j2+ jq2j2)2

]: (30c)

The above conserved quantities can be identified as the number operatorN, the total mo-
mentumP and the Hamiltonian (total energy) of the system, respectively. One can show
that the fieldsq(z) andq�(z) satisfy the canonical Poisson bracket relations

fqi(x);q
�
j (y)g= δ (x�y)δi j ; (31a)

fqi(x);q
�
i (y)g= 0; i; j = 1;2 (31b)
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with respect to which the conserved quantitiescn’s are in involution.
Though the existence of Lax pairs accounts for integrablity, the proof of complete inte-

grability of the system requires the existence of a canonical transformation to action and
angle variables which allows the Hamiltonian of the system to be a function of the actions
only.The existence of such a transformation to the Manakov system confirms its complete
integrable nature in Liouville sense.

Further, the set of N-CNLS eq. (13) is also found to be integrable [20,21]. Then fol-
lowing a method similar to the above 2-CNLS equations and extending the procedure for
(3�3) matrix linear eigenvalue problem to (n�n) matrix problem, the Lax pair associated
with the N-CNLS eq. (13) can be written as

L =

0
BBBB@
�iλ q1 q2 ::: qN
�q�1 iλ 0 ::: 0
�q�2 0 iλ ::: 0

...
...

... :::
...

�q�N 0 0 ::: iλ

1
CCCCA ; (32a)

B=

0
BBBBB@

�2iλ 2+ iµ ∑N
p=1 jqpj2 2λq1+ iq1t 2λq2+ iq2t ::: 2λqN + iqNt

�2λq�1+ iq�1t 2iλ 2� iµ jq1j2 �iµq�1q2 ::: �iµq�1qN
�2λq�2+ iq�2t �iµq�2q1 2iλ 2� iµ jq2j2 ::: �iµq�2qN

...
...

... :::
...

�2λq�N + iq�Nt �iµq�Nq1 �iµq�Nq2 ::: 2iλ 2� iµ jqNj2

1
CCCCCA :

(32b)

Here also the conservation laws can be deduced along the lines of the 2-CNLS case. In
order to write these conserved quantities one has to look for the coupled set of Riccati equa-
tions associated with the Lax operators and then obtain the relevant recurrence relations,
which will be (n�1) coupled first order differential equations inΓ (a)

n ’s.

4. Soliton solutions of the CNLS equations

Now in order to facilitate the understanding of the underlying dynamics of the above inte-
grable CNLS equations it is essential to obtain the soliton solutions associated with these
integrable systems. In this regard, by applying Hirota’s technique [26], we point out that the
most general bright one-soliton and two-soliton solutions for the Manakov system (11) can
be easily obtained and novel properties deduced [16,27]. The procedure can be straight-
away extended to obtain N-soliton solutions as well; however, we will confine ourselves to
the study of one- and two-soliton solutions alone here.

Considering eq. (11) and by making the bilinear transformationq j =
g( j)

f , j = 1; 2;where

g( j)(z; t)’s are complex functions whilef (z; t) is a real function, the following bilinear
equations can be obtained,

(iDz+D2
t )(g

( j): f ) = 0; (33a)

D2
t ( f : f ) = 2µ(g(1)g(1)�+g(2)g(2)�); (33b)
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where the Hirota’s bilinear operatorsDz andDt are defined by

Dn
zDm

t (a:b) =

�
∂
∂z
� ∂

∂z0

�n� ∂
∂ t
� ∂

∂ t 0

�m

a(z; t)b(z0; t 0)
���
(z=z0;t=t0)

: (33c)

The above set of equations can be solved by introducing the following power series ex-
pansions tog( j)’s and f :

g( j) = λg( j)
1

+λ 3g( j)
3

+ � � � ; j = 1;2; (34a)

f = 1+λ 2 f2+λ 4 f4+ � � � ; (34b)

whereλ is the formal expansion parameter. The resulting set of equations, after collecting
the terms with the same power inλ , can be solved to obtain the forms ofg ( j) and f . For
illustrative purposes we explain below the procedure to obtain the one- and two-soliton
solutions.

A. One-soliton solution of the 2-CNLS equation

In order to get the one-soliton solution of the 2-CNLS equation, the power series expan-
sions forg(1), g(2) and f are terminated as follows:

g(1) = λg(1)
1

(35a)

g(2) = λg(2)
1

(35b)

f = 1+λ 2 f2: (35c)

Substituting eqs (35) in the bilinear eq. (33) we obtain the following differential equations
at various powers ofλ :

λ : D̂1(g
( j)
1
:1) = 0; (36a)

λ 2 : D̂2( f2:1+1: f2) = 2µ(g(1)
1
:g(1)�

1
+g(2)

1
g(2)�

1
); (36b)

λ 3 : D̂1(g
( j)
1
: f2+g( j)

3
:1) = 0; (36c)

λ 4 : D̂2( f2: f2) = 0; j = 1;2; (36d)

whereD̂1 = (iDz+D2
t ) and D̂2 = D2

t . The solution which is consistent with the above
system is

g(1) = α(1)
1

eη1; (37a)

g(2) = α(2)
1

eη1; (37b)

f = 1+eη1+η�

1+R; eR =
µ(jα(1)

1
j2+ jα(2)

1
j2)

(k1+k�1)
2 ; (37c)

where η1 = k1(t + ik1z); α(1)
1

, α(2)
1

andk1 are complex parameters. Then the resulting
bright one-soliton solution is obtained as
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�
q1
q2

�
=

 
α(1)

1
α(2)

1

!
eη1

1+eη1+η�

1+R =

�
A1
A2

�
k1Reiη1I

cosh(η1R+ R
2 )
: (38)

Here
pµ(A1; A2) =

pµ(α(1)
1

;α(2)
1

)=(µ(jα(1)
1
j2+ jα(2)

1
j2))1=2 represents the unit polariza-

tion vector,k1RAj ; j = 1; 2 gives the amplitude of thejth mode and 2k1I the soliton ve-
locity.

B. Two-soliton solution

Here the series (34) is terminated as

g(1) = λg(1)
1

+λ 3g(1)
3
; (39a)

g(2) = λg(2)
1

+λ 3g(2)
3
; (39b)

f = 1+λ 2 f2+λ 4 f4; (39c)

to obtain the bright two-soliton solution of eq. (11). Then the resulting partial differential
equations at various powers ofλ are as follows:

λ : D̂1(g
( j)
1
:1) = 0; (40a)

λ 2 : D̂2(1: f2+ f2:1) = 2µ(g(1)
1

g(1)�
1

+g(2)
1

g(2)�
1

); (40b)

λ 3 : D̂1(g
( j)
1
: f2+g( j)

3
:1) = 0; (40c)

λ 4 : D̂2(1: f4+ f2: f2+ f4:1) = 2µ(g(1)
1

g(1)�
3

+g(1)
3

g(1)�
1

+g(2)
1

g(2)�
3

+g(2)
3

g(2)�
1

); (40d)

λ 5 : D̂1(g
( j)
1
: f4+g( j)

3
: f2) = 0; (40e)

λ 6 : D̂2( f2: f4+ f4: f2) = 2µ(g(1)
3

g(1)�
3

+g(2)
3

g(2)�
3

); (40f)

λ 7 : D̂1(g
( j)
3
: f4) = 0; (40g)

λ 8 : D̂2( f4: f4) = 0; j = 1;2: (40h)

The solutions compatible with eqs (40) are

g(1)
1

= α(1)
1

eη1 +α(1)
2

eη2; (41a)

g(2)
1

= α(2)
1

eη1 +α(2)
2

eη2; (41b)

g(1)
3

= eη1+η�

1+η2+δ1 +eη1+η2+η�

2+δ2; (41c)

g(2)
3

= eη1+η�

1+η2+δ 0

1 +eη1+η2+η�

2+δ 0

2; (41d)

f2 = eη1+η�

1+R1 +eη1+η�

2+δ0 +eη�

1+η2+δ �

0 +eη2+η�

2+R2; (41e)

f4 = eη1+η�

1+η2+η�

2+R3; (41f)

where

Pramana – J. Phys.,Vol. 57, Nos 5 & 6, Nov. & Dec. 2001 895



M Lakshmanan and T Kanna

ηi = ki(t + ikiz); eδ0 =
κ12

k1+k�2
; eR1 =

κ11

k1+k�1
; eR2 =

κ22

k2+k�2
;

eδ1 =
k1�k2

(k1+k�1)(k
�
1+k2)

(α(1)
1

κ21�α(1)
2

κ11);

eδ2 =
k2�k1

(k2+k�2)(k1+k�2)
(α(1)

2
κ12�α(1)

1
κ22);

eδ 0

1 =
k1�k2

(k1+k�1)(k
�
1+k2)

(α(2)
1

κ21�α(2)
2

κ11);

eδ 0

2 =
k2�k1

(k2+k�2)(k1+k�2)
(α(2)

2
κ12�α(2)

1
κ22);

eR3 =
jk1�k2j2

(k1+k�1)(k2+k�2)jk1+k�2j2
(κ11κ22�κ12κ21)

andκi j =
µ(α(1)

i
α(1)�

j
+α(2)

i
α(2)�

j
)

ki +k�j
; i; j = 1;2: (41g)

Then we can write the final form of the bright two-soliton solution of eq. (11) as

q1 =
α(1)

1
eη1 +α(1)

2
eη2 +eη1+η�

1+η2+δ1 +eη1+η2+η�

2+δ2

D
; (42a)

q2 =
α(2)

1
eη1 +α(2)

2
eη2 +eη1+η�

1+η2+δ 0

1 +eη1+η2+η�

2+δ 0

2

D
; (42b)

where

D = 1+eη1+η�

1+R1 +eη1+η�

2+δ0 +eη�

1+η2+δ �

0

+eη2+η�

2+R2 +eη1+η�

1+η2+η�

2+R3: (42c)

The above most general bright two-soliton solution with six arbitrary complex parameters
k1, k2, α( j)

1
andα ( j)

2
, j = 1;2 corresponds to a shape changing (inelastic) collision of two

bright solitons which will be explained in the following sections.

C. One- and two-soliton solutions of the N-CNLS equation

By extending the above procedure further to the integrable N-CNLS eq. (13) one can
obtain the one-soliton and two-soliton solutions [17] of this system as well. After making
the bilinear transformationq j = g( j)= f , j = 1;2; : : : ;N in eq. (13), one can get a set of
bilinear equations of the form (40) but now withj = 1;2;3; : : : ;N. Then by expanding
g( j)s and f in power series up toN terms and following the procedure mentioned above,
the one-soliton and two-soliton solutions of eq. (13) can be obtained.

(a)One-soliton solution:

�
q1;q2; : : : ;qN

�T
=

k1Reiη1I

cosh(η1R+
R
2 )

�
A1;A2; : : : ;AN

�T
; (43)
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whereη1 = k1(t + ik1z), Aj = α( j)
1

=∆, ∆ = (µ(∑N
j=1 jα( j)

1
j2))1=2, eR = ∆2=(k1+k�1)

2, α( j)
1

andk1, j=1;2: : : ;N; are(N+1) arbitrary complex parameters.

(b) Two-soliton solution:

�
q1;q2; : : : ;qN

�T
=

�
α(1)

1
eη1 +α(1)

2
eη2 +eη1+η�

1+η2+δ11

+eη1+η2+η�

2+δ21; α(2)
1

eη1 +α(2)
2

eη2

+eη1+η�

1+η2+δ12+eη1+η2+η�

2+δ22; : : : ;

α(N)
1

eη1 +α(N)
2

eη2 +eη1+η�

1+η2+δ1N

+eη1+η2+η�

2+δ2N

�T
=D; (44)

whereD = 1 + eη1+η�

1+R1 + eη1+η�

2+δ0 + eη�

1+η2+δ �

0 + eη2+η�

2+R2 + eη1+η�

1+η2+η�

2+R3,
eR1 = κ11=(k1+k�1), eR2 = κ22=(k2+k�2), eδ0 = κ12=(k1+k�2), eδ1m = ((k1�k2)(α

(m)
1

κ21�
α(m)

2
κ11))=((k1 + k�1)(k

�
1 + k2)), eδ2m = ((k2� k1)(α

(m)
2

κ12�α(m)
1

κ22))=((k2 + k�2)(k1 +

k�2)), eR3 = (jk1 � k2j2(κ11κ22 � κ12κ21))=((k1 + k�1)(k2 + k�2)jk1 + k�2j2) and κil =

µ ∑N
n=1 α(n)

i
α(n)�

l
=(ki + k�l ), wherei; l = 1; 2 andm= 1; 2; : : : ; N. As mentioned earlier,

higher order solitons can also be constructed in a similar way with more labour; however,
we will not consider them in this article.

5. Shape changing collisions in coupled nonlinear Schrödinger equations

The novel collision properties associated with the CNLS equations can be revealed by
analysing the asymptotic forms of the two-soliton solutions [16,27]. In this connection,
let us first consider the two-soliton solution (42) of the Manakov system, which is an
integrable 2-CNLS system. Without loss of generality we assume thatk jR > 0 and k1I >
k2I ; kj = kjR+ ik jI ; j = 1;2, which corresponds to a head-on collision of the solitons. One
can easily check that asymptotically the two-soliton solution becomes two well separated
solitonsS1 andS2. For the above parametric choice, the variablesη jR’s for the two solitons
(η j = η jR + iη jI ) behave asymptotically as (i)η1R � 0, η2R !�∞ asz!�∞ and (ii)
η2R � 0, η1R !�∞ asz! �∞: This leads to the following asymptotic forms for the
two-soliton solution.

A. Before collision (limit z!�∞)

In the limit z!�∞, the solution (42) can be easily seen to take the following forms.
(a)S1 (η1R� 0; η2R!�∞) :

�
q1

q2

�
!
 

α(1)
1

α(2)
1

!
eη1

1+eη1+η�

1+R1

=

 
A1�

1

A1�
2

!
k1Reiη1I sech

�
η1R+

R1

2

�
; (45)
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where(A1�
1 ; A1�

2 ) = [µ(α(1)
1

α(1)�
1

+α(2)
1

α(2)�
1

)]�
1
2 (α(1)

1
; α(2)

1
). In A1�

i , i = 1; 2; super-
script 1– denotesS1 at the limitz!�∞ and subscripts 1 and 2 refer to the modesq1 and
q2, respectively.
(b) S2 (η2R� 0; η1R! ∞):�

q1
q2

�
!
�

eδ1�R1

eδ 0

1�R1

�
eη2

1+eη2+η�

2+R3�R1

=

 
A2�

1

A2�
2

!
k2Reiη2I sech

�
η2R+

(R3�R1)

2

�
; (46)

where (A2�
1 ;A2�

2 ) = (
a1
a�

1
) c [µ(α(1)

2
α(1)�

2
+ α(2)

2
α(2)�

2
)]�

1
2

h
(α(1)

1
;α(2)

1
)κ�1

11 � (α(1)
2

,

α(2)
2

)κ�1
21

i
in which a1 = (k1+ k�2)

h
(k1�k2)(α

(1)�
1

α(1)
2

+α(2)�
1

α(2)
2

)

i 1
2

and c =

h
1

jκ12j
2

� 1
κ11κ22

i� 1
2
: Other quantities have been defined earlier under eq. (41).

B. After collision (limit z! ∞)

Similarly, for z! ∞, we have the following forms.
(a)S1 (η1R �0, η2R ! ∞):�

q1
q2

�
!
�

eδ2�R2

eδ 0

2�R2

�
eη1

1+eη1+η�

1+R3�R2

=

 
A1+

1

A1+
2

!
k1Reiη1I sech

�
η1R+

(R3�R2)

2

�
; (47)

where (A1+
1 ; A1+

2 ) = (
a2
a�

2
) c [µ(α(1)

1
α(1)�

1
+ α(2)

1
α(2)�

1
)]�

1
2

h
(α(1)

1
;α(2)

1
)κ�1

12 � (α(1)
2

,

α(2)
2

)κ�1
22

i
in whicha2 = (k2+k�1)

h
(k1�k2)(α

(1)
1

α(1)�
2

+α(2)
1

α(2)�
2

)

i 1
2
:

(b) S2 (η2R� 0; η1R!�∞):

�
q1
q2

�
!
 

α(1)
2

α(2)
2

!
eη2

1+eη2+η�

2+R2

=

 
A2+

1

A2+
2

!
k2Reiη2I sech

�
η2R+

R2

2

�
; (48)

where(A2+
1 ;A2+

2 ) = [µ(α(1)
2

α(1)�
2

+α(2)
2

α(2)�
2

)]�
1
2 (α(1)

2
;α(2)

2
).

The asymptotic forms of the solitonsS1 andS2 after interaction, given respectively by
eqs (47) and (48), can be related to the forms before interaction, given by eqs (45) and (46)
respectively, by introducing a transition matrixT l

j such that

Al+
j = Al�

j Tl
j ; j; l = 1;2; (49a)
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where the superscriptsl� represent the solitons designated asS1 andS2 atz!�∞. Here

jT1
j j2 = j1�λ2(α

( j)
2

=α( j)
1

)j2=j1�λ1λ2j; (49b)

jT2
j j2 = j1�λ1λ2j=j1�λ1(α

( j)
1

=α( j)
2

)j2; j = 1;2; (49c)

λ1 = κ21=κ11 and λ2 = κ12=κ22: (49d)

Besides the above changes in the amplitudes, there is a phase shift of the soliton positions
as indicated below.

The expressions (49) clearly show that there is an intensity redistribution among the two
modes of the solitonsS1 andS2 and that the transition matrices act as a measure of this
redistributed intensity. However, we can also check easily that in the special case in which
the parametersα ( j)

i
; i; j = 1;2; satisfy the relationα (1)

1
=α(1)

2
= α(2)

1
=α(2)

2
, the transition

matrices take the valueT j
i
= 1. In this case, we have the standard pure shape preserving,

elastic collision of solitons that is familiar in the literature. However for all other values of
α( j)

i
; i; j = 1;2; such that relationα (1)

1
=α(1)

2
6= α(2)

1
=α(2)

2
, the amplitudes of the solitons do

undergo changes and we have shape changing (inelastic) collisions.

(a) Intensity (amplitude) redistribution during the shape changing collision process

The amplitude change of individual modes ofS1 andS2 during the collision process shows
some interesting features. Actually, from eqs (45) to (48) we observe that the initial ampli-
tudes of the two modes of the two solitons(A1�

1 k1R;A
1�
2 k1R) and(A2�

1 k2R;A
2�
2 k2R) undergo

a redistribution among them and the solitons emerge with amplitudes(A1+
1 k1R;A

1+
2 k1R) and

(A2+
1 k2R;A

2+
2 k2R); respectively, whereAl�

i ; i; l = 1;2, are given above. The changes in the
amplitudes due to collision are essentially given by the transition matricesT j

i
, see eqs (49).

It can be easily checked that for a suitable choice of parameters it is even possible to make
one of theT j

i
’s vanish so that one of the modes after collision (or before collision) has zero

intensity (see figure 1).
Another noticeable observation of this interaction process is that even though there is a

redistribution of intensity among the modes the total intensity of the individual solitons is
conserved, that is,jAn�

1 j2+ jAn�
2 j2 = 1

µ , n= 1;2, see eqs (45)–(48).

(b) Phase shift of solitons during the collision process

Another important quantity which is altered during the collision is the phase (which is
related to the position of the soliton). For the solitonS1 the initial phase

R1
2 becomes

R3�R2
2

after collision and the corresponding phase shift is given by

Φ1 =
R3�R1�R2

2

=
1
2

log

� jk1�k2j2(κ11κ22�κ12κ21)

jk1+k�2j2κ11κ22

�
: (50)
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Figure 1. Two distinct possibilities of the shape changing collision in the Manakov
system.

Similarly the phase shift for the solitonS2 is given by

Φ2
=� (R3�R1�R2)

2
=�Φ1: (51)

Note that the phase shift depends very much on the soliton parametersα ( j)
i

’s through their
occurrence in the expressions forκ i j ’s and so on the amplitudes of the modes.

(c) Change in the relative separation distance of the solitons

As a consequence of the above phase shift, the relative separation distancesx�12 (position of
S2 (att !�∞)minus position ofS1 (att !�∞)) also do vary during the collision process.
In such a pair-wise collision, the change in the relative separation distance is found to be

∆x12 = x�12�x+12 =
(k1R+k2R)

2k1Rk2R
Φ1: (52)

Again∆x12 depends upon the parametersα ( j)
i

’s and so on the amplitudes of the modes.
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(d) Role ofα j
i
’s in the collision process

It can be straightaway seen that the above mentioned three quantities, intensity (ampli-
tude) redistribution, phase shift and relative separation distances, characterising the CNLS
soliton collisions, are nontrivially dependent on the complex parametersα j

i
’s, which in

turn determine the quantitiesAj�
i

defining the amplitudes of the modes. These parameters
play a pivotal role in the shape changing collision process. In particular, the change in the
amplitudes of the two modes ofS1 andS2 can be varied dramatically by changingα ( j)

i
’s

and even the amplitudes before and after interaction can be made equal, a case correspond-

ing to elastic collision, for the particular choice
α(1)

1

α(1)
2

=
α(2)

1

α(2)
2

as the transition matricesT j
i

,

i; j = 1;2, are equal to one in this special case. For all other choices, the amplitudes un-
dergo changes due to collision and under suitable circumstances the amplitude of one of
the modes (either before or after collision) can even vanish, showing in a dramatic way the
shape changing nature of the collisions.

It can also be observed from eqs (50)–(52) that not only the amplitudes of the solitons
but also the phases and hence the relative separation distances between them depend on the
complex parametersα ( j)

i
’s. As a result, their variation during collision is also determined

predominantly byα ( j)
i

’s.
Now let us look at the possible ways by which such shape changing collision can occur

in the Manakov system. We can identify two distinct types of interactions for each of the
solitons. The first possibility is an enhancement of intensity in any one of the modes of
either one of the solitons (sayS1) and suppression in the remaining mode of the corre-
sponding soliton with commensurate changes in the other soliton. The other possibility is
an interaction which allows one of the modes of either one of the solitons (sayS1) to get
suppressed while allowing the other mode of the corresponding soliton to get enhanced
(with corresponding changes inS2). In either of the cases the intensity may be completely
or partially suppressed (enhanced), as determined by the transition matricesT j

i
’s.

For illustrative purposes, we have shown the head-on collision of two solitons for the
parametric values,k1 = 1+ i, k2 = 2� i, α (1)

1
=α(2)

1
= α(2)

2
= 1, andα (1)

2
=

(39+i80)
89 in

figure 1a. Here initially the time profiles of the two solitons are evenly split between the
two componentsq1 andq2. At the large positivez end the profile of theS1 soliton is
almost completely suppressed in theq1 component while it is suitably enhanced in theq2
component. Also there is a rearrangement of the amplitudes in the second solitonS2 in both
the modes also. In figure 1b, we have shown the reverse possibility fork1 = 1+ i, k2 = 2� i,
α(1)

1
= 0:02+0:1i, α (2)

1
=α(1)

2
= α(2)

2
= 1. Finally, figure 2 shows the possibility of elastic

collision for the samek1, k2 values as in figure 1 but withα ( j)
i

= 1, i; j = 1;2.
The above analysis can be analogously extended to study the collision properties of the

3-CNLS equations and N-CNLS equations. For example, for the 3-CNLS system, we find
that the above kind of shape changing collisions of the Manakov system occurs in this case
also but with many possibilities of intensity exchange among the three modes. During the
inelastic (shape changing) interaction among the two one-solitonsS1 andS2 of the 3-CNLS,
the solitonS1(S2) has the following six possible combinations to exchange the intensity
among its modes:(q1;q2;q3)! (qa

1;q
b
2;q

c
3)i ; [a;b;c= S(suppression); E (enhancement)],

with i = 1, a= E, b= S, c= S; i = 2, a= S, b= E, c= S; i = 3, a= S, b= S, c= E; i = 4,
a= S, b= E, c= E; i = 5, a= E, b= S, c= E andi = 6, a= E, b= E, c= S. In figure 3
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we have shown two such possibilities in which figure 3a is plotted for the parametric values
k1 = 1+ i, k2 = 2� i, α (1)

2
= α(2)

2
= (39+ i80)=89,α (1)

1
= α(2)

1
= α(3)

1
= α(3)

2
= 1 and

µ = 1 and in figure 3b they are chosen asα (1)
1

= 0:02+0:1i, α (2)
1

= 0:1i, α (3)
1

= α(1)
2

=

α(2)
2

= α(3)
2

= 1 with the samek1, k2 andµ values as in figure 3a. Generalizing the above
analysis for the 2-CNLS and 3-CNLS equations, to N-CNLS equations, one can verify that
the shape changing interaction can lead to intensity redistribution among the modes of each
of the solitons of the N-CNLS system in 2N�2 ways. The details of these analysis will be
published elsewhere [28].

Figure 2. Elastic collision of two solitons in the Manakov system for a specific choice
of the parameters.
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Figure 3. Intensity profiles of the three modes of the two-soliton solution in a wave-
guide described by the CNLS eq. (13) withn= 3 showing two different dramatic sce-
narios of the shape changing collision.

6. Shape changing collisions and construction of logic gates

The shape changing collisions of solitons of CNLS equations discussed in the previous
section can also be characterized by introducing a complex parameterρ as studied by
Jakubowski, Steiglitz and Squier in ref. [18], which is the ratio of the two modes of a
particular soliton of the two-soliton solution evaluated asymptotically as in the previous
section, that is
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ρ�
j =

qj
1
(t !�∞)

qj
2
(t !�∞)

=
Aj�

1

Aj�
2

; j = 1;2: (53)

Obviously during collision the complex parameterρ changes and it may be used to define
the change in the soliton state. Thus the state of the soliton can be essentially parametrized
by two complex parametersρ andk: during collisionρ changes in general, whilek does
not. The schematic representation of the two-soliton collision in the Manakov system with
constant parametersk1 andk2 is shown below [18].

In figure 4, ρ1 and ρL represent the variable states of the solitonsS1 and S2 before
collision, respectively. The final variable states are denoted byρ 2 andρR, respectively.
In ref. [18] Jakubowski, Steiglitz and Squier have pointed out that the transition in the
soliton states due to collision discussed in the previous section, eqs (49), can be represented
equivalently through a linear fractional transformation (LFT) for the change in the variable
ρ as

ρ2 =
a(ρ1)ρL +b(ρ1)

c(ρ1)ρL +d(ρ1)
; (ad�bc) 6= 0 (54a)

where

a= (1�g)=ρ�
1 +ρ1; b= gρ1=ρ�

1; c= g;

d = (1�g)ρ1+1=ρ�
1; g(k1;k2) =

k1+k�1
k2+k�1

(54b)

and

ρR =
a0(ρL)ρ1+b0(ρL)

c0(ρL)ρ1+d0(ρL)
; (a0d0�b0c0) 6= 0; (55a)

(ρ , k ) (ρ , k )

(ρ , k ) (ρ  , k )

1 1 L 2

2 2 R 1

Time

Space

Figure 4. Schematic representation of the two-soliton collision.
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where

a0 = (1�h�)=ρ�
L +ρL; b0 = h�ρL=ρ�

L; c0 = h�;

d0 = (1�h�)ρL +
1

ρ�
L

; h� = h�(k1;k2) = g(k2;k1): (55b)

In writing the above set of equations it is assumed thatk1R andk2R > 0 andk1I > k2I .
The LFT possesses many interesting properties [29] which include the following:

1. Existence of inverse transformations and group property,
2. Existence of one or two fixed points,
3. Existence of implicit forms,

and so on. Jakubowskiet al [18] have in particular pointed out that when viewed as an
operator every soliton has an inverse with the same value of the parameterk that will undo
the effect of the operator on state. This property can then be used profitably to design logic
gates as shown below.

Now let us treat the right moving soliton states as corresponding to data (particles) and
left moving solitons as operators (or vice versa), such that

ρR = TρL
(ρ1) (56a)

and

ρ2 = Tρ1
(ρL) (56b)

Then it is easy to see that for every operatorTρL
or Tρ1

, there exists an inverseT�1
ρL

or T�1
ρ1

such that the successive operations by the operator and its inverse restore the original data.

Example:

Let ρL = 0: (57)

Then using the LFT(55), we have

ρR = T0(ρ1) = (1�h�)ρ1 (58)

Let a second operator corresponding toρ 0
L = ∞ operate onρR (see figure 5). The new state

ρ 0
R is then

ρ 0
R =

1
(1�h�)

ρR =
1

(1�h�)
(1�h�)ρ1 = ρ1 (59)

so that the initial stateρ1 is restored. Thus the operator (states) withρ values 0 and∞ are
inverses to each other. Similarly for every operator corresponding to the stateρ an inverse
can be obtained. We will now see briefly the consequences of this for computation.

The existence of an inverse for any given operator so that the data is restored on succes-
sive operation by the operator and its inverse allows one to assign a logical, binary, 0 and 1
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or TRUE and FALSE states in terms of the complex 0 and 1 states of the parameterρ . In
particular, one can use the actuator as 0 and its inverse as∞ (see figure 5).

Using the above facts, very recently Steiglitz [19] has shown that one can construct the
various logic gates such as COPY, FANOUT, NOT, ONE and finally the universal NAND
gate also so as to deduce a Turing equivalent machine purely based on optical soliton
interactions which do not use any interconnecting discrete components in bulk nonlinear
media like photorefractive materials. We briefly summarize below the construction of
Steiglitz [19].

For obtaining the above gates let us rotate the figure of the scattering process suitably
so as to treat data as solitons travelling vertically downwards and the operators as soli-
tons travelling horizontally (figure 6). Then the various logic gates can be constructed as
follows.

(ρ , k )
1 1

(ρ , k )

(ρ , k )
(ρ , k )

(ρ , k )

L 2

L 2
’

2 2

R 1(ρ , k )
2
’

2

(ρ,k )
1R

’

Figure 5. State restoring property of shape changing solitons under collision. When
the operatorTρ 0

L
is the inverse ofTρL

, thenρ 0

R= ρ1.

DATA

OPERATORS

Figure 6. Representation of the left moving operators and down moving data [19].
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z y in( ρ)
1

. . . actuator state = 0 =ρ
Lgarbage

out
=in garbage

Figure 7. COPY gate [19].

A. The COPY gate and FANOUT gate

Let us consider the collision of three down moving solitons with a horizontal soliton as in
figure 7.

Let the input state be represented byρ1, while the actuator state is taken asρL = 0.
The other two down moving solitons are in the arbitrary statesz andy. Then using the
transformation eqs (54) and (55), we can easily check that the horizontally moving soliton
after each of the first two collisions becomes

ρ2 = Tρ1
(0); (60)

ρ 0
2 = Ty(ρ2) = Ty

h
Tρ1

(0)
i
: (61)

Finally the vertical down moving solitonz after collision becomes

output= ρ 0
R = T 0

ρ2
(z);

= T
Ty

h
Tρ1

(0)
i(z): (62)

Now if we assign for the input state the logical values 0 or 1 corresponding toρ 1 = 0 or
ρ1 = ∞ respectively and demand that in = out, we obtain two complex equations for the
two complex arbitrary parametersy andz,

0= T
Ty[T0(0)]

(z); (63)

∞ = TTy[T∞(0)]
(z): (64)

These equations take the explicit form

f(1�h�)[(1�g)yy�+1][(1�g�)yy�+1]+gg�yy�gz+h�g[(1�g�)yy�+1]y= 0; (65)

h�z[g�(1�g)]y�+(1�h�) [g(1�g�)]y+(1�g)(1�g�)yy� = 0: (66)

Solving the eqs (65) and (66) one can obtain a set of solution(zc;yc), if it exists, which
then copies the input at one site and places it at the output site, giving rise to the COPY
gate.
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z y in

. . . actuator state = 0 =ρ
L

garbage

=in

g
a

rb
a

g
e

c c

garbage

out in

Inverse state =α.

Figure 8. The FANOUT gate [19].

In the above collision process, several unutilized solitons emerge after scattering, which
are named as ‘garbage’ solitons. However, one can use them also profitably to generate
copies of inputs as outputs in a ‘time gated’ manner by colliding appropriate ‘inverse’
solitons with them. Thus one can obtain the FANOUT gate (figure 8).

B. The NOT and ONE gates

As we have obtained the COPY gate by requiring the state out = in for both the logical
values 0 and 1 (or theρ values 0 and∞), we can require that when the input state is 0
the output is 1 and when the input is 1 the output is 0. This requirement again gives two
complex equations for the two unknownsz andy:

∞ = T
Ty[T0(0)]

(z); (67)

0= TTy[T∞(0)]
(z): (68)

The resultant solution gives the set (zn;yn), if it exists, giving rise to the NOT gate.
Similarly if we require that for both the inputs 0 and 1, the output should be 1, the

resultant two complex equations solve for (z1;y1) giving rise to the ONE gate.

C. The NAND gate

The existence of FANOUT, NOT and ONE gates are sufficient to design a NAND gate.
The importance of the NAND gate is that it is universal [19]. Using suitable intercon-

nects and fanouts, it can lead to other logical functions. One can also implement ‘wiring’
through the light-light collisions, implying that one can implement any logic using the
Manakov model.

Using two outputs as equivalent to a given input as in the FANOUT gate (figure 8), one
can form az converter andy converter such that the following values are chosen:
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Value of input to the converterValue of z converterValue of y converter
0 z1 y1
1 zn yn

In the above (z1,y1) are the values of (z;y) in the ONE gate, while (zn;yn) are the values
of (z;y) in the NOT gate.

Thus using one output from a given gate as the input of a FANOUT gate to produce
thez- andy-converter to the required value as above, while the other output as the second
input of the present gate, one can have a standard three collision arrangement as discussed
earlier. Then the following outputs result for the gate depicted in figure 9.

Left input Right input value of z value of y Output
0 0 z1 y1 1
0 1 z1 y1 1
1 0 zn yn 1
1 1 zn yn 0

As a result, one finds that in this two input-one output arrangement one essentially obtains
the universal NAND gate binary operations. Steiglitz [19] further shows that the gates
that are constructed as above can also be wired such that any outputs can be fed into any
inputs. Memory can also be introduced suitably. Thus an all optical computer equivalent
to a Turing machine using soliton interactions is possible.

from output other input (0/1)

fanout

z−converter y−converter

z y in

out

. . actuator.

Figure 9. The NAND gate as designed by Steiglitz [19].
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7. Partially coherent solitons in CNLS equations

We have shown inx2 that propagation of N-self trapped mutually incoherent wavepackets
in Kerr-like photorefractive media is governed by the N-CNLS equations (13). Recently
[13,14] it has been shown that these systems support a kind of stationary solutions known
as partially coherent stationary solitons (PCS). Further, it has also been observed that these
PCS are of variable shapes.

In reference [13] the explicit forms of PCS forN = 2;3 and 4 are given. First let us
consider theN = 2 case, which corresponds to the Manakov system (11). We have given
the explicit 2-soliton expression of eq. (11) in eqs (42). Now let us look for a special case of
the two-soliton solution (42) of eq. (11) with the choice of the parametersα (1)

2
= α(2)

1
= 0;

α(1)
1

= eη10; α(2)
2

=�eη20 andknI = 0, whereηi0; i = 1;2 are real parameters.
Then the solution(42) reduces to the following form

q1 =

 
eη1 +

µ(k1�k2)e
η1+η2+η�

2

4k2
2(k1+k2)

!,
D̃; (69a)

q2 =

 
�eη2 +

µ(k1�k2)e
η1+η�

1+η2

4k2
1(k1+k2)

!,
D̃; (69b)

where

D̃ = 1+µ

"
eη1+η�

1

4k2
1

+
eη2+η�

2

4k2
2

#
+

µ2(k1�k2)
2eη1+η�

1+η2+η�

2

16k2
1k2

2(k1+k2)
2 : (69c)

In the above set of equationsη10 andη20 are absorbed intoη1 andη2 by rewritingη j ’s as
η j = kj(t + ik jz)+η j0; j = 1;2. The above solution can be easily rewritten as

q1 = 2k1

s
k1+k2

k1�k2
cosh(k2t̄2)e

ik2
1z=D1; (70a)

q2 = 2k2

s
k1+k2

k1�k2
sinh(k1t̄1)e

ik2
2z=D1; (70b)

D1 =
p

µ
�

cosh(k1t̄1+k2t̄2)+

�
k1+k2

k1�k2

�
cosh(k1t̄1�k2t̄2)

�
; (70c)

t̄1 = t� t1 = t +
η10

k1
+

1
2k1

log

�
µ(k1�k2)

4k2
1(k1+k2)

�
; (70d)

t̄2 = t� t2 = t +
η20

k2
+

1
2k2

log

�
µ(k1�k2)

4k2
2(k1+k2)

�
: (70e)

These solutions are exactly the same PCS solutions given in ref. [13] corresponding to the
N = 2 case. Here we have shown that the 2-PCS solution is merely a special stationary
state of the shape changing 2-soliton solution (42) of the 2-CNLS system.
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Figure 10. Typical PCS forms for the Manakov system forz= 0, see eqs (70): (a)
symmetric case (∆t12= 0), (b) asymmetric case (∆t12= 1:0).

Further, one can consider the relative separation distance

∆t12 = t2� t1 =
η10

k1
� η20

k2
+

1
2k1

log

�
µ(k1�k2)

4k2
1(k1+k2)

�

� 1
2k2

log

�
µ(k1�k2)

4k2
2(k1+k2)

�
(70f)

and identify symmetric (∆t12= 0) and asymmetric (∆t12 6= 0) PCS solutions. Note that the
shapes of the PCS depend upon the value of∆t12. In figure 10, we plot typical PCS forms.

Now let us look at theN = 3 case. The PCS associated with this case can be obtained
as follows. It is also observed that PCS are formed only when the number of incoherent
components is equal to the number of solitons created in the system. So in order to obtain
the 3-PCS solution we have to consider the three-soliton solution of the 3-CNLS equations.
Instead of writing down the full 3-soliton solution of theN= 3 case explicitly and choosing
the special parametric values, we make the following simplified procedure.

Starting from the bilinear eqs (33) and terminating the series forg ( j) and f as

g( j) = λg( j)
1

+λ 3g( j)
3

+λ 5g( j)
5

(71a)

and

f = 1+λ 2 f2+λ 4 f4+λ 6 f6: (71b)
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At various powers ofλ we obtain the following set of equations.

λ 1 : D̂1(g
( j)
1
:1) = 0; (72a)

λ 2 : D̂2(1: f2+ f2:1) = 2µ
3

∑
j=1

g( j)
1
:g( j)�

1
; (72b)

λ 3 : D̂1(g
( j)
1
: f2+g( j)

3
:1) = 0; (72c)

λ 4 : D̂2(1: f4+ f2: f2+ f4:1) = 2µ
3

∑
j=1

(g( j)
1
:g( j)�

3
+g( j)

3
:g( j)�

1
); (72d)

λ 5 : D̂1(g
( j)
1
: f4+g( j)

3
: f2+g( j)

5
:1) = 0; (72e)

λ 6 : D̂2(1: f6+ f2: f4+ f4: f2+ f6:1) =

2µ
3

∑
j=1

(g( j)
1
:g( j)�

5
+g( j)

3
:g( j)�

3
+g( j)

5
:g( j)�

1
); (72f)

λ 7 : D̂1(g
( j)
1
: f6+g( j)

3
: f4+g( j)

5
: f2) = 0; (72g)

λ 8 : D̂2( f2: f6+ f4: f4+ f6: f2) = 2µ
3

∑
j=1

(g( j)
3
:g( j)�

5
+g( j)

5
:g( j)�

3
); (72h)

λ 9 : D̂1(g
( j)
3
: f6+g( j)

5
: f4) = 0; (72i)

λ 10 : D̂2( f4: f6+ f6: f4) = 2µ
3

∑
j=1

(g( j)
5
:g( j)�

5
); (72j)

λ 11 : D̂1(g
( j)
5
: f6) = 0; (72k)

λ 12 : D̂2( f6: f6) = 0; j = 1;2;3: (72l)

Solving (72a), we obtain

g( j)
1

= α( j)
1

eη1 +α( j)
2

eη2 +α( j)
3

eη3 (73a)

whereηn = kn(t + iknz), j; n= 1;2;3 in whichα (n)
i

andkn are complex parameters. Here

as a special case, we look for a stationary solution withknI = 0, α (1)
1

= eη10, α(2)
2

=�eη20,

α(3)
3

= eη30 andα (2)
1

= α(3)
1

= α(1)
2

= α(3)
2

= α(1)
3

= α(2)
3

= 0, in order to gain insight into
the physics of the problem. Then, solving the remaining set of equations recursively, one
can obtain the following special stationary case of the three-soliton solution,

q1 =

"
eη1 +

µ(k1�k2)e
η1+η2+η�

2

4k2
2(k1+k2)

+
µ(k1�k3)e

η1+η3+η�

3

4k2
3(k1+k3)

+
µ2(k2�k1)(k3�k1)(k3�k2)

2eη3+η�

3+η2+η�

2+η1

16k2
2k2

3(k2+k1)(k3+k1)(k3+k2)
2

#,
D̃; (74a)

q2 =

"
�eη2 +

µ(k1�k2)e
η1+η�

1+η2

4k2
1(k1+k2)

+
µ(k3�k2)e

η3+η�

3+η2

4k2
3(k3+k2)
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+
µ2(k2�k1)(k3�k2)(k3�k1)

2eη3+η�

3+η1+η�

1+η2

16k2
1k2

3(k2+k1)(k3+k2)(k3+k1)
2

#,
D̃; (74b)

q3 =

"
eη3 +

µ(k3�k1)e
η1+η�

1+η3

4k2
1(k1+k3)

+
µ(k3�k2)e

η2+η�

2+η3

4k2
2(k3+k2)

+
µ2(k3�k1)(k3�k2)(k2�k1)

2eη2+η�

2+η1+η�

1+η3

16k2
1k2

2(k3+k1)(k3+k2)(k2+k1)
2

#,
D̃: (74c)

Here,

D̃ = 1+µ

"
eη1+η�

1

4k2
1

+
eη2+η�

2

4k2
2

+
eη3+η�

3

4k2
3

#
+

µ2(k1�k2)
2eη1+η�

1+η2+η�

2

16k2
1k2

2(k1+k2)
2

+
µ2(k1�k3)

2eη1+η�

1+η3+η�

3

16k2
1k2

3(k1+k3)
2 +

µ2(k3�k2)
2eη2+η�

2+η3+η�

3

16k2
2k2

3(k2+k3)
2

+

"
µ3(k2�k1)

2(k3�k1)
2(k3�k2)

2eη1+η�

1+η2+η�

2+η3+η�

3

64k2
1k2

2k2
3(k1+k2)

2(k1+k3)
2(k2+k3)

2

#
: (74d)

Rewriting eq. (74),as in the case ofN = 2, here also one can verify that the above solution
is exactly the same as the stationary PCS given in ref. [13] forN = 3,

q1 =
2k1pµD2

�
(k1+k2)(k1+k3)

(k1�k2)(k1�k3)

�1=2

�
�
cosh

�
k2t̄2+k3t̄3

�
+

(k2+k3)

(k2�k3)
cosh

�
k2t̄2�k3t̄3

��
eik2

1z; (75a)

q2 =
2k2pµD2

�
(k2+k3)(k1+k2)

(k1�k2)(k2�k3)

�1=2

�
�
sinh

�
k1t̄1+k3t̄3

�
+

(k1+k3)

(k1�k3)
sinh

�
k1t̄1�k3t̄3

��
eik2

2z; (75b)

q3 =
2k3pµD2

�
(k1+k3)(k2+k3)

(k1�k3)(k2�k3)

�1=2

�
�
cosh

�
k2t̄2+k1t̄1

�� (k1+k2)

(k1�k2)
cosh

�
k1t̄1�k2t̄2

��
eik2

3z: (75c)

The quantityD2 is given by

D2 = cosh
�
k1t̄1+k2t̄2+k3t̄3

�
+

�
k1+k2

k1�k2

��
k1+k3

k1�k3

�
cosh

�
k1t̄1�k2t̄2�k3t̄3

�
+

�
k1+k2

k1�k2

��
k1+k3

k1�k3

�
cosh

�
k1t̄1�k2t̄2+k3t̄3

�
+

�
k1+k3

k1�k3

��
k2+k3

k2�k3

�
cosh

�
k1t̄1+k2t̄2+k3t̄3

�
; (75d)
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where

t̄1 = t� t1 = t +
η10

k1
+

1
2k1

log

�
µ(k2�k1)(k3�k1)

4k2
1(k1+k2)(k1+k3)

�
; (75e)

t̄2 = t� t2 = t +
η20

k2
+

1
2k2

log

�
µ(k2�k1)(k3�k2)

4k2
2(k1+k2)(k2+k3)

�
; (75f)

t̄3 = t� t3 = t +
η30

k3
+

1
2k3

log

�
µ(k3�k1)(k3�k2)

4k2
3(k1+k3)(k2+k3)

�
: (75g)

Thus from the above analysis we have shown that the 2-soliton and 3-soliton PCS are
very special cases corresponding to specific parametric restrictions in the two-soliton so-
lution of theN = 2 case, and the three-soliton solution of theN = 3 case, respectively.
Extending this idea toN = 4 (which we have verified explicitly) and then to arbitrary N, it
is clear that the PCS which is formed due to a nonlinear superposition of N-fundamental
solitons [13] is a special case of the N-soliton solution of the N-CNLS equations (13).

These PCS solutions are found to be of variable shape as pointed above. Further, they
also change their shape during collision with another PCS [13,14]. The reason for the shape
change of PCS arises naturally from the soliton interaction properties of eq. (13) discussed
in x5. There it has been shown that during a pairwise interaction of two fundamental
solitons of N-CNLS equation there is an energy sharing betweeen them resulting in a novel
shape changing collision, depending on the transition matrix elementsT l

j , the phase shift

Φl and a change in the relative separation distance∆xi j given by eq. (52). Since, the PCS
is a special case of the N-soliton solutions which are parametrized as above, it naturally
possesses a variable shape.

The reason for the shape variation of PCS during collision with another PCS also follows
from the nature of the fundamental bright soliton collision of the Manakov system and its
generalization. The collision of two PCS each comprisingm andn soliton complexes,
respectively, such thatm+n= N, is equivalent to the interaction of N-fundamental bright
solitons (for suitable choice of parameters) represented by the special case of N-soliton
solution of the N-CNLS system. More details of these results will be reported separately
[28].

Our above analysis is not only of theoretical interest but also has considerable practical
relevance in view of the various recently reported interesting experimental observations.
The above discussed Manakov solitons have been recently observed in AlGaAs planar
waveguides [30]. Further, the shape changing collision involving energy exchange as dis-
cussed above has been demonstrated experimentally [31]. Also, collision between PCS’s
of shape changing type as treated here were observed in a photorefractive strontium barium
niobate crystal using screening solitons [32]. As mentioned earlier in the introduction, the
partially incoherent solitons can be observed even with a light bulb [9] and also through
excitation by partially coherent light [8]. We believe that our exact analytical results will
give further impetus to the experimental investigations of these solitons.

8. Conclusion

We have pointed out in this paper that the study on CNLS equations has considerable
physical relevance due to their appearance as governing equations for soliton propagation
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in different physical contexts like long distance optical communication systems and pho-
torefractive media. From a theoretical point of view, first we have analysed the integrable
nature of the generalized Manakov or integrable CNLS systems by giving their Lax pair
along with the conserved quantities associated with them and then we have obtained the
one- and two-soliton solutions explicitly. We have further shown that the bright solitons
of the integrable CNLS equations exhibit a novel shape changing collision property which
is of considerable physical interest. In particular, we have pointed following ref. [18] that
state transformations of the solitons during this fascinating shape changing collision can be
represented by a linear fractional (bilinear) transformation and illustrated how this prop-
erty can be used advantageously in constructing various logic gates, including the NAND
gate—a universal gate. Further, as another application we have also pointed out that the
various partially coherent stationary solitons reported in the recent literature are special
cases of the bright soliton solutions of the integrable CNLS equations. The above studies
seem to clearly show that there is considerable relevance both from an experimental point
of view as well as theoretical point of view to study the dynamics of CNLS systems.
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