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Abstract

The existence of anticipatory, complete and lag synchronization in a single system having two
different time-delays, that is feedback delay 7 and coupling delay 7», is identified. The transition
from anticipatory to complete synchronization and from complete to lag synchronization as a
function of coupling delay 75 with suitable stability condition is discussed. In particular, it is
shown that the stability condition is independent of the delay times 71 and 7. Consequently for
a fixed set of parameters, all the three types of synchronizations can be realized. Further the
emergence of exact anticipatory/complete/lag synchronization from the desynchronized state via
approximate synchronization, when one of the system parameters (by) is varied, is characterized
by the minimum of similarity function and the transition from on-off intermittency via periodic

structure in laminar phase distribution.
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I. INTRODUCTION

Synchronization phenomena dates back to the period of Huygens in 1665, when he found
that two very weakly coupled pendulum clocks, hanging from the same beam, become
phase synchronized [l]. Since the early identification of synchronization in chaotic oscil-
lators [2, 3, 4], the phenomenon has attracted considerable research activity in different
areas of science [, 15, 6] and several generalizations and interesting applications have been
developed. Chaos synchronization phenomenon is of interest not only from a theoretical
point of view but also has potential applications in diverse subjects such as as biological,
neurological, laser, chemical, electrical and fluid mechanical systems as well as in secure
communication, cryptography and so on. [, 2, 13, 4, 5, 6, [, I, 9, [10]. A recent review
on the phenomenon of chaos synchronization can be found in the reference [11]. In recent
years, different kinds of synchronization have been identified: Complete (or identical) syn-
chronization [2, ], generalized synchronization [12, 13, [14], phase synchronization [13, [16],
lag synchronization [17, 1§, [19] and anticipatory synchronization [20, 21, 22]. For a critical
discussion on the interrelationship between various kinds of synchronization, we may refer
to refs. |23, 24]. Transition from one kind of synchronization to the other, coexistence of
different kinds of synchronization in time series and also the nature of transition have also
been studied extensively [17, 11§, 119, 25, 2(] in coupled chaotic systems.

One of the most important applications of chaos synchronization is secure communica-
tion. It is now an accepted fact that secure communication based on simple low dimensional
chaotic systems does not ensure sufficient level of security, as the associated chaotic attrac-
tors can be reconstructed with some effort and the hidden message can be retrieved by an
eavesdropper [27]. One way to overcome this problem is to consider chaos synchronization
in high dimensional systems having multiple positive Lyapunov exponents. This increases
security by giving rise to much more complex time series, which are apparently not vul-
nerable to the unmasking procedures generally. Recently chaotic time-delay systems have
been suggested as good candidates for secure communication [28, 29], as the time-delay
systems are essentially infinite dimensional in nature and are described by delay differential
equations, and that they can admit hyperchaotic attractors with large number of positive
Lyapunov exponents for suitable nonlinearity. Therefore the study of chaos synchronization

in the time-delay systems is of considerable practical significance. However, it should be



noted that one has to be cautious due to the fact that even in time-delay systems with
multiple positive Lyapunov exponents unmasking may be possible. Particularly, this is so
if any reconstruction of the dynamics of the system is achieved in some appropriate space
even for very high dimensional dynamics as demonstrated by Zhou and Lai [30] in the case
of Mackey-Glass equation.

Time-delay is ubiquitous in many physical systems due to finite switching speed of am-
plifiers, finite signal propagation time in biological networks, finite chemical reaction times,
memory effects and so on |28, 29, 31, 32]. In recent times, considerable work has been
carried out on the effect of time-delay in limit cycle oscillators [33, 34|, time-delay feed-
back [35, B6], networks with time-delay coupling [37], etc. Recently, we have shown that
even a single scalar delay equation with piecewise linear function can exhibit hyperchaotic
behavior even for small values of time-delay [38]. It is therefore of importance to consider
the synchronization of chaos in such scalar piecewise linear delay differential systems with
appropriate delay coupling. Interestingly, in the present work we find that in such a coupled
system, one can identify anticipatory, complete and lag synchronizations by simply tuning
the second time-delay parameter in the coupling, for a fixed set of system parameters sat-
isfying appropriate stability condition. The results have been corroborated by the nature
of similarity functions, and transition behavior characterized by probability distribution of
laminar phase during approximate synchronization which precedes the exact synchronization
when a system parameter is varied. We also wish to point out that to our knowledge such
transitions between all the three types of above synchronizations have not been reported in
nonhyperchaotic systems and it appears that the present type of hyperchaotic systems are
convenient tools to realize such transitions by tuning the delay parameters suitably.

Specifically, in this paper we will consider chaos synchronization of two single scalar
piecewise-linear time-delay systems studied in the references [31, 38, 39] with unidirectional
coupling between them and having two different time-delays: one in the coupling term and
the other in the individual systems, namely, feedback delay. We have identified the stability
condition for synchronization following Krasovskii-Lyapunov theory and demonstrate that
there exists transition between three different kinds of synchronization, namely anticipatory,
complete and lag synchronizations, as a function of time-delay in the coupling. To charac-
terize the existence of anticipatory and lag synchronizations, we have plotted the similarity

function S(7). We have also demonstrated that when the system parameter by is varied,



the onset of exact anticipatory/complete/lag synchronization from the desynchronized state
is preceded by a region of approximate synchronized state. We also show that the later is
characterized by a transition from on-off intermittency to a periodic structure in the laminar
phase distribution, as suggested in the work of Zhan et al. [19] for the case of lag synchroniza-
tion. The plan of the paper is as follows. In sec. II, we introduce the unidirectionally coupled
scalar time-delay system and identify the condition for stability of synchronized states. In
sec. III, we point out the existence of anticipatory synchronization when the strength of
the coupling delay is less than feedback delay, while in sec. IV, complete synchronization is
realized when the two delays are equal. Lag synchronization is shown to set in when the
coupling delay exceeds the feedback delay in sec. V. Finally in sec. VI, we summarize our

results.

II. PIECEWISE LINEAR TIME-DELAY SYSTEM AND STABILITY CONDI-
TION FOR CHAOS SYNCHRONIZATION

At first, we will introduce the single scalar time-delay system with piecewise linearity
and bring out its hyperchaotic nature for suitable values of the system parameters. Then
the unidirectional delay coupling is introduced between two scalar systems and the stability

condition for chaos synchronization is derived.

A. The scalar delay system

We consider the following first order delay differential equation introduced by Lu and

He [39] and discussed in detail by Thangavel et al. [31],

(t) = —ax(t) + bf(z(t — 7)), (1)

where a and b are parameters, 7 is the time-delay and f is an odd piecewise linear function

defined as

0, r < —4/3
—152—2, —4/3 <z < —08
flz) = z, —0.8<2<0.8 (2)
—15z+2, 08<xz<4/3
\ 0, x>4/3



It is also of interest to consider additional forcing on the right hand side of Eq. (l); however,
this is not considered here. The schematic form of () is shown in Fig. 1. Recently, we
have reported [38§] that systems of the form ([l) exhibit hyperchaotic behavior for suitable
parametric values. For our present study, we find that for the choice of the parameters a =
1.0,b = 1.2 and 7 = 25.0 with the initial condition z(¢) = 0.9,¢t € (—5,0), Eq. ([Il) exhibits
hyperchaos. The corresponding pseudoattractor is shown in the Fig. 2. The hyperchaotic
nature of Eq. () is confirmed by the existence of multiple positive Lyapunov exponents.
The first ten maximal Lyapunov exponents for the parameters a = 1.0,b = 1.2, 2(t) =
0.9, € (—5,0), as a function of time-delay 7 is shown in Fig. 3, which are evaluated using

the procedure suggested by J. D. Farmer [29].

B. Coupled system and the stability condition

Now let us consider the following unidirectionally coupled drive x;(t) and response x5 (t)
systems with two different time-delays 7 and 75 as feedback and coupling time-delays,

respectively,

Il(t) = —axl(t) + blf(l'l(t - Tl)), (3&)
To(t) = —axa(t) + baf (v2(t — 7)) + baf (21 (t — 72)), (3b)

where by, by and b3 are constants, a > 0, and f(x) is of the same form as in Eq. (&).

Now we can deduce the stability condition for synchronization of the two time-delay
systems Eqs. (Bh) and ([Bb) in the presence of the delay coupling bz f(x1(t — 73)). The time
evolution of the difference system with the state variable A = x1,,_,, —x5 (which corresponds
to anticipatory synchronization when 7 < 7, identical synchronization for 7 = 7 and lag
synchronization when 75 > 7y), where x1,,_,, = x1(t — (1o — 71)), can be written for small

values of A by using the evolution Egs. (3) as

A = —CI,A + (b2 + bg — bl)f(l’l(t - 72)) + b2f,($1(t - 7-2))A7'1a AT = A(t - T) (4)

In order to study the stability of the synchronization manifold, we choose the parametric

condition,

by = by + bs, (5)



so that the evolution equation for the difference system A becomes

A = —aA + bgf/(l'l(t - TQ))ATl. (6)

The synchronization manifold is locally attracting if the origin of this equation is stable.
Following Krasovskii-Lyapunov functional approach [39,40], we define a positive definite

Lyapunov functional of the form

V(t) = %N + u/o A*(t+6)d, (7)

n
where (1 is an arbitrary positive parameter, 1 > 0. Note that V() approaches zero as A — 0.
To estimate a sufficient condition for the stability of the solution A = 0, we require the

derivative of the functional V() along the trajectory of Eq. (@),

% = —aA? + by f' (1 (t — T2)) AL, + pA? — pA2 (8)

to be negative. The above equation can be rewritten as

av

where X = A, /A, T =[((a — p)/pt) = (bof'(z1(t — 7)) /1) X + X?]. In order to show that
% < 0 for all A and A, and so for all X, it is sufficient to show that I',,;, > 0. One
can easily check that the absolute minimum of I' occurs at X = ibg f'(x1(t — 7)) with
Donin =[4p(a—p) — 3 f'(21(t — 72))?] /4p*. Consequently, we have the condition for stability
as

b3
a> ﬁf (z1(t = 72))" + 1 = O(). (10)
Again ®(u) as a function of p for a given f’(z) has an absolute minimum at p = (|ba f'(z1 (¢t —
72))])/2 with @ = |bof (x1(t — 72))]. Since & > Dy = |bof'(21(t — 72))|, from the

inequality (), it turns out that the sufficient condition for asymptotic stability is

a > |baf'(x1(t — 72))| (11)

along with the condition (H) on the parameters by, by and bs.

Now from the form of the piecewise linear function f(x) given by Eq. (2), we have,

1.5, 0.8 <|z1| < 3
|f' (@1 (t —72))| = ’ (12)
1.0, |£L’1| < 0.8



Note that the region |z;| > 4/3 is outside the dynamics of the present system (see Eq. (&)).
Consequently the stability condition ([l) becomes a > 1.5|by| > |bs| along with the para-
metric restriction b; = by + bs.

Thus one can take a > |by| as a less stringent condition for ([II) to be valid, while
a > 1.5|bs], (13)

as the most general condition specified by ([l for asymptotic stability of the synchronized
state A = 0. The condition ([3) indeed corresponds to the stability condition for exact
anticipatory, identical as well as lag synchronizations for suitable values of the coupling
delay 75. It may also be noted that the stability condition ([3]) is independent of the both
the delay parameters 7, and 75. In the following, we will demonstrate the transition from
anticipatory to lag synchronization via complete synchronization as the coupling delay 7 is
varied from 7 < 71 to 7 > 71, subject to the stability condition ([3) with the parametric
restriction by = by + b3. However, we also point out from detailed numerical analysis that
when the less general condition 1.5[by| > a > |be| is satisfied, approximate synchronization

(anticipatory/complete/lag) occurs.

III. ANTICIPATORY SYNCHRONIZATION FOR 7 <7

To start with, we first consider the transition to anticipatory synchronization in the
coupled system (B). We have fixed the value of the feedback time-delay 7 at 7 = 25.0 while
the other parameters are fixed as a = 0.16,b; = 0.2,b, = 0.1,b3 = 0.1 and the time-delay
in the coupling 7 is treated as the control parameter. With the above mentioned stability
condition (&) and with the coupling delay 7, being less than the feedback delay 71, one can
observe the transition to anticipatory synchronization. The time trajectory plot is shown
in Fig. 4a depicting anticipatory synchronization, for the specific value of 7, = 20.0 with
the anticipating time equal to that of difference between feedback and the coupling delays,
that is, 7 = 75 — 7. The time-shifted plot Fig. 4b, xo(t — 7) Vs x1(t), shows a concentrated
diagonal line confirming the existence of anticipatory synchronization (We may note here
that in all our numerical studies in this paper we leave out sufficiently large number of
transients, before presenting our figures).

Sometime ago, Rosenbulm et al. [15] have introduced the notion of similarity function



Si(7) for characterizing the lag synchronization as a time averaged difference between the

variables x; and x5 (with mean values being subtracted) taken with the time shift 7,

$2(r) = ([wa(t + 1) — 21 ()] (14)

({22 () (23 ()]

where, (x) means time average over the variable x. If the signals x;(¢) and xo(t) are indepen-

dent, the difference between them is of the same order as the signals themselves. If z1(t) =
x2(t), as in the case of complete synchronization, the similarity function reaches a minimum
S(7) =0 for 7 = 0. But for the case of nonzero value of time shift 7, if S;(7) = 0, then there
exists a time shift 7 between the two signals z(t) and xo(t) such that zy(t + 7) = z1(t),
demonstrating lag synchronization.

In the present study, we have used the same similarity function S;(7) to characterize
anticipatory synchronization with negative time shift —7 instead of the positive time shift
7 in Eq. ([@). In other words, one may define the similarity function for anticipatory

synchronization as

s (st — ) — ()
Sl = Iy )

Then the minimum of S,(7),that is S,(7) = 0, indicates that there exists a time shift

(15)

—7 between the two signals z1(f) and x9(t) such that z5(t — 7) = x1(t), demonstrating
anticipatory synchronization. Fig. 5 shows the similarity function S,(7) as a function of
the coupling delay 7, for four different values of by, the parameter whose value determines
the stability condition given by Eq. (), while satisfying the parametric condition b; =
by + b3. Curves 1 and 2 are plotted for the values of by = 0.18(> a = 0.16 > a/1.5) and
by = 0.16(= a > a/1.5), respectively, where the minimum values of S,(7) is found to be
greater than zero, indicating that there is no exact time shift between the two signals x;(t)
and x2(t). Note that in the both cases the stringent stability condition ([3) and the less
stringent condition a > |by| are violated. Curve 3 corresponds to the value of by = 0.15
(which is less than a but greater than a/1.5), where the minimum value of S,(7) is almost
zero, but not exactly zero (as may be seen in the inset of Fig. 5), indicating an approximate
anticipatory synchronization z(t) ~ x3(t — 7). On the other hand the curve 4 is plotted
for the value of by = 0.1(< a/1.5), satisfying the general stability criterion, Eq. ([[3). It
shows that the minimum of S,(7) = 0, thereby indicating that there exists an exact time

shift between the two signals demonstrating anticipatory synchronization. The anticipating



time is found to be equal to the difference between the coupling and feedback delay times,
that is, 7 = 75 — 71. Note that S,(7) = 0 for all values of 7, < 71, indicating anticipatory
synchronization for a range of delay coupling. A further significance is that the anticipating
time 7 = |75 — 71| is an adjustable quantity as long as 7 < 77, which can be tuned suitably
to satisfy experimental situations.

Next, we show that the emergence of exact anticipatory synchronization is preceded by a
region of approximate anticipatory synchronization, which is associated with the transition
from on-off intermittency to a periodic structure in the laminar phase distribution [19] as a
function of the parameter by. First we choose the value of by as by = 0.17 (with b = 0.2 and
bz = 0.03), above the value of a = 0.16, such that the general stability criterion, Eq. (I3),as
well the less stringent condition a > |by| are violated.

Fig. 6a shows the difference of 1 (t) — x2(t — 7) Vs t, exhibiting typical feature of on-off
intermittency [42, 43] with the off state near the laminar phase and the on state showing
random burst. In Fig. 6b x1(t) is plotted against xo(t—7), where the distribution is scattered
around the diagonal. To analyze the statistical feature associated with the irregular motion,
we calculated the distribution of laminar phases A(t) with amplitude less than a threshold
value A = 0.005 as was done in the statistical analysis of intermittency [42, 43], where the
power law behavior of mean laminar length is calculated as a function of control parameter.
A universal asymptotic —% power law distribution is observed in Fig. 6c¢, which is quite
typical for on-off intermittency.

Now, we choose the value of b, = 0.15, below the value of a = 0.16 so that the less strin-
gent condition a > |bs| is satisfied while the general stability criterion Eq. ([I3]) is violated
and we carry out the same analysis as above. In Fig. 7a, the difference of x;(t) — xo(t —7) is
plotted against time ¢, which is more regular and is much smaller in amplitude but not ex-
actly zero, thereby implying an approximate anticipatory synchronization x;(t) ~ x1(t — 7).
Fig. 7b shows the plot of z1(t) Vs z3(t — 7), where the distribution is localized entirely
on the diagonal, but not sharply on it. Earlier we noted that for this case the minimum
of similarity function S,(7) (Curve 3, inset of Fig. 5) is nearly zero, but not exactly zero.
The distribution of laminar phase A(t) is plotted in Fig. 7c as for the Fig. 6¢c. It shows
a periodic structure in the distribution of laminar phase, where the peaks occur approxi-
mately at ¢ = nT,n = 1,2, ..., where T is of the order of the period of the lowest periodic
orbit of the uncoupled system (). It should be remembered that the periodic behavior is



associated with the statistical analysis, while the signals remain chaotic. Finally for the
case by = 0.1(< a/1.5), which satisfies the stringent stability criterion ([3)), and where the
similarity function vanishes exactly (Curve 4 in Fig. 5)), exact anticipatory synchronization
occurs as confirmed in Fig. 4. Thus we find that the transition to exact anticipatory synchro-
nization precedes a region of approximate anticipatory synchronization from desynchronized
state as the parameter b, changes. We have also demonstrated that the emergence of this
approximate anticipatory synchronization from the desynchronized state is characterized by

the transition of on-off intermittency to periodic structure in the laminar phase distribution.

IV. COMPLETE SYNCHRONIZATION FOR 7 =7

Complete synchronization follows the anticipatory synchronization as the value of the
coupling time-delay 75 equals the feedback time-delay 7, when 75 is increased from a lower
value. With 7 = 71, the same stability criterion, Eq. ([3), holds good for this case of
complete synchronization as well with the same condition b; = by + bs.

Fig. 8a shows the time trajectory plot of z1(¢) and z5(t), exhibiting synchronized evolution
between them, which is also confirmed by the entirely localized diagonal line of xq(t) Vs
x9(t) as shown in Fig. 8b. As in the case of anticipatory synchronization, we have found
that the transition to complete synchronization precedes a region of approximate complete
synchronization (x1(t) & x(t)) from the desynchronized state as the parameter b, varies.
Here also we have identified that the emergence of approximate complete synchronization
for the case 75 = 77 is associated with a transition from on-off intermittency to a periodic
structure in the laminar phase distribution as a function of the parameter by. In the next
section we will discuss the existence of lag synchronization for the values of 7 greater than

T1.

V. LAG SYNCHRONIZATION FOR 75 > 7

For coupling delay 7, greater than feedback delay 71, we find that the system (B]) exhibits
exact lag synchronization provided one satisfies the stringent stability criterion ([3), with
the lag time equal to the difference between the coupling and feedback delay times.

Fig. 9a shows the plot of x;(t) and x2(f) Vs time t, where the response system lags the

10



state of the drive system with constant lag time 7 = |7 — 7|. Fig. 9b shows the time-shifted
plot of xy(t) and xs(t + 7). However, in the region of less stringent stability condition,
1.5]bs| < a < |by|, approximate lag synchronization occurs as in the cases of anticipatory
and complete synchronizations.

We have also calculated the similarity function Sj(7) from Eq. ([4]) to characterize the
lag synchronization. Fig. 10 shows the similarity function S;(7) Vs coupling delay 7, for four
different values of by. Curves 1 and 2 show the similarity function S;(7) for the values of
by = 0.18 and 0.16, respectively. The minimum of similarity function S;(7) occurs for values
of S;(t) > 0 and hence there is a lack of exact lag time between the drive and response
signals indicating asynchronization. Curve 3 corresponds to the value of by = 0.15 (which is
less than a but greater than a/1.5), where the minimum values of S;(7) is almost zero, but
not exactly zero (as may be seen in the inset of Fig. 10), so that x1(t) ~ xo(t 4+ 7). However
for the value of b3 = 0.1, for which the general condition ([3J) is satisfied, the minimum of
similarity function becomes exactly zero (Curve 4) indicating that there is an exact time
shift (Fig. 9) between drive and response signals x1(t) and z5(t), respectively, confirming
the occurrence of lag synchronization.

We have also confirmed that as in the case of anticipatory synchronization, when the
parameter by varies, the onset of exact lag synchronization is preceded by a region of approx-
imate lag synchronization, which is characterized by a transition from on-off intermittency
of the desynchronized state to a periodic structure in the laminar phase distribution. For
the value of by = 0.17 (which violates the stability condition ([3) as well as the less stringent
condition a > |bg|), Fig. 11a shows the difference of z1(t) — xo(t + 7) Vs time ¢, exhibiting a
typical on-off intermittency. In Fig. 11b, x;(t) is plotted against xo(t 4 7), where the distri-
bution is not concentrated along the diagonal. In Fig. 11a, the laminar phase distribution
A(t) is characterized by an exponential —% power law behavior as shown in the

Fig. 11c. In order to show that there is a transition from on-off intermittency to periodic
behavior in the laminar phase distribution corresponding to approximate lag synchroniza-
tion, we have changed the value of by from 0.17 to 0.15, (so that the less stringent condition
a > |by| is satisfied but not the general condition (I3)), and examined the nature of laminar
phase distribution A(t). The difference between z;(t) and x5(t + 7) is shown as a function
of time t in Fig. 12a, where there is only a laminar phase present for the threshold value

A = 0.002 without any intermittent burst. The corresponding laminar phase distribution
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A(t) is again characterized by the periodic structure as shown in Fig. 12c. As in the case
of approximate anticipatory synchronization, here also the peaks occur approximately at
t=nT,n=1,2,..., where T is roughly of the order of the period of the lowest periodic orbit
of the uncoupled system ([I). Time-shifted plot z(t) Vs x5(t + 7) is shown in the Fig. 12b,
where the distribution is concentrated along but not exactly on the diagonal line confirming
the onset of approximate lag synchronization. As noted previously that for this case the
minimum of similarity function S;(7) is nearly zero but not exactly zero (Curve 3, inset of
Fig. 10). Finally for by = 0.1, which satisfies the general stability criterion ([3), we have
exact lag synchronization as demonstrated in Fig. 9 and Fig. 10. Thus we find that as the
parameter by varies the transition to exact lag synchronization precedes a region of approxi-
mate lag synchronization from desynchronized state, where the later is characterized by the

transition from on-off intermittency to periodic structure in the laminar phase distribution.

VI. SUMMARY AND CONCLUSION

In this paper, we have shown the existence of transition from anticipatory synchronization
to lag synchronization through complete synchronization in a single system of two coupled
time-delay piecewise linear oscillators with suitable stability condition and with the second
time-delay 7 in the coupling as the only control parameter with all the other parameters be-
ing kept fixed. We have also plotted corresponding similarity functions to characterize both
the anticipatory and lag synchronization as well as complete synchronization. Further, when
the parameter by varies, we find that the transition to exact anticipatory/complete/lag syn-
chronization precedes a region of approximate anticipatory/complete/lag synchronization
from desynchronized state, where the region of approximate synchronization is character-
ized by the transition from on-off intermittency to periodic structure in the laminar phase
distribution.

Further, we have observed that in the region where the stringent stability condition (I3)
is satisfied, the minimum of similarity function S,(7) attains the value zero for all values
of 75 < 7, indicating that the exact anticipatory synchronization exists for a range of
coupling delay 7 below 71. However for approximate anticipatory synchronization (in the
region 1.5|by] > a > |bg|) the minimum of similarity function takes the value S,(7) ~ 0,

but not exactly zero, for 7, < 77. Similarly lag synchronization also occurs for a range of

12



delay coupling 7 above 77. Another interesting aspect is that both the anticipating and

lag time can be tuned to any desired value by changing the value of coupling delay 5.

Consequently, the kind coupled time-delay systems of the type discussed in this paper have

considerable physical relevance, particularly for secure communication purposes. We are

now investigating the existence of similar phenomena in other piecewise linear time-delay

systems, including the time-delay Chua and Murali-Lakshman-Chua electronic circuits, the

results of which will be published elsewhere.
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VII. FIGURE CAPTIONS

Figl. The schematic form of the piecewise linear function f(z) given by Eq. (2).

Fig2. The hyperchaotic attractor of the system ([I) for the parameter values a = 1.0,b =
1.2 and 7 = 25.0.

Fig3. The first ten maximal Lyapunov exponents \,,., of the scalar time-delay equation
[Bk) for the parameter values a = 1.0,b = 1.2, 7 € (2,29).

Figd. Exact anticipatory synchronization for the parameter values a = 0.16,b; = 0.2, by =
0.1,b3 = 0.1, 77 = 25.0 and 7 = 20.0. (a) Time series plot of z1(¢) and z5(t), (b) Synchro-
nization manifold between x1(t) and z3(t — 7), 7 = 79 — 71. The response z5(t) anticipates
the drive z4(t) with a time shift of 7 = 5.0.

Figh. Similarity function S,(7) for different values of by, the other system parameters are
a=0.16,b; = 0.2 and 71 = 25.0. (Curve 1: by = 0.18,b3 = 0.02, Curve 2: by = 0.16,b3 =
0.04, Curve 3: by = 0.15,b3 = 0.05 and Curve 4: by = 0.1,b3 = 0.1).

Fig6. (a) The time series w1(t) — xo(t — 7) for by = 0.17 and by = 0.03 with all other
parameters as in Fig. 4 (so that the stability condition is violated for anticipatory synchro-
nization), (b) Projection of z1(t) Vs x2(t — 7) and (c) The statistical distribution of laminar
phase satisfying —% power law scaling.

Fig7. (a) The time series x1(t) — xo(t — 7) for by = 0.15 and by = 0.05 with all other
parameters fixed as in Fig. 4 (so that the less stringent condition a > |be| is satisfied while
([[3) is violated), (b) Projection of x1(t) Vs z2(t — 7) and (c) The statistical distribution of
laminar phase showing a periodic structure.

Fig8. Exact complete synchronization for the parameter values a = 0.16,b; = 0.2,by =
0.1,b3 = 0.1, 77 = 25.0 and 75 = 25.0. Here the general stability criterion ([[3)) is satisfied.
(a) Time series plot of x1(t) and z2(t) and (b) Synchronization manifold between x;(t) and
x9(t). The response xs(t) follows identically the drive z(¢) without any time shift.

Fig9. Exact lag synchronization for the parameter values a = 0.16,b; = 0.2,b, = 0.1, b3 =
0.1,77 = 25.0 and 75 = 30.0. Here the general stability criterion (3] is satisfied.(a) Time
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series plot of z1(t) and x5(t), (b) Synchronization manifold between x(t) and z2(t+7). The
response xo(t) lags the drive xy(t) with a time shift of 7 = 5.0.

Fig.10 Similarity function S;(7) for different values of be, the other system parameters
are a = 0.16,b; = 0.2 and 7y = 25.0. (Curve 1: by = 0.18,b3 = 0.02, Curve 2: by = 0.16, b3 =
0.04 Curve 3: by = 0.15,b3 = 0.05 and Curve 4: by = 0.1,b3 = 0.1).

Figll. (a) The time series x;(t) — x2(t + 7) for by = 0.17 and b3 = 0.03 with all other
parameters as in Fig. 9 (so that the stability condition is violated), (b) Projection of x;(t)
Vs z5(t + 7) and (c) The statistical distribution of laminar phase satisfying —2 power law
scaling.

Figl2. (a) The time series x1(t) — x2(t + 7) for by = 0.15 and b3 = 0.05 so that the
less stringent condition a > |bs| is satisfied while ([3) is violated, (b) Projection of x(t) Vs

xo(t 4+ 7) and (c) The statistical distribution of laminar phase showing periodic structure.
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