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A simple quasiperiodically forced one-dimensional cubic map is shown to exhibit very many types
of routes to chaos via strange nonchaotic attractors (SNAs) with reference to a two-parameter (A−f)
space. The routes include transitions to chaos via SNAs from both one frequency torus and period
doubled torus. In the former case, we identify the fractalization and type I intermittency routes. In
the latter case, we point out that atleast four distinct routes through which the truncation of torus
doubling bifurcation and the birth of SNAs take place in this model. In particular, the formation of
SNAs through Heagy-Hammel, fractalization and type–III intermittent mechanisms are described.
In addition, it has been found that in this system there are some regions in the parameter space
where a novel dynamics involving a sudden expansion of the attractor which tames the growth of
period-doubling bifurcation takes place, giving birth to SNA. The SNAs created through different
mechanisms are characterized by the behaviour of the Lyapunov exponents and their variance, by the
estimation of phase sensitivity exponent as well as through the distribution of finite-time Lyapunov
exponents.

PACS number(s): 05.45.+b

I. INTRODUCTION

Torus doubling bifurcation (geometrically similar to period doubling bifurcation) as a universal route to chaos is
turning out to be one of the leading topics of research in the study of quasiperiodically forced chaotic dynamical
systems during the past few years [1–6]. The existence of such an exotic bifurcation in several experimental situations
and theoretical models indicates the importance of this bifurcation in improving our understanding of the qualitative
and quantitative behaviours of dynamical systems [1–11]. A very common observation is that such systems do not
undergo an infinite sequence of doubling bifurcations as in the case of the lower dimensional systems; instead, the
truncation of torus doubling begins when the doubled torus becomes extremely wrinkled and then gets destroyed.
Such a destroyed torus is a geometrically strange (fractal dimensional) object in the phase space, a property that
usually corresponds to that of a chaotic attractor. However, it would not exhibit sensitivity to initial conditions
asymptotically (for example, Lyapunov exponents are nonpositive) and hence is not chaotic and so it is a strange
nonchaotic attractor(SNA) [12–29]. Actually the existence of SNA was first identified by Grebogi et al. [12] in their
work on the transition from two-frequency torus to chaos via SNA. Later on, it was found that these attractors
can arise in physically relevant situations such as a quasiperiodically forced pendulum [14,22], quantum particles in
quasiperiodic potentials [14], biological oscillators [15], Duffing-type oscillators [16–18], velocity-dependent potential
systems [11], electronic circuits [19,20], and in certain maps [21–26] in different transitions to SNA including the torus
doubling bifurcation and the birth of SNAs. Also, the existence of torus doubling truncation and the appearance of
SNA was confirmed by an experiment consisting of a quasiperiodically forced, buckled magnetoelastic ribbon [27].
Besides this experiment, the exotic strange nonchaotic attractors were studied in analog simulations of a multistable
potential [28], and in neon glow discharge experiment [29] through different transitions to SNAs. The existence of
SNAs in such physically relevant systems has naturally motivated further intense investigations on the nature and
occurrence of them.

A question of intense further interest in the topic is the way in which the truncation of period doubling occurs
to give birth to SNAs. In particular, it has been found that the birth of SNAs often occurs due to the collision of
a period doubled torus with its unstable parent so that a period 2k−torus gives rise to a 2k−1−band SNA [8] or a
gradual fractalization of torus, in which a period 2k−torus approaches a 2k−band SNA [9]. Recently, the present
authors have identified that the torus doubling sequence is tamed due to a subharmonic bifurcation (subcritical
period-doubling bifurcation) leading to the creation of SNAs. In addition, this transition has been shown to exhibit
type-III intermittent characteristic scaling [17,19]. Apart from the creation of SNAs due to the collapse of the tori,
the authors have also shown that there are some regions of the system parameters where the torus doubling sequence
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is truncated by a merging bifurcation leading to the formation of a torus bubble [11], reminiscent of period bubbles
in low dimensional systems. Also, using the renormalization group approach, Kuznetsov, Feudal and Pikovsky have
revealed scaling properties both for the critical attractor and for the parameter plane topography near the terminal
point of the torus doubling bifurcation [10] in connection with the above mentioned collision scenario.

Besides the creation of SNAs through the above mentioned truncation of torus doubling bifurcation, several other
mechanisms have also been studied in the literature for the birth of SNAs. The most common one is gradual
fractalization of a torus where an amplitude or phase instability causes the collapse of the torus [9]. This is in fact one
of the least understood mechanisms for the formation of SNAs since there is no apparent bifurcation unlike the torus
collision mechanism identified by Feudel, Kurths and Pikovsky where a stable torus and an unstable torus collide at
a dense set of points, leading to the creation of SNAs [23]. Prasad, Mehra and Ramaswamy [21] have shown that
a quasiperiodic analogue of a saddle-node bifurcation gives rise to SNAs through the intermittent route with the
dynamics exhibiting scaling behaviour characteristic of type–I intermittency. Yalcinkaya and Lai have described that
an on-off intermittency can be associated with SNA creation through a blow-out bifurcation when a torus loses its
transverse stability [18]. Other than the above said scenarios, a number of other quasiperiodic routes to SNAs have
been described in the literature [13,25]. They include the existence of SNAs in the transition from two-frequency to
three-frequency quasiperiodicity [13], transition from three-frequency to chaos via SNA and transition to chaos via
strange nonchaotic trajectories on torus [25].

Considering particularly the different routes discussed above for the inhibition of torus doubling sequence and the
birth of SNAs, we note that they have so far been identified essentially in different dynamical systems. However, it is
important to study the truncation of the torus doubling bifurcations and the appearance of SNAs in a single system
in order to understand the mechanisms and their characteristic features clearly. In this connection, we consider a
simple model in the form of an one-dimensional cubic map,

xi+1 = −Axi + x3
i , (1)

which is quite analogous to the typical Duffing oscillator [30,31]. The existence of different dynamical features of this
system has been studied in refs. [31,32]. In the present work, we investigate the dynamics of (1) with the addition of
a constant bias,

xi+1 = Q − Axi + x3
i , (2)

and also subject to an additional quasiperiodic forcing,

xi+1 = Q + f cos(2πθi) − Axi + x3
i , (3)

θi+1 = θi + ω(mod1),

and show that the latter is a rich dynamical system in comparison with the former, possessing a vast number of
regular, strange nonchaotic and chaotic attractors in a two-parameter (A − f) space for a fixed Q. In particular,
we focus our attention mainly on the truncation of torus-doubling bifurcations leading to the birth of SNAs and the
mechanisms by which they arise in a range of the two-parameter (A − f) space, besides pointing out the standard
transitions to chaos via SNAs from one frequency torus. A variety of transitions from truncated doubled torus to
SNAs could be identified, characterized and distinguished in this system.

To start with, we show that the system (2) undergoes one or more period doublings but it need not complete the
entire Feigenbaum cascade, and that it may be possible to have only a finite number of period doublings, followed
by, for example, undoubling or other bifurcations in the presence of constant bias, as was shown by Bier and Bountis
in different systems [32]. The possibility of such a different remerging bifurcation phenomenon in the torus doubling
sequence is reported in the present case, when the system (2) is subjected to quasiperiodic forcing as in model (3).
As the system (3) possesses more than one control parameter and remains invariant under reflection symmetry, the
remergence is likely to occur as in the absence of quasiperiodic forcing in the system (2). Our numerical study shows
that for fixed value of Q in some regions of the (A−f) parameter space a torus doubled orbit emerges and remerges from
a single torus orbit at two different parameter values of f to form a single torus bubble. Such a remerging bifurcation
can retard the growth of the torus doubled bifurcations and the development of the associated universal route to chaos
further. However, the nature of remerging torus doubled bifurcation or, more specifically, the torus bubbling ensures
the existence of different routes for the creation of SNAs when the full range of parameters is explored. To illustrate
such possibilities in the present system in the two-parameter (A−f) space, we first enumerate three standard types of
routes to SNA namely, (1) Heagy-Hammel (− collision of period doubled torus with its unstable parent), (2) gradual
fractalization (−the amplitude or phase instability), and (3) type–III intermittency (−the subharmonic instability)
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routes through which the truncation of torus doubling bifurcation occurs leading to the birth of SNAs within the
torus bubble region.

In addition, we identify that in some cross sections of the (A − f) parameter space, particularly within the torus
bubble region, the period doubling bifurcation phenomenon still persists in the destroyed torus, eventhough the
actual doubling of the torus itself has been terminated. However, we show that the novel dynamics involved in

this transition is a sudden expansion in the attractor. This transition seems to look like the interior crisis
which occurs in low dimensional chaotic systems [33]. We also demonstrate the occurrence of SNAs through gradual
fractalization and type–I intermittent nature, during the transition from one-frequency quasiperiodicity to chaos that
exists outside the torus bubble region.

In all our studies the transitions to different SNAs at different parts of the border in the (A − f) parameter
plane and characterization of them is carried out on the basis of specific quantities such as Lyapunov exponents and
their variance as well as finite-time Lyapunov exponents, dimensions, power spectral measures and phase sensitivity
exponents. Brief details of these characterizing quantities are given in the Appendix A. In Sec. II we describe
the phenomenon of the remerging of Feigenbaum tree in the absence of quasiperiodic forcing in the map (2). The
existence of remerging torus doubling is pointed out in Sec. III. Various transitions to SNAs through the truncated
doubled torus are demonstrated in Sec. IV. In particular, the truncation of torus doubling bifurcation and the birth
of SNAs through torus collision, fractalization and type–III intermittent mechanisms have been explained. Further,
a sudden expansion of the attractor causing the truncation of torus doubling bifurcation and the genesis of SNA is
also demonstrated. In Sec. V, the transition from one-frequency torus to SNA through type–I intermittent as well as
fractalization mechanisms is described. In Sec. VI the transitions between different SNAs are discuused. In Sec. VII
we address the issue of distinguishing among SNAs formed by different routes through the use of finite-time Lyapunov
exponents. Finally, in Sec. VIII, the results are summarized.

II. REMERGING OF FEIGENBAUM TREES IN THE ABSENCE OF QUASIPERIODIC FORCING

To start with, we consider the system (2) and numerically iterate it by varying the values of A and Q. For any
Q value and low A values, the system (2) exhibits periodic oscillations with period 1T. As A increases, a bifurcation
occurs and the stable period T orbit transits into a stable period 2T bubble, as shown in Fig. 1(a). For example,
when the value of Q exceeds a certain critical value Q=−0.99 for a fixed A, A=1.5, a transition from period T orbit to
period 2T orbit occurs on increasing Q, essentially due to period doubling bifurcation. Then the period 2T attractor
merges and forms a period T attractor when the value of Q increases to Q=0.99 at the same fixed A. At even higher
values of A, A=1.7, the primary period 2T bubble bifurcates into secondary period 4T bubbles, as shown in Fig. 1(b).
This bubble develops into further bubbles as A gets larger, until an infinitely branched Feigenbaum tree leading to
the onset of chaos finally appears, as shown in Fig. 1(c) for A=1.8.

Bier and Bountis showed that such a remerging of Feigenbaum trees is quite common in certain models possessing
a kind of reflection symmetry property coupled with more than one parameter [32]. Further, they added that the
formation of primary period 2T bubble is seen to lead to higher order bubbles and the development of the associated
universal route to chaos in these systems. It is also stated in the literature that the reversal of period doubling occurs
when the system possesses a positive Schwarzian derivative at the bifurcation point [34,35]. This is true for the present
case that we study. However, there are some counter examples as pointed out by Nusse and Yorke [35] to show that
the positivity of Schwarzian derivative is not a sufficient condition to rule out the period halving bifurcations.

In the present paper, our aim is to investigate the effect of a quasiperiodic forcing on the system (2) as given by
Eq.(3). In particular, we point out that with the addition of the quasiperiodic forcing for a fixed Q, the dynamics
is dominated by quasiperiodic attractors and transitions to chaos via strange nonchaotic attractors (SNAs) along
different routes in contrast to the type of attractors shown in Fig. 1. For this purpose we also work out a two
parameter (A − f) phase diagram (Fig. 2) to identify the changes in the dynamics.

III. SNAS IN THE QUASIPERIODICALLY FORCED CUBIC MAP

Now we consider the dynamics of the quasiperiodically driven map (3) and numerically iterate it with the value of

the parameter ω fixed at ω =
√

5−1
2 and by varying the values of A and f for different fixed values of Q. The results

are then summarized in a suitable two-parameter (A− f) phase diagram for each fixed value of Q. Various dynamical
behaviours − quasiperiodic, strange nonchaotic, and chaotic attractors − have been identified by characterizing the
attractors by quantities such as Lyapunov exponents and their variance as well as finite-time Lyapunov exponents,
dimensions, power spectral measures and phase sensitivity exponents (for details, see in Appendix A).
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In the absence of the external forcing (f = 0), from Fig. 1, we can easily check that for fixed Q and for given A
the dynamics corresponds to periodic or chaotic attractors. For instance, for Q = 0 and for any values of A, the
system admits a period-2 solution. Similarly, for Q = 0.25 and A = 1.8, it is a period-4 orbit, while for Q = 0.5 and
A = 1.8, it is a chaotic orbit. We now include the effect of quasiperiodic forcing (f 6= 0) and analyse the dynamics
involving torus, period doubled torus and chaos via SNAs. A very clear picture of the various types of transitions
becomes available for the case Q = 0 in the region f ∈ (−0.8, 0.8) and A ∈ (0.8, 2.4), while similar structure arises in
a larger region for other values of Q. Consequently, we present in the following results for Q = 0 only in the form of
the phase diagram in Fig. 2. The various features indicated in Fig. 2 are summarised and the dynamical transitions
are discussed in the following.

The general features of the phase diagram fall into a very interesting pattern. It can be observed from Fig. 2 that
the dynamics is symmetric about f =0. Therefore, in the following we present the details for the right half of f = 0
line only. The features are exactly similar in the left half of the f = 0 line. There are two chaotic regions C1 and C2.
Bordering these chaotic regions, one has the regions where the attractors are strange and nonchaotic. Such SNAs are
found to appear in a large number of regions under various mechanisms, some of which are marked GF1, GF2, GF3
& GF4, HH, IC, S1 & S3. Besides the strange nonchaotic and chaotic attractors in the phase diagram Fig. 2, one can
also observe different regions where quasiperiodic attractors can be found. In Fig. 2, such regions are marked as 1T
and 2T, corresponding to the quasiperiodic attractors of period-1 and period-2 respectively. Fuller details are given
below.

For low A and any f value, the system exhibits quasiperiodic oscillations denoted by 1T in Fig. 2. On increasing
the value of A further, the fascinating phenomenon of torus bubble appears within a range of values of f . To be
more specific,the parameter A is for example fixed at A=1.1 and then f is varied. For f=−0.3, the attractor is a
quasiperiodic one (1T). As f is increased to f=−0.18, the attractor undergoes torus-doubling bifurcation and the
corresponding orbit is denoted as 2T in Fig. 2. As f is increased further, one then expects that the doubled attractor
continues the doubling sequence as in the case of the generic period-doubling phenomenon. Instead, in the present
case, the doubled attractor begins to merge into that of a single attractor at f= 0.18, leading to the formation of a
torus bubble reminiscent of period bubbles in low dimensional systems as in the previous section. On refixing the
parameter A at higher values, one finds that there are two prominent regions of chaotic oscillations C1 and C2 as
shown in Fig. 2. The chaotic region C1 exists outside the torus bubble region. That is, it essentially occurs for larger
A values, A >1.2 and f >0.6. On the other hand, the region C2 emerges within the torus bubble region. That
is, it appears predominantly for even larger values of A, A >1.549 and f lying between, −0.8< f <0.8. We have
identified two interesting dynamical transitions from one frequency quasiperiodicity to chaos via SNAs outside the
torus bubble region. They are (1) gradual fractalization of the torus leading to creation of SNA (GF4), and (2) type–I
intermittent route leading to the birth of SNA (S1). On the other hand there exist atleast four types of transitions
to chaos via SNAs within the torus bubble where the doubling of torus is interrupted, namely (1) Heagy-Hammel
(HH), (2) fractalization (GF1, GF2 & GF3), (3) type–III intermittent (S3) and (4) doubling of destroyed tori routes
through which the torus doubling bifurcation is truncated and the birth of strange nonchaotic attractor takes place.
The details for each of the regions are given in the following sections.

IV. DYNAMICS WITHIN THE TORUS BUBBLE

In this section, we will describe each one of the four types of transition to chaos via SNAs within the torus bubble
region in detail.

A. Heagy-Hammel route

The first of the routes which we encounter is the Heagy-Hammel route in which a period− 2n torus gets wrinkled
and upon collision with its unstable parent period− 2n−1 torus bifurcates into an SNA [8]. Such a route has been
identified in the region C2 within the range of A values, 1.549< A <2.183, and f values, 0.39< f <0.8. That is
the doubling bifurcation is truncated due to the collision of the doubled torus with its unstable parent on increasing
the value of A, in the range 1.549< A <2.183, for a fixed f value (0.39< f <0.8). It is denoted as HH in Fig. 2.
For example, let us fix the parameter f at f=0.7 and vary A. For A=1.8, the attractor is a quasiperiodic one, as
denoted by 1T in Fig. 2. As A is increased to A=1.876, the attractor undergoes torus doubling bifurcation and the
corresponding periodic orbit is denoted as 2T in Fig. 2. In the generic case, the period doubling occurs in an infinite
sequence until the accumulation point is reached, beyond which chaotic behaviour appears. However, with tori, in the
present case, the truncation of the torus doubling begins when the two strands of the 2T attractor become extremely
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wrinkled. For example, when the value of A is increased to A=1.8868, the attractor becomes wrinkled as shown
in Fig. 3(a). At this transition, the strands are seen to come closer to the unstable period 1T orbit and lose their
continuities when the strands of torus doubled orbit collide with unstable parent and ultimately result in a fractal
attractor as shown in Fig. 3(b) when A is increased to A=1.88697. At such a value, the attractor, Fig. 3(b), possesses
a geometrically strange property but does not exhibit any sensitivity to initial conditions (the maximal Lyapunov
exponent is negative as seen in Fig. 4(a)) and so it is indeed a strange nonchaotic attractor. At this transition, the
two branches of the wrinkled attractor collide and form a one band SNA. This kind of transition is similar to the
attractor merging crisis occuring in chaotic systems [33]. As A is increased further to A=1.8878, the attractor has
eventually a positive Lyapunov exponent and hence it corresponds to a chaotic attractor (C2).

Now we examine the Lyapunov exponent for the transition from torus to SNA. Fig. 4(a) is a plot of the maximal
Lyapunov exponent as a function of A for f=0.7. When we examine this in a sufficiently small neighbourhood of the
critical value AHH=1.88697, the transition is clearly revealed by the Lyapunov exponent which varies smoothly in the
torus region (A < AHH) while it varies irregularly in the SNA region (A > AHH). It is also possible to identify this
transition point by examining the variance of the Lyapunov exponent, as shown in Fig. 4(b) in which the fluctuation
is small in the torus region while it is large in the SNA region.

In addition, in order to distinguish the quasiperiodic attractor and the strange nonchaotic attractor, we may examine
the attractor with reference to the phase θ of the external force. The details of this analysis are given in Appendix
A. From Eq.(A.4), one infers that the function ΓN grows infinitely for a SNA with some relation such as ΓN = Nµ,
where µ is a positive quantity which characterises the SNA and we may call it the phase sensitivity exponent. For the
present case, it is µ=0.98. However, in the case of a chaotic attractor, it grows exponentially with N (see Fig. 4(c)).

B. Fractalization route

The second of the routes is the gradual fractalization route where a torus gets increasingly wrinkled and then
transits to a SNA without interaction (as against the previous case) with a nearby unstable orbit as we change the
system parameter. In this route, a period−2n torus becomes wrinkled and then the wrinkled attractor gradually
loses its smoothness and forms a 2n−band SNA as we change the system parameter. Such a phenomenon has been
identified in the present system in three different regions indicated as GF1, GF2 and GF3 in Fig. 2. To exemplify
this nature of transition, we fix the parameter f at f=0.1 and vary A in the GF3 region. For A=1.0, the system
exhibits quasiperiodic oscillation of period-1T. The attractor undergoes a torus doubling bifurcation as A is increased
to A=1.06. Increasing the A value further, a second period doubling of the doubled torus does not take place. Instead,
oscillations of the doubled torus in the amplitude direction starts to appear at A=2.165 as shown in Fig. 5(a). As A
is increased further to A=2.167, the oscillatory behaviour of the torus approaches a fractal nature gradually. At such
values, the nature of the attractor is strange [see Fig. 5(b)] eventhough the largest Lyapunov exponent in Fig. 6(a)
remains negative. Such a phenomenon is essentially a gradual fractalization of the doubled torus as was shown by
Nishikawa and Kaneko in their route to chaos via SNA [9]. In this route, there is no collision involved among the orbits
and therefore the Lyapunov exponent increases only slowly as shown in Fig. 6(a) and there are no significant changes
in its variance [see Fig. 6(b)]. Further, the phase sensitivity function ΓN grows unboundedly with the power-law
relation ΓN = Nµ, µ=0.83 in the SNA region, while they are bounded in the torus region [see Fig. 6(c)]. At even
higher values of A, A=2.17, the system exhibits chaotic oscillations (C2). The quantity ΓN grows exponentially with
N for the chaotic attractors.

C. Type III intermittent route

The third one of the routes that is predominant in this system within the torus doubled region is an intermittent
route in which the torus doubling bifurcation is tamed due to subharmonic bifurcations leading to the creation of
SNA. Such a phenomenon has been identified within the range of f values 0.33< f <0.41 and on increasing the value
A, 1.81< A <2.18, for a fixed f . To illustrate this transition, let us fix the parameter f at f=0.35 and vary A. For
A=1.0, the attractor is quasiperiodic attractor. As A is increased to A=1.28, the attractor undergoes torus doubling
bifurcation. On increasing the value of A further, A=2.13, the attractor starts to wrinkle. On further increase of A
value to A=2.135, the attractor becomes extremely wrinkled and has several sharp bends, as shown in Fig. 7(a). It has
been observed in lower dimensional chaotic systems [35,36] that when the system undergoes subcritical period doubling
bifurcation, the dynamical behaviour exhibits type III intermittent motion. In a similar manner,one finds that the
wrinkled attractor undergoes a quasiperiodic analogue of subcritical period doubling bifurcation, on increasing the
value of A further to A=2.14. The corresponding intermittent motion is shown in Fig. 7(b). The emergence of such
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intermittent dynamical behaviour has been found in different continuous systems by the present authors and their
collaborators through the intermittent route to chaos via SNA [17] in which it was shown that during the transition
from torus doubled attractor to SNA, a growth of subharmonic amplitude begins together with a decrease in the size
of the fundamental amplitude. At the critical parameter value, the intermittent attractor loses its smoothness and
becomes strange. The attractor shown in Fig. 7(b) is nothing but a strange nonchaotic one as the Lyapunov exponent
turns out to be negative [Fig. 8(a)]. When examining the Lyapunov exponent at this transition, it has been observed
in Fig. 8(a) that the Lyapunov exponent shows an abrupt change with a power-law dependence on the parameter on
the SNA side of the transition and the variance shows a remarkable and abrupt increase at the transition point as
shown in Fig. 8(b). Further, the phase sensitivity function ΓN is bounded for the torus region while it is unboundedly
changing with a power-law variation with N for SNA region [Fig. 8(c)] with µ = 0.85. On increasing the value of A
further to A=2.153, we find the emergence of chaotic attractor (C2) where the quantity ΓN grows exponentially with
N [Fig. 8(c)].

In the HH case, the points on the SNA are distributed over the entire region enclosed by the wrinkled bounding
torus, while in the GF case the points on the SNA are distributed mainly on the boundary of the torus. Interestingly
in the present case shown in Fig. 7(b), most of the points of the SNA remain within the wrinkled torus with sporadic
large deviations. The dynamics at this transition obviously involves a kind of intermittency. Such an intermittency
transition could be characterised by the scaling behaviour. The laminar phase in this case is the torus while the burst
phase is the nonchaotic attractor. In order to calculate the associated scaling constant, we coevolve the trajectories
for two different values of A, namely Ac and another nearby value of Ac, while keeping identical initial conditions
(xi,θi) as well as the same parameter value f . As the angular coordinate θi remains identical, the difference in xi

allows one to compute the average laminar length between the bursts and it fits with the scaling form

< l >= (Ac − A)−α. (4)

The numerical value obtained for the attractor shown in Fig. 7(b) is α ∼ 1.1 [see Fig. 9(a)]. To confirm further that
the SNA attractor [Fig. 7(b)] is associated with intermittent dynamics, we plot the frequency of laminar periods of
duration τ , namely N(τ) in Fig. 9(b). It obeys the scaling [37] law,

N(τ) ∼
{

exp(−4ǫτ)

[1 − exp(−4ǫτ)]

}0.5

. (5)

We find that ǫ=0.007±0.0002 to give a best fit for the present data. These characteristic studies suggest that the
intermittency is of type III as discussed by Pomeau and Manneville in low dimensional systems [36,37].

D. Crisis-induced intermittency

In the previous subsections, we have seen that the period doubling bifurcation of a torus has been truncated by
the destruction of it leading to the emergence of an SNA in certain regions of the (A − f) parameter space. Further,
we observe that in the present system in some cross sections of the (A − f) parameter space the period doubling
phenomenon still persists in the destroyed torus eventhough the actual doubling phenomenon has been truncated.
But in the present case, it is observed that the doubling of destroyed torus involves a kind of sudden widening of the
attractor similar to the crisis phenomenon that occurs in chaotic systems. Such a phenomenon has been observed in
the present model in a range of f values, 0.13< f <0.24, and for a narrow range of A values, 2.12< A <2.14. It is
denoted as IC in Fig. 2. For example, let us choose f=0.2 and vary the value of A. For A=0.8, the attractor is a
quasiperiodic one. As A is increased to A=1.18, the system undergoes torus doubling bifurcation. On increasing the
value of A further to A=2.138, the attractor begins to wrinkle as shown in Fig. 10(a). On increasing the value of A
further, say, to A=2.1387 the wrinkled attractor undergoes torus doubling bifurcation and the corresponding orbit is
shown in Fig. 10(b). It is also seen from Figs. 10(b) &(c) that when A is slightly larger than AIC = 2.1387 the orbit
on the attractor spends long stretches of time in the region to which the attractor was confined before the crisis. At
the end of these long stretches the orbit bursts out of the old region and bounces around in the new region made
available to it by the crisis. It then returns to the old region for another stretch of time, followed by a burst and so on.
This kind of widening of attractor usually occurs in the chaotic systems at a crisis [33]. However, in the present case,
we have shown such a possibility in a quasiperiodically forced system which also tames the growth of torus doubled
cascade, giving birth to SNAs. The variation of the Lyapunov exponent at such transition does not follow a uniform
pattern in contrast to the case of low-dimensional chaotic systems exhibiting crisis phenomenon [see Figs. 11 (a) &
(b)]. In addition, the phase sensitivity function ΓN grows with N with a kind power-law relations for SNA while it is
bounded for the torus regions [see Fig. 11 (c)]. On further increase of the value of A to A=2.143, the system exhibits
chaotic oscillations (C2) and the quantity ΓN grows exponentially with N .
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V. DYNAMICS OUTSIDE THE TORUS BUBBLE

Two additional interesting transitions take place outside the torus bubble region, namely (1) gradual fractalization
of the torus leading to the creation of SNA, and (2) type–I intermittent route leading to the birth of SNA. The details
are as follows.

A. Fractalization route

The first one is the gradual fractalization route which is the same as studied in the previous subsection IV B, but
the only difference now is that here a transition from a one-frequency torus (1T) to chaos via SNA is realized through
gradual fractalization process instead of the transition from the 2T torus discussed above. Such a phenomenon is
identified in the lower side of the C1 region (GF4). Specifically, within the region of f ,0.58< f <0.8, on increasing
the value of A to the region 1.211< A <1.569 for a fixed f the SNA is created through gradual fractalization route.
At first, a transition from one-frequency torus to a wrinkled attractor takes place on increasing A, A=1.25 for f=0.7
as shown in Fig.12(a). The wrinkled attractor loses its continuity considerably as A is increased further and then
finally ends up with fractal phenomenon at A=1.265 (see fig. 12(b)). It is very obvious from these transitions that
the torus gradually loses its smoothness and ultimately approaches the fractal behaviour via SNA before the onset of
chaos as the parameter A increases to A=1.3. In addition, it is observed that there is no apparent interaction among
the orbits. The property has been confirmed through the calculation of maximal Lyapunov exponent, its variance
and phase sensitivity studies as in the period-doubled regions.

B. Type–I intermittent route

A different type of intermittent route, namely type–I [21], via SNA is also observed at the upper region of C1.
Within the range of values f ,0.58< f <0.8, on increasing the value of A in the range 1.5 < A <2.0, a transition from
the chaotic attractor (C1) to SNA takes place at first and then the SNA is eventually replaced by a one-frequency
quasiperiodic orbit through a quasiperiodic analogue of saddle-node bifurcation. At this transition, the dynamics is
found to be again intermittent but of different type.

To understand more about this phenomenon, let us consider the specific parameter value f= 0.7 and vary A. For
A=1.80165, the attractor is a chaotic one (C1). As A is increased to A=1.801685, the chaotic attractor transits to
SNA as shown in Fig. 13(a). On increasing the value of A further, an intermittent transition from the SNA to a torus
as shown in Fig. 13(b) occurs at A=1.8017 . At this transition, abrupt changes in the Lyapunov exponent as well as
its variance shows the characteristic signature of intermittent route (indicated in Fig. 14 (a) & (b)) to SNA as in the
type III case. In addition, again the quantity ΓN grows with N with a power law relation for SNA while it is bounded
for the torus regions (see Fig. 14 c). However, in the chaotic region, the quantity ΓN grows exponentially with N.

Further, the plots of laminar length < l > as a function of the derived bifurcation parameter ǫ = A−Ac, where Ac

is a critical parameter for the occurrence of intermittent transition, for this attractor reveals a power-law relationship
of the form

< l >= ǫ−β, (6)

with an estimated value of β ∼ 0.53 (fig. 15(a)). Also, the plot between the number of laminar periods N(τ) and the
period length τ [shown in Fig. 15(b)] indicates that after an initial steep decay there is an increase to a large value of
N(τ). It also obeys the relation

N(τ) ∼ ǫ

2c

{

τ + tan

[

arctan

(

c
√

ǫ
u

)

− τ
√

ǫu

]

− arctan

(

c
√

ǫ
u

)

τ − τ2

√

ǫ

u

}

, (7)

where c is the maximum value of x(t), u = 0.9 and ǫ = 0.0005 ± 0.00003. The above analysis confirms that such an
attractor is associated with the standard intermittent dynamics of type I described in ref. [36,37].

VI. TRANSITION BETWEEN DIFFERENT SNAS

In the previous sections, we have enumerated the several ways through which SNAs are created from torus attractors.
One might observe from the (A − f) phase diagram, Fig. 2, that there are several regions where transitions from one
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type of SNA to another type occurs along the borders separating quasiperiodic and chaotic attractors. Particularly,
transitions occur between GF3 and IC, IC and GF2, GF2 and S3, S3 and GF1, GF1 and HH, and, S1 and GF4. On
closer scrutiny, we find that there exists a very narrow range of parameters between different regions of SNAs where
chaotic motion occurs. That is the SNA of one region transits to chaos before exhibiting a different nature of SNA in
the next region. However, we refrain from giving finer details as they do not seem to be of significance.

VII. SIGNATURES OF FINITE TIME LYAPUNOV EXPONENTS AT THE TRANSITION TO

DIFFERENT SNAS

Recently, it has been noted by Prasad, Mehra and Ramaswamy [21] that a typical trajectory on a SNA actually
possesses positive Lyapunov exponents in finite time intervals, although the asymptotic exponent is negative. As
a consequence, one observes the different characteristics of the SNAs born through different mechanisms through a
study of the differences in the distribution of finite-time exponents P(N,λ) [21]. For each of the cases, the distribution
can be obtained by taking a long trajectory and dividing into segments of length N, from which the local Lyapunov
exponent can be calculated. In the limit of large N, this distribution will collapse to a δ function P (N, λ) → δ(∆−λ).
The deviations from− and the approach to − the limit can be very different for SNAs created through different
mechanisms. Figs. 16 illustrate the distributions for P (50, δ) across the five different transitions discussed in the
present study. A common feature of these cases is that P (N, λ) is strongly peaked about the Lyapunov exponent
when the attractor is a torus, but on the SNA, the distribution picks up a tail which extends into the local Lyapunov
exponent λ >0 region. This tail is directly correlated with enhanced fluctuation in the Lyapunov exponent on SNAs.
On the fractalised SNA and doubling of SNA, the distribution shifts continuously to larger Lyapunov exponents, but
the shape remains the same for torus regions as well as SNA regions while on the HH and intermittent SNA, the
actual shapes of the distribution on the torus and the SNA are very different. One remarkable feature of intermittent
SNAs is that the positive tail in the distribution decays very slowly.

To quantify further on the distribution of finite-time Lyapunov exponents, let us consider, for example, the fraction
of exponents lying above λ=0, F+(N) vs N for the different SNAs. It has been found that except for the intermittent
SNA (both for type III and I), for which F+(N) ∼ N−β , this quantity decays exponentially , F+(N) ∼ exp(−γN)
for all other transitions, with the exponents β and γ dependent strongly on the parameters of the system. For the
specific SNAs corresponding to the parameters reported in the previous section these quantities take the following
values: For type III and type I, the β values are 0.38 and 0.71. However, for HH, GF and IC, the β and α values are
0.27 & 0.32, 0.31 & 017 and 0.24 & 0.34, respectively.

VIII. CONCLUSION

In this paper we have described the creation of SNAs through various routes and mechanisms in a protypical example,
namely the quasiperiodically driven cubic map. These are summarised in Table I. Torus doubling bifurcations are
not mandatory for the creation of SNAs. However, they are merely a convenient agent in setting the stage for the
appearance of SNAs. There are atleast four different mechanisms, namely Heagy-Hammel, gradual fractilazation,
type–III and and crisis-induced intermittency through which the truncation of torus doubling and the birth of SNAs
occur. The truncation of torus doubling and the genesis of SNA through crisis-induced intermittency is a new one
and also it is entirely different from the interior crisis mechanism for appearence of SNAs as found by Witt et al. [38]
We have further observed atleast two different ways, namely type–I intermittency and gradual fractalization, through
which SNAs are formed when a transition from one-frequency torus to chaos takes place. All these phenomena have
been identified in a two parameter (A − f) phase diagram. To distinguish among the different mechanisms through
which SNAs are born, we have examined the manner in which the maximal Lyapunov exponent and its variance change
as a function of the parameters. In addition, we have also examined the distribution of local Lyapunov exponents
and found that on different SNAs they have different characteristics. The analysis confirms that in the intermittent
SNAs, the signature of the transition is a discontinuous change in both the maximal Lyapunov exponent and in the
variance. The chaotic component on the intermittent SNA is long lived. As a consequence, a slow positive tail in the
P(N,λ) and a resulting power-law decay for F+(N) can be identified. For the other SNAs, the resulting exponential
decay for F+(N) has been identified.
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APPENDIX A: CHARACTERIZATIONS OF SNA

1. Phase sensitivity exponent

In order to distinguish the smooth and the fractal torus (SNA and chaos), we examine the attractor with reference
to the phase θ of the external force. Eventhough, no exponential divergence of orbits exists for both the smooth and
the fractal torus (SNA), they are different from each other in terms of the phase sensitivity. Pikovsky and Feudal
[23,24] have shown that how two points on the SNA which have close θ values separate from each other by introducing
the following phase sensitivity exponent: To appreciate this, we note that the absolute value of the first derivative
of the orbit|∂xn

∂θn

| fluctuates with time and some times has large bursts.To see this, one can proceed as follows. An

aribitarary large burst can appear when the system is iterated for infinite time steps. By differentiating (3), one
obtains

∂xn+1

∂θ
= −2πQsin(2πθ) − (A − 3x2

n)
∂xn

∂θ
. (A.1)

So, starting from a suitable initial derivative |∂x0

∂θ
|, one can obtain derivatives at all points of the trajectory

∂xN

∂θ
= SN =

N
∑

k=1

{

−2πQsin(2πθk−1)

[

N−k−1
∏

i=0

−(A − 3x2
k+i)

]}

+

N−1
∏

i=0

(

−(A − 3x2
i )

∂x0

∂θ

)

, (A.2)

with the condition that for k = N ,

N−k−1
∏

i=0

[

−(A − 3x2
k+i)

]

= 1.

Naturally, in the case of a smooth attractor if one iterates (A.1) and (A.2) starting from aribitrary values of x and
∂x
∂θ

and for large N , they converge to the attractor and its derivative, respectively. Thus, partial sums SN computed

from (A.2) are bounded by the maximum derivative ∂x
∂θ

along the attractor. But in the case of fractal attractor, the

attractor is nonsmooth and the derivative ∂x
∂θ

does not exist, so the consideration above is no longer valid. These can
be illustrated by calculating the partial sums SN as given by (A.2). It has been found [23,24] that the behviour of
the sum can be very intermittent. The key observation is that these sums are quite large and practically unbounded.
Hence, we plot the maximum of |SN |,

γN (x, θ) = max|SN |. (A.3)

The value of γN grows with N , which means that arbitararily large values of |SN | apppear. From this it follows
immediately that the attractor can not have finite derivative with respect to the external phase if the attractor is
nonsmooth. Consequently, the assumption of a finite derivative is inconsistent with the relation (A.2), where the second
term on the RHS is exponentially small and the first term on the RHS can be arbitrary large. Thus, calculating the
partial sums (A.2), we can distinguish strange (sums are unbounded) and nonstrange (sums are bounded) attractor.

The growth rate of the partial sums with time represents a degree of strangeness of the attractor, and can be used
as a quantitaive characteristic of SNAs. For this purpose, we require a quantity which is independent of a particular
trajectory while it represents average properties of the attractor. The appropriate quantity seems [23,24] to be the
minimum value of γN (x, θ) with respect to randomly chosen initial points (x, θ):

ΓN = minγN(x, θ). (A.4)

It allows a more reliable inference about whether the attractor is nonsmooth. One can also infer from (A.4) that ΓN

grows infinitely for a SNA with some relations as ΓN = Nµ, where µ is a postive quantity which characterises the
SNA and we call it the phase sensitivity exponent. However, in the case of a chaotic attractor, it grows exponentially
with N .
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2. Variation of finite–time Lyapunov exponents

As the finite–time or local Lyapunov exponents (λi, i = 1, 2, · · · , M) depend on the initial conditions, it will be
relevant to consider the variance of the average Lyapunov exponent Λ about the λi’s, i = 1, 2, · · · , M .It is defined
[17,21,33,39] as

σ =
1

M

M
∑

i=1

(Λ − λi(N))2. (A.5)

In all our numerical calculations, we take N = 50 and M ∼= 105.
The variation of the local Lyapunov exponents in a fixed time interval t can also be discussed by examining the

probability distributions P (t, λ) for the exponents. In fact, P (t, λ) corresponds to counting the normalized number
of times any one of the λ appears for fixed time t. That is, the distribution of local Lyapunov exponents, which is a
stationary quantity, is defined as [33]

P (t, λ)dλ ≡ Probability that λ(t) takes a value between λ and λ + dλ. (A.6)

This is particularly useful in describing the structure and dynamics of nonuniform attractors. In the asymptotic limit
t → ∞, this distribution will collapse to a δ function,

P (t, λ) → δ(Λ − λ).

The deviations from this limit for finite times, and the asymptotics, namely the approach to the limit can be very
revealing of the underlying dynamics [21].

One can also calculate the arithmetic mean of all the distributions and obtain the variance of the Lyapunov exponent
Λ as

σ =

∫ ∞

−∞

(Λ − λ)2P (t, λ)dλ. (A.7)

Dividing the total length of the orbit into M bins as before and defining the local Lyapunov exponents as λi, replacing

P (t, λi) by δ(Λ−λi)
M

, the above equation of variance goes over to the form given by Eq. (A.5).

3. Power spectrum analysis

To quantify the changes in the power spectrum (obtained using Fast Fourier Transform (FFT) technique), one
can compute the so called spectral distribution function N(σ), defined to be the number of peaks in the Fourier
amplitude spectrum larger than some value say σ. Scaling relations have been predicted for N(σ) in the case of
two and three frequency quasiperiodic attractors and strange nonchaotic attractors. These scaling relations are
N(σ) ∼ ln 1

σ
,N(σ) ∼ ln2 σ, and N(σ) ∼ σ−β , respectively, corresponding to the two, three frequency quasiperiodic

and strange nonchaotic attractors. In the work of Romeiras and Ott [13], the power law exponent was found empirically
to lie with in the range 1 < β < 2 for the strange nonchaotic attractor.

4. Dimensions

To quantify geometric properties of attractors, several methods have been used to compute the dimension of the
attractors. Among them, we have used the correlation dimension (introduced by Grassberger and Procaccia [40]) in
our present study, which may be computed from the correlation function C(R) defined as

C(R) = lim
N→∞





1

N2

N
∑

i,j=1

H(R− | xi − xj |)



 ,

where xi and xj are points on the attractor, H(y) is the Heaviside function (1 if y ≥ 0 and 0 if y < 0), N is the number
of points randomly chosen from the entire data set. The Heaviside function simply counts the number of points within
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the radius R of the point denoted by xi and C(R) gives the average fraction of points. Now the correlation dimension
is defined by the variations of C(R) with R:

C(R) ∼ Rd as R → 0.

Therefore the correlation dimension (d) is the slope of a graph of log C(R) versus log R. Once one obtains the
dimensions of the attractors, it will be easy to quantify strange property of the attractors. In all our studies, we have
verified that the SNAs have noninteger correlation dimensions.
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FIG. 1. Bifurcation diagram for the map (2) in the (x, Q) plane: (a) The primary bubble at A=1.5, (b) Period-2 and period-4
bubbles at A=1.7, (c) Period doubling route to chaos and inverse period doubling at A=1.8.
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FIG. 2. Phase diagram for quasiperiodically forced cubic map, Eq. (3), in the(A − f) parameter space for Q = 0: Here 1T
and 2T correspond to torus of period one and of two respectively. GF1, GF2, GF3 and GF4 correspond to the regions where the
process of gradual fractalization of torus occurs. HH represents the regions where SNA is created through the Heagy-Hammel
route. S1 and S3 denote regions where the SNA appears through Type-I and Type-III intermittencies, respectively. IC denotes
region where the SNA is created through crisis-induced intermittency. C1 and C2 correspond to chaotic attractors.

13



FIG. 3. Projection of the attractors of Eqs. (3) for f=0.7 in the (x, θ) plane indicating the transition from quasiperiodic
attractor to chaotic attractor via SNA through Heagy- Hammel mechanism: (a) wrinkled attractor (period 2T) for A = 1.8868;
(b) SNA at A=1.88697.

14



FIG. 4. Transition from doubled torus to SNA through Heagy- Hammel mechanism in the region HH: (a) the behaviour of
the Lyapunov exponent (Λ); (b) the variance (σ); (c) plot of phase sensitivity function ΓN vs N (dotted line corresponds to
torus for A=1.83, dashed line belongs to SNA for A=1.88697 and solid line represents chaos for A=1.8878).

15



FIG. 5. Projection of the attractors of Eqs. (3) for f=0.1 in the (x, θ) plane indicating the transition from quasiperiodic
attractor to chaotic attractor via SNA through gradual fractalization mechanism: (a) wrinkled attractor (period 2T) for A =
2.165; (b) SNA at A=2.167.
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FIG. 6. Transition from doubled torus to SNA through gradual fractalization mechanism in the region GF3: (a) the behaviour
of the Lyapunov exponent (Λ); (b) the variance (σ); (c) plot of phase sensitivity function ΓN vs N (dotted line corresponds to
torus for A=1.85, dashed line belongs to SNA for A=2.167 and solid line represents chaos for A=2.17).
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FIG. 7. Projection of the attractors of Eqs. (3) for f=0.35 in the (x, θ) plane indicating the transition from quasiperiodic
attractor to chaotic attractor via SNA through type–III intermittent mechanism: (a) wrinkled attractor (period 2T) for A =
2.135; (b) SNA at A=2.14.
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FIG. 8. Transition from doubled torus to SNA through type–III intermittent mechanism in the region S3: (a) the behaviour
of the Lyapunov exponent (Λ); (b) the variance (σ);(c) plot of phase sensitivity function ΓN vs N (dotted line corresponds to
torus for A=1.83, dashed line belongs to SNA for A= 2.14 and solid line represents chaos for A=2.15).
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FIG. 9. (a) Average laminar length (< l >) vs (A − Ac) at f=0.35; (b) Number of laminar periods N(τ ) of duration τ in
the case of transition through type-III intermittency.
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FIG. 10. Projection of the attractors of Eqs. (3) for f=0.2 (i) in the (x, θ) plane; (ii) in the (x, i) plane indicating the transition
from quasiperiodic attractor to chaotic attractor via SNA through crisis-induced intermittent mechanism: (a) wrinkled attractor
(period 2T) for A = 2.138; (b) SNA at A=2.1387; (c) SNA at A=2.1388.
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FIG. 11. Transition from doubled torus to SNA through crisis-induced intermittency mechanism in the region IC: (a) the
behaviour of the Lyapunov exponent (Λ); (b) the variance (σ);(c) plot of phase sensitivity function ΓN vs N (dotted line
corresponds to torus for A=1.83, dashed line belongs to SNA for A=2.1388 and solid line represents chaos for A=2.139).
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FIG. 12. Projection of the attractors of Eqs. (3) for f=0.7 in the (x, θ) plane indicating the transition from one-frequency
quasiperiodic attractor to chaotic attractor via SNA through gradual fractalization mechanism: (a) wrinkled attractor (Period
1T) for A = 1.25; (b) SNA at A=1.265.

FIG. 13. Projection of the attractors of Eqs. (3) for f=0.7 in the (x, θ) plane indicating the transition from one-frequency
quasiperiodic attractor to chaotic attractor via SNA through Type-I intermittency mechanism: (a) intermittent SNA for A =
1.801685; (b) torus at A=1.8017.
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FIG. 14. Transition from intermittent SNA to torus through type I intermittent mechanism in the region S1: (a) the behaviour
of the Lyapunov exponent (Λ); (b) the variance (σ); (c) plot of phase sensitivity function ΓN vs N (dotted line corresponds to
torus for A=1.8017, dashed line belongs to SNA for A=1.801685 and solid line represents to chaos for A=1.8015).

24



FIG. 15. (a) Average laminar length between (< l >) vs (A−Ac) at f=0.7; (b) Number of laminar periods N(τ ) of duration
τ in the case of transition through type-I intermittency.
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FIG. 16. Distribution of finite–time Lyapunov exponents on SNAs created through (a) Heagy-Hammel, (b) gradual frac-
talization, (c) type III intermittency and (d) crisis-induced intermittency (e) type I intermittency. Solid and dashed lines
correspond to SNA and torus distributions.
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Table I Routes and mechanisms of the onset of various SNAs in the quasiperiodically forced cubic map

Type of Route Mechansim Characteristic properties Figures

Lyapunov Variance σ The fraction of Scaling law
exponent λ positive valued < l >

finite-time ∼

Lyapunov (Ac − A)α

exponent
(F+(N, λ))

A. Interruption of torus doubling

1. Heagy- Collision between a period- Irregular in SNA Small in torus Decays Figs. 3
Hammel [8] doubled torus and its region & smooth & large in SNA exponentially & 4

unstable parent in torus

2. Gradual Torus gets increasingly Increases slowly No significant Decays Figs. 5
fractalization [9] wrinkled and transforms during the transi changes exponentially & 6

into a SNA without any -tion from torus
interaction with a nearby to SNA
unstable periodic orbit

3. Type–III During the transition from Abrupt change Abrupt increase Power-law α ∼ 1.1 Figs. 7,8
intermittency torus doubled attractor to during the at the transi variation (see also & 9
[15] SNA, a growth of subhar transition from -tion point eq.(5))

-monic amplitude begins torus to SNA
together with a decrease
in the size of the
fundamental amplitude

4. Crisis-induced Doubling of destroyed torus Does not follow Irregular variation Decays Figs. 10,
intermittency involves a kind of sudden uniform pattern in SNA region exponentially & 11

widening of the attractor

B. Transition from one-frequency torus

1. Gradual Torus gets increasingly Increases slowly No significant Decays Fig. 12
fractalization wrinkled and transforms during the transition change exponentially
[9] into a SNA from torus to SNA

4. Type–I Torus is eventually Abrupt change Abrupt increase Power-law α ∼ 0.55 Figs. 13,
intermittency replaced by SNA during the at the transi variation (see also 14,& 15
[14] through an analog transition from -tion point eq.(7))

of the saddle-node torus to SNA
bifurcation
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