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Abstract

In this paper, we consider a generalized second order nonlinear ordinary differential equation of
the form & + (kyx? 4 ko) + k3z?4t! + kyxdt! + Xz = 0, where k;’s, i = 1,2,3,4, \; and ¢ are
arbitrary parameters, which includes several physically important nonlinear oscillators such as the
simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscillator, force-free Duffing
and Duffing-van der Pol oscillators, modified Emden type equation and its hierarchy, generalized
Duffing-van der Pol oscillator equation hierarchy and so on and investigate the integrability prop-
erties of this rather general equation. We identify several new integrable cases for arbitrary value
of the exponent ¢, ¢ € R. The ¢ = 1 and ¢ = 2 cases are analyzed in detail and the results are
generalized to arbitrary g. Our results show that many classical integrable nonlinear oscillators can
be derived as sub-cases of our results and significantly enlarge the list of integrable equations that
exist in the contemporary literature. To explore the above underlying results we use the recently
introduced generalized extended Prelle-Singer procedure applicable to second order ODEs. As an
added advantage of the method we not only identify integrable regimes but also construct integrat-
ing factors, integrals of motion and general solutions for the integrable cases, wherever possible,

and bring out the mathematical structures associated with each of the integrable cases.
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I. INTRODUCTION
A. Overview of the problem

In a recent paper! we have shown that the force-free Duffing-van der Pol (DVP) oscillator,

i+ (a+ pr*)i —yr +2° =0, (1)

is integrable for the parametric restriction a = % and v = —%. In Eq. () over dot

denotes differentiation with respect to t and «, 3 and ~ are arbitrary parameters. Under

the transformation

w = —xe%t, z= e_%t, (2)
Eq. () with restriction a = % and v = —% was shown to be transformable to the form
2
w” — ?wzw' =0, (3)

which can then be integrated!.
In a parallel direction, while performing the invariance analysis of a similar kind of prob-

lem, we find that not only the Eq. ([l) but also its generalized version,

4 3
Z+ (B + B2?)d + @1’ + 2% +62° =0, &= arbitrary parameter, (4)

is invariant under the same set of Lie point symmetries?. As a consequence one can use the
same transformation () to integrate the Eq. (#l). The transformation (£) modifies Eq. (H)

to the form

2

w"” — %wzw' + dw® =0 (5)

which is not so simple to integrate straightforwardly. However, we observe that this equa-
tion coincides with the second equation in the so called modified Emden equation (MEE)

hierarchy, investigated by Feix et al.3,
P4l + gt =0, 1=1,2,...,n, (6)

where ¢ is an arbitrary parameter.
In fact Feix et al.® have shown that through a direct transformation to a third order

equation the above Eq. (@) can be integrated to obtain the general solution for the specific

2



choice of the parameter g, namely, for g = ﬁ For this choice of g, the general solution

of ([Bl) can be written as

1
(24 31+ 1)(t+ L) 7 R
z(t) = (l(t I TR I, I, : arbitrary constants. (7)

1

75> and

Consequently Eq. (@) can be integrated under the specific parametric choice § =
it belongs to the | = 2 case of the MEE hierarchy (@) with g = 1—16. Now the question arises
as to whether there exist other new integrable second order nonlinear differential equations
which are linear in # and containing fifth and other powers of nonlinearity. As far as our
knowledge goes only few equations in this class have been shown to be integrable. For

example, Smith* had investigated a class of nonlinear equations coming under the category
i+ f(x)i +g(x) =0, (8)

with f(z) = (n + 2)bz" — 2a and g(z) = z(c + (bz™ — a)?) where a, b, c and n are arbitrary
parameters. He had shown that the Eq. () with this specific forms of f and g admits explicit
oscillatory solutions. However, one can also expect that there should be a number of inte-
grable equations which also admit solutions which are both oscillatory and non-oscillatory

types in the class
i+ (k1o 4+ k)3 + k3™ + k2t + Mz =0,  ¢€R, (9)

where k;’s, i = 1,2,3,4 and \; are arbitrary parameters. When ¢ = 1, Eq. (@) becomes the
generalized MEE

T+ (k‘ll’ + k‘g)l’ + k‘gl’g + k’4l’2 + )\11’ = 0, (10)
and for ¢ = 2 it becomes
T+ (]{71.]72 + ]CQ)LU + k3$5 + ]f4.flf3 + >\1£U =0. (11)

We note that Eq. @) is a special case of ([l).

Needless to say Eq. (@) is a unified model for several ground breaking physical systems
which includes simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscil-
lator, force-free Duffing oscillator, MEE hierarchy, generalized DVP hierarchy and so on.

As noted earlier there exists no rigorous mathematical analysis in the literature for the

second order nonlinear differential equations which contain fifth or higher degree nonlinearity
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in z and linear in & and the results are very scarce on integrability or exact solutions. Our
motivation to analyze this problem is not only to explore new integrable cases/systems of
Eq. (@) but also to synthesize all earlier results under one approach.

Having described the problem and motivation now we can start analyzing the integra-
bility properties of Eq. (). To identify the integrable regimes we employ the recently in-
troduced extended Prelle-Singer procedure applicable to second order ODEs*~!!. Through
this method we not only identify integrable regimes but also construct integrating factors,

integrals of motion and general solution for the integrable cases, wherever possible.

B. Results

We unearth several new integrable equations for any real value of the exponent ¢ in
Eq. [@). In the following we summarize the results for the case ¢ = arbitrary only and
discuss in detail the ¢ = 1, ¢ = 2 and ¢ = arbitrary cases separately in the following
sections.

For the choice ¢ = arbitrary we find that the following equations are completely inte-

grable (after suitable reparametrizations), all of which appear to be new to the literature:

i+ (kx? 4 (g + 2)k2)@ + kikox®™™ + (g + Dk3z = 0 (12)
i+ ((q 4 2)k12? + ko)& 4+ K222 4 ke kox®™ + Az = 0 (13)
i+ (q+ kot + kaz ™ + 2(q + 2)k3z = 0 (14)
i+ (g4 Dkyx? + k)i + (T; 2 [(q + 1)k2z?t!
+(q 4 2)krkor ™ + k22] =0, 7 #0 (15)
E+ ((q+ D)kix? + (¢ + 2)ko)t + (¢ + 1)[(76;2 D k22t
+kikpr ™t + k3x) =0, 7 #£0, (16)

where k1, ko, k4, A1 and r are arbitrary parameters. We stress that the above results are
true for any arbitrary values of q. We discuss the special cases, namely, ¢ = 1 and ¢ = 2
separately in detail in sections 3 and 4 in order to put the results of ¢ arbitrary case in
proper perspective.

We show that the Eq. (I2) is nothing but a generalization of the Duffing-van der Pol

oscillator Eq. (). In a recent work!? three of the present authors have established the



integrability of Eq. (IZ) with ¢ = 2. However, in this work we show that the generalized
Eq. ([I2) itself is integrable. Eq. (3) is nothing but the generalized MEE among which the
hierarchy of Eq. (@), studied by Feix et al.?, can be identified as a sub-case. In fact the
general solution constructed by Feix et al., Eq. ([d), can be derived straightforwardly as a
sub-case. Eq. ([I3) also contains the family of equations studied by Smith?. In particular
the latter author have derived general solution for the case k3 < 4\;, which turns out to be
an oscillatory one. However, in this work, we show that even for arbitrary values of ky and
A1 one can construct the general solution. Interestingly, the system ([4l) generalizes several
physically important nonlinear oscillators. For example, in the case ¢ = 1 and 2, Eq. (I4)
provides us the force-free Helmholtz and Duffing oscillators, respectively, whose nonlinear

12=16  Here, we present certain integrable

dynamics is well documented in the literature
generalizations of these nonlinear oscillators. Eq. ([H) admits a conservative Hamiltonian
for all values of the parameters r, k; and ks and any integer value of q. We also provide
the explicit form of the Hamiltonian for all values of ¢q. As a result we conclude that it is a
Liouville integrable system. As far as Eq. ([[6]) is concerned we construct a time dependent
integral of motion and transform the latter to time independent Hamiltonian one and thereby
ensuring its Liouville integrability.

The plan of the paper is us follows. In the following section we briefly describe the ex-
tended Prelle-Singer procedure applicable to second order ODEs. In Sec. [, we consider
the case ¢ = 1 in (@) and identify the integrable parametric choices of this equation through
the extended PS procedure. To do so first we identify the integrable cases where the system
admits time independent integrals and construct explicit conservative Hamiltonians for the
respective parametric choices. We then identify the cases which admit explicit time depen-
dent integrals of motion. To establish the complete integrability of these cases we use our
own procedure and transform the time dependent integrals of motion into time independent
integrals of motion and integrate the latter and derive the general solution. In Sec. [Vl
we repeat the procedure for the case ¢ = 2 in Eq. ([{) and identify the integrable systems.
In Sec. [Vl we consider the case ¢ = arbitrary in ([{) and unearth several new integrable

equations and their associated mathematical structures. Finally, we present our conclusions

in Sec. V1



II. GENERALIZED EXTENDED PRELLE-SINGER (PS) PROCEDURE

In this section we briefly recall the generalized extended or modified PS procedure before
applying it to the specific problem in hand. Sometime ago, Prelle and Singer® have pro-
posed a procedure for solving first order ODEs that admit solutions in terms of elementary
functions if such solutions exist. The attractiveness of the PS method is that if the given
system of first order ODEs has a solution in terms of elementary functions then the method
guarantees that this solution will be found. Very recently Duarte et al.”® have modified the
technique developed by Prelle and Singer®® and applied it to second order ODEs. Their
approach was based on the conjecture that if an elementary solution exists for the given
second order ODE then there exists at least one elementary first integral I(¢,z, ) whose
derivatives are all rational functions of ¢, x and . For a class of systems these authors have
deduced first integrals and in some cases for the first time through their procedure”. Re-
cently the present authors have generalized the theory of Duarte et al.” in different directions
and shown that for the second order ODEs one can isolate even two independent integrals

11

of motion~!! and obtain general solutions explicitly without any integration. This theory

L9711 The authors have also generalized

has also been illustrated for a class of problems
the theory successfully to higher order ODEs'®7. For example, in the case of third order
ODEs the theory has been appropriately generalized to yield three independent integrals of
motion unambiguously so that the general solution follows immediately from these integrals
of motion'”.

We stress that the PS procedure has many advantages over other methods. To name
a few, we cite: (1) For a given problem if the solution exists it has been conjectured that
the PS method guarantees to provide first integrals. (2) The PS method not only gives the
first integrals but also the underlying integrating factors, that is, multiplying the equation
with these functions we can rewrite the equation as a perfect differentiable function which
upon integration gives the first integrals directly. (3) The PS method can be used to solve
nonlinear as well as linear second order ODEs. (4) As the PS method is based on the

equations of motion rather than on Lagrangian or Hamiltonian description, the analysis is

applicable to deal with both Hamiltonian and non-Hamiltonian systems.



A. PS method

Let us rewrite Eq. (@) in the form
&= —((kix? + k)@ + ksz®™ 4 by + M\z) = ¢(a, 1). (17)

Further, we assume that the ODE () admits a first integral I(¢, z, %) = C, with C' constant

on the solutions, so that the total differential becomes
dl = Idt + I.dx + I;dx = 0, (18)

where each subscript denotes partial differentiation with respect to that variable. Rewriting
Eq. (I7) in the form ¢dt — di = 0 and adding a null term S(¢, z, )& dt — S(t, z, &)dz to the

latter, we obtain that on the solutions the 1-form
<¢+Sa’7)dt—5d:p—d:)’3 =0. (19)

Hence, on the solutions, the 1-forms ([8) and ([Id) must be proportional. Multiplying (I9)
by the factor R(t, x, &) which acts as the integrating factors for ([[d), we have on the solutions
that

dI = R(¢ + Si)dt — RSdx — Rdi = 0. (20)
Comparing Eq. (I8) with (20) we have, on the solutions, the relations
L,=R(¢+4S), I,=—-RS, I,=—R. (21)

Then the compatibility conditions, Iy, = I, Iy = Liy, Ipi = Lz, between the Eqs. (Z1I),

provide us
Sy + #S; + ¢S; = —¢p + ¢S + S7, (22)
R, + iR, + ¢R; = —(¢: + S)R, (23)
R, — SR; — RS; = 0. (24)

Solving Egs. ([Z2)-(4)) one can obtain expressions for S and R. It may be noted that any
set of special solutions (S, R) is sufficient for our purpose. Once these forms are determined

the integral of motion (¢, x, &) can be deduced from the relation
I=r—r —/ R+i(r —719)| di (25)
=T =T g 1T ;
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where

d

r = /R(¢+$S)dt, T = /(RS"— %Tl)dl’.

Equation (ZH) can be derived straightforwardly by integrating the Eq. (ZII).

The crux of the problem lies in finding the explicit solutions satisfying all the three
determining Eqgs. ([22)-(4), since once a particular solution is known the integral of motion
can be readily constructed. The difficulties in constructing admissible set of solutions (.5, R)
satisfying all the three Egs. (22)-(24]) and possible ways of obtaining the solutions have been

discussed in detail in Ref. 9.

IIT. APPLICATION OF PS PROCEDURE TO EQ. (I0)

Let us first consider the case ¢ = 1 in Eq. (@) or equivalently ([IT)
&+ (ko 4 ko)d + ksa® 4 kg2 + Mz = 0. (@)

Eq. ([0) itself includes several physically important models. For example, choosing k; =
0, ¢ =1,...4, we get the simple harmonic oscillator equation and the choice k;, ks = 0 gives
us the anharmonic oscillator equation. When ki, ky = 0 Eq. () becomes the force-free
Duffing oscillator equation!?. The choice ks, k4, A; = 0 provides us the MEE'®. In the limit
ks = %, ky = %, Eq. ({0) becomes MEE with linear term which is another linearizable
equation which we have studied extensively in Refs. 9 and 19. The restriction ki, k3 = 0

1213 In the following we investigate whether

leads us to the force-free Helmhotz oscillator
the system (I0) admits any other integrable case besides the above.

We solve Eq. (M) through the extended PS procedure in the following way. For a given
second order equation, (IT), the first integral I should be either a time independent or time
dependent one. In the former case, it is a conservative system and we have I; = 0 and in
the later case we have I, # 0. So let us first consider the case I; = 0 and determine the null

forms and the corresponding integrating factors and from these we construct the integrals

of motion and then we do extend the analysis for the case I; # 0.



A. The case I; =0
1. Null forms

In this case one can easily fix the null form S from the first equation in (Z1) as

—Qb _ ((1{311’ + ]472)5(7 + ]{?3253 + k4$2 + )\1.3(7)

S = — p (26)
2. Integrating Factors
Substituting this form of S, given in (Z6), into ([Z3) we get
Rt + I’Rx — ((k‘ll’ + k’g)l’ + k’gl’g + k‘4l’2 + All’)RI
= <(7f136 + ko) + <<’>)R (27)

Equation () is a first order linear partial differential equation with variable coefficients.
As we noted earlier any particular solution is sufficient to construct an integral of motion
(along with the function S). To seek a particular solution for R one can make a suitable

ansatz instead of looking for the general solution. We assume R to be of the form,

=A@+ B 28)

where A and B are functions of their arguments, and r is a constant which are all to be

determined. We demand the above form of ansatz, [25), due to the following reason. To

f(ww
g(z,&)

deduce the first integral I we assume a rational form for I, that is, [ = , where f and g

are arbitrary functions of x and # and are independent of ¢. Since we already assumed that
I is independent of ¢, we have, I, = nLJ% and [; = f”'”gg_%. From (21I) one can see that
R=1,= f”'”gg_%, S = ch }c””g ;gz and RS = I, so that the denominator of the function S
should be the numerator of the function R. Since the denominater of S is & (vide Eq. ([20))
we fixed the numerator of R as #. To seek a suitable function in the denominator initially

one can consider an arbitrary form R = . However, it is difficult to proceed with this

h(x z
choice of h. So let us assume that h(x, ) is a function which is polynomial in @. To begin
with let us consider the case where h is linear in &, that is, h = A(z) + B(z)%. Since R
is in rational form while taking differentiation or integration the form of the denominator

remains same but the power of the denominator decreases or increases by a unit order from



that of the initial one. So instead of considering h to be of the form h = A(z) + B(x)z,
one may consider a more general form h = (A(z) + B(x)z)", where r is a constant to be
determined. Such a generalized form of A and so R leads to several new integrable cases as
we see below.

Substituting (28)) into (27) and solving the resultant equations, we arrive at the relation
r(¢(A; + B.&) + ¢B) = (A + Bi)¢;. (29)

Solving Eq. (Z9) with ¢ = —((kyx+ko)@ + k3z® + ksx? + A7), we find nontrivial forms for the
functions A and B for two choices, namely, (i) ki1, k2 arbitrary and (i) ky = arbitrary, ke =0
with restrictions on other parameters as given below. The respective forms of the functions

and the restriction on the parameters are

(1) kq, ko : arbitrary

—1)bo K

Ax) = (7”776)0(51932 + kox), B(x) = by = constant, r = constant,

bo(r — 1) 3bo(r — 1) bo(r — 1)k2
ks = OQTIC%, ky = OQTk‘lk‘z, A= %, (30a)

(1) ki = arbitrary, ko =0

. (’l“ — 1)b0 2 7“)\1 .
A(Zlf) = Tk’ll’ + k—l, B(l’) = b(),
k= =g 0 A = arbit ter (h 30D

3= —55 ki, ki=0, A = arbitrary parameter (here). (30Db)

We note that the case (ii) cannot be derived from case (i) by taking ks = 0. For example,
choosing ko = 0 in (Bla) we get not only ks = 0 but also A\; = 0 whereas in the case (ii) we
have the freedom \; = arbitrary, so the cases ([BUal) and (BOL) are to be treated as separate.
Making use of the forms of A and B from Eqs. ([B0al) and (B0L) into (28), the integrating

factor, ‘R’, for the two cases can be obtained as

(1) ki, ko : arbitrary

R = ’ r#0 (31a)

[(’“‘1) (Ba? + kox) + x]

T

(i1) ky = arbitrary, ko =0

R= w7 #0, (31b)
{—(’“anl)klﬁ + 24 :)3]
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We note that by is a common parameter in the above and it is absorbed in the definition of
‘R’, see Egs. (23) and (24]). While deriving the above forms of R (Egs. (BIa) and [BIL)) we
assumed that r # 0 and for the choice » = 0 we obtain consistent solution only if both the
parameters k1 and ks become zero. Of course, this sub-case can be treated as a trivial one
since when ki, ko = 0 the damping term in Eq. (I0) vanishes and the system becomes an
integrable anharmonic oscillator. In this trivial case we have the integrating factor of the

form:

(ZZZ) ]{71, ]{32 == 0
R=i, r=0. (31c)

Finally one has to check the compatibility of forms S and R with the third Eq. (24]). We
indeed verified that the sets

i 5 (ke thk)it oD (B2 4 Shikag? 4 g2))

X

x‘ .
" (D (kg2 4 ko) 4 d)r ki, ky = arbitrary, r#0  (32a)

T

(kyzi + P k22 + M)

(i) S=-— f”x, :
T
R=— , ky = arbitrary, ko =0, r#0 (32b)
(S ka2 + AL )
and
3 2
(i) §= R ERET A e, (320)

T

satisfy the Eq. (Z4) individually. As a consequence all the three pairs form compatible sets
of solution for the Eqs. (22)-(24).

3. Integrals of motion

Having determined the explicit forms of S and R one can proceed to construct integrals

of motion using the expressions (2H). The parametric restrictions ([B0al) and (BOD) fix the
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equation of motion () to the following specific forms,

—1
(1) @+ (kiw + k)T + (r—1) <k;fx3 + 3k1kox® + 2k§x) =0, r#0, (33a)

2r2
— 1)k?
(49) &+ kvt + %x?’ + Mz =0, r#0, (33b)
(i91) &+ k32’ + kg + \x =0, 7 =0. (33c)

In the above ki, ko, ks, k4, A1 and r are arbitrary parameters.

We note that the transformation z =y — Z—f transforms equation (B3al) to the form

(r - 1)/ffy3 _ (=K

7 sy =0 A0 3

y+ kiyy +

Eq. B4) is obtained from Eq. ([B3h) by fixing \; = —(T;:Q)k%. So, hereafter, we consider
Eq. (B3al) as a special case of Eq. ([B30) and so discuss only Eq. (B3L) as the general one.
It may be noted that Eq. ([B30) includes several known integrable cases. For example, the
choice 7 = 3 and A\; = 0 in Eq. (B3D) yields the MEE'®. On the other hand the choice
r = —1 leads us to the equation # + kixz — k%23 + Az = 0 which can be solved in terms of

0

Weierstrass elliptic function?. The other choices of r lead to new integrable cases as we see

below.
Substituting the forms of S and R (vide Egs. (B2H) and (B2d)) into the general form of
the integral of motion (ZH) and evaluating the resultant integrals, we obtain the following

time independent first integrals for the cases [B3H) and (B3d):

—1 A\
Gia) L= (o4 "2yt (352)
2r ]{71
L. ]{31 2 7’2>\1 (T-l) ]{31 2 T2)\1 2
a A2y L 0,1,2
X|}'L’(ZE’—|—2ZE +(T—1)]€1)+ 2 (QZE +(T—1)]{?1) 5 7"7& y Ly 4y
4k x
1b I, = — log(k?2* + 4k A =2 b
(i1b) 1 et Ak T8 og(kiz® + 4k1& + 8\q), T , (35b)
(iic) IL =i+ %xz — %log(klx' + A1), r=1, (35¢)
1
2 ks k4 A1
ORI P SR N BTN D S
(7i1) 1 2+4x+3:B+2:)3,r 0 (35d)

Note that in Eq. ([B5al), r can take any real value, except 0,1,2. In the above integrals I
given by Egs. [B3a) - (Bhd) correspond to the ODE (B3H), while B2d) corresponds to the
Eq. (B2d).
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Due to the fact that the integrals of motion (BH) are time independent, one can look for
a Hamiltonian description for the respective equations of motion. In fact, we obtain the

explicit Hamiltonian forms for all the above cases.

4. Hamiltonian Description of (Z3)

Assuming the existence of a Hamiltonian

where L(x,) is the Lagrangian and p is the canonically conjugate momentum, we have
ol OH 8p:,c n oL Op.
_— = - = —_— — = —
o8 o0& o0& 1 0&  0i
o 0H 0Op. OL

o o o (37)

From (B7) we identify

L= [~ Lydo+ [Ip- 5 [ = Lydolds, (38)

Plugging the expressions (Bf) into (BY) one can evaluate the canonically conjugate mo-

mentum and the associated Lagrangian as well as the Hamiltonian. They read as follows:

(a) The canonical momenta :

. 1 =Dk, M)
(iia,b) p= _— <:E + 57 + k‘—1) , 1#0,1 (39a)
(tic) p=log(kix + A1), r=1 (39b)
(i) p=x, r=0. (39¢)

(Note in the above r = 2 is included in Eq. (B9D) itself).

(b) The Lagrangian :

. B 1 o (r=1) ki e 2
(Z'la,) L= m (:L’ + —F 9 + ]{j—l) , T 7& 0, ]., 2 (40&)
(iib) L = log(4ki3 + 8\ + kiz?), r =2 (40b)

1
(iic) L= %log(klic + A1)+ z(log(kiz + A\) — 1) — §k1x2, r=1 (40c)
1

2k k A
(i) L:%—Z“—g”—?lz?,r:o. (40d)

13



(¢) The Hamiltonian :

(r — 1)p) -
.. (T — 1) 2 7”)\1
H = — k — 1,2 (41
2 4
(1ib) H = %p + %ﬁp + log(ﬁ), r=2 (41b)
1 p
1 k2
(tic) H = k—(ep —\ip+ Elzvz — A1), =1 (41c)
1
2
(1ii) H = % + %x‘l + %x?’ + %xz, r=0. (41d)

One can check that the Hamilton’s equations of motion are indeed equivalent to the appro-
priate equation (I0).

Since Eqgs. (B3D) and (B3d) admit time independent Hamiltonians they can be classified as
Liouville integrable systems. The important fact we want to stress here is that for arbitrary

values of r, including fractional values, the equation [330) is integrable.

5. Canonical transformation for the Hamiltonian Egqs. ({{d))

Interestingly, we also identifed suitable canonical transformation to standard particle in

a potential description for the Hamiltonians (fIl). Now introducing the canonical transfor-

mations
=5 p=-BE rA0L (42)
xr = k%, p=—-kU r=1 (43)

the Hamiltonian H in Eq. @) can be recast in the standard form (after rescaling)

r (r=2)
r—1
12y g;:;g(v—g;w) INELT AT
1P+ 202 + log(&), r=2
H— (44)
P2+ e MU 4\ kU, r=1
| $P?+ U+ 407, r=0

14



It is straightforward to check that when U and P are canonical so do x and p (and vice

versa) and the corresponding equations of motion turn out to be

(2-r)

.. — ]_ (1-r) 3—r — ]_

ir— 2(@) Ua=s 4 u(] =0, 1#0,1 (452)
4r 2

U— ke V + k) =0, r=1 (45b)

U+ ksU? + \U =0, r=0. (45¢)

One may note that the equations of motion now become standard type anharmonic oscillator

equations.

B. The case I; #0

In the previous sub-section we considered the case I; = 0. As a consequence S turns out
to be _7‘1’ However in the case I; = 0, the function S has to be determined from Eq. (22,
that is,

St + .CL’SZ - ((l{;lx + ]{72)25' + ]fg.ﬁ(fg + ]{?4252 + >\1£U)Sw
= (k‘ll’ + 3]{?31’2 -+ 2]{?41’ + )\1) — (k‘ll’ + k‘g)S + 52. (46)

Since it is too difficult to solve Eq. (@) for its general solution, we seek a particular solution
for .S, which is sufficient for our purpose. In particular, we seek a simple rational expression
for S in the form

a(t,z) +b(t,x)x

5= c(t,x) +d(t, )z’

(47)

where a, b, ¢ and d are arbitrary functions of ¢t and x which are to be determined. Of
course, the analysis of this form alone does not exhaust all possible cases of interest. We

hope to make a more exhaustive study of Eq. (B separately. Substituting () into (EH)
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and equating the coefficients of different powers of & to zero, we get

db, — bd, — kid* = 0,
db; — bd; + cb, — be, + a,d — ad, — 2kicd — (3kzz® + 2kyx + A1) d?
+(k17 + ko)bd — b* = 0,
cby — bey + day — ady + cay — acy — ky? — 2(3ksx® + 2kyw + \p)cd
+2(k1x + ko)ad — 2ab = 0,
ca; — acy — (ksz® + kyz® + M) (be — ad) — (3ksa® + 2kgw + Ay
+(k1z + ky)ac — a* = 0. (48)

The determining equation for the functions a, b, c and d have now turned out to be nonlinear.
To solve these equations we further assume that the functions a, b, ¢ and d are polynomials in
x with coefficients which are arbitrary functions in ¢. Substituting these forms into Eqs. ([ES)
we obtain another enlarged set of determining equations for the unknowns and solving the
latter consistently we obtain nontrivial solutions for the functions a, b, ¢ and d for four sets
of parametric choices. We present the explicit forms of the associated null function S given
by @) and the parametric restrictions in Table I.

Now substituting the forms of S into Eq. [Z3) and solving the resultant equation we
obtain the corresponding forms of R. To solve the determining equation for R we again seek
the same form of ansatz (28) but with explicit ¢ dependence on the coefficient functions, that
is, R = WW, where Sy is the denominator of S. We report the resultant forms of
R in Table . Once S and R are determined then one has to verify the compatibility of this
set (S, R) with the extra constraint Eq. (24]). We find that the forms S and R given in Table
I do satisfy the extra constraint equation and form a compatible solution. Now substituting
S;’s and R;’s into Eq. (B3) one can construct the associated integrals of motion. We report
the integrals of motion (/) in Table I along with the forms S and R.

At this stage, we note that the first integral for the case (i) with ks, A\; = 0 has been
derived in Ref. 18 through Lie symmetry analysis. However, recently, we have derived® the
first integral for arbitrary values of ko and A;. The case (ii) is new to the literature. The
first integral for the case (ii7) was reported recently in Refs. 9,12 and 13. The first integral
for the case (iva) is new to the literature. The case r = 0 discussed as (ivd) is nothing but

the force-free Duffing oscillator whose integrability has been discussed in Refs. 12 and 14.
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L1

TABLE I: Parametric restrictions, null forms (.5), integrating factors (R) and time dependent integrals of motion (I) of

&+ (k1z + ko) + k3 + kyz? + A2z = 0 (identified with the assumed ansatz form of S and R)

Cases|Parametric restrictions |[Null form (.5) Integrating factor (R) |Integrals of motion (I)
. _k _ kik - ¢ 3i—mx+k1x2
() |ks=AE, k= ule (a) I = ¥ <3i_3<{2iw)x+m2 ,
(Ala2—g) reTw ) 1
=Y ko, A # 0, w = (k3 —4A1)2
¢ (i — )y ki y2)2
< arbi _ 2 _
(k1, ko, A1 : arbitrary) (b) I =—-t+ m, ky =4)\
1 (kp£w) tw
(11) k3:0,k4:%(k2:|:w), §(k2 :Fu))+klfl', e k22 t I = < +k2ix+ kl 2>e(k2 )t
1
(k1, k2, A1 :arbitrary) w= (k3 —4)\)2
2koT
k (2ot 4 25T 4 kya? 2y | s o
(i) |k1, ks =0, A = %2 T +22k2 ) (& _|_sz) o Shot [=eshet( £ 4 2oy 2 2595 e
(ko, k4 : arbitrary)
(iva) ks = CSHM gy = kb2 I= <’;—3x4 + (@ + R2a) (@ + B %w2)>
' (2202, -
_ 2k ke 3kged | (k2w +32)el 3 ke 5 20-1),
nE e FHR T G "l g e gy | G\ RET R ) e g
(k1, ko, r : arbitrary) I = 2kot + log(4kow + 3k12” + 12:)
4(kow + 32) 5
— r =
(4](321’ -+ 3](3133‘2 -+ 1233’)7
ky s | k3 3
Tr+gr+k k ,
(ivb) k1 = 0, ks =0, G ; ifm) S| bt =) I = eshat [% +R2ai 4 5a? 4 %x‘*]
x —_—
3
2
AL = %,r =
(ko, ks : arbitrary)




Since we obtained only one integral in each case, (except case (i) where we have found
second explicit time dependent integral, see Ref. 9), which are also time dependent ones,
we need to integrate them further to obtain the second integration constant and prove the
complete integrability of the respective systems, which is indeed a difficult task.

In this connection we have introduced a new method!® which can be effectively used to
transform the time dependent integral into a time independent one, for a class of problems,
so that the latter can be integrated easily. We invoke this procedure here in order to integrate
the time dependent first integrals and obtain the general solution for all the cases in Table

I (except case (iv), see below). For the case (iv), we prove the Liouville integrability of it.

C. Method of transforming time dependent first integral to time independent one

Let us assume that there exists a first integral for the equation ([IT) of the form,
I =F(tz i)+ Fy(t, ). (49)

Now let us split the function Fj further in terms of two functions such that Fj itself is a
function of the product of the two functions, say, a perfect differentiable function %Gl (t,z)

and another function Gs(t, x, %), that is,

1 d
[=F(—
! (Gg(t,x,;t) dt

where [ is a function which involves the variables ¢, x and & whereas F5, should involve only

e, x)) B (Git)), (50)

the variable ¢ and z. We note that while rewriting Eq. ([@d) in the form (B), we demand
that the function Fy(t,z) in (@) automatically to be a function of G1(t, z). Now identifying
the function Gy as the new dependent variable and the integral of GG, over time as the new

independent variable, that is,
t
w=Gi(t,x), =z :/ Go(t', x,z)dt (51)

one indeed obtains an explicit transformation to remove the time dependent part in the first
integral. We note here that the integration on the right hand side of (EIl) leading to z can
be performed provided the function G, is an exact derivative of ¢, that is, Gy = %z(t, x) =
Tz + 2, so that z turns out to be a function ¢t and x alone. In terms of the new variables,

Eq. (B0) can be modified to the form

[=F (‘;—f) + Fy(w). (52)
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In other words,

R <E) = ] — Fy(w). (53)

Now rewriting Eq. (B2)) one obtains a separable equation

dw

= ), (54)

which can lead to the solution after an integration. Now rewriting the solution in terms of
the original variables one obtains a general solution for the given equation.
In the following using the above idea we integrate the first integrals given in Table I and

deduce the second integration constant and general solution.

D. Application

Case (ia): k3 = &, ky = kT, k1, ko and A; : arbitrary:

The parametric restrictions given above fix the equation of motion () in the form

k? k1k
i+ (ke + k)i 4+ —2® + 202

Let us rewrite the first integral associated for this case (vide case (i) in Table I) in the form

ko Fuw

ke 5ty d [ =3 —kytw, ko

h= Ly T | D
(Bx 2 ?)x —+ k1x2) dt klflf 2)\1

where w = \/k3 — 4)\;. Comparing this with the equation (Bl), and using (BII), we obtain

-3 kot
w=(— 4 — ~

“ky%a -3 —kyFw
7>€ 2 t’
k‘ll’ 2)\1

= <k‘1[L’ + 2)\1 )6

—kotw
—5 (57)
Substituting (B7) into Eq. (B5), the latter becomes the free particle equation, namely, 4 dZQ =
0, whose general solution is w = I, 2+ 15, where I and I, are integration constants. Rewriting
w and z in terms of x and t one gets

61 (1 — Ie¥?)

kodw

(klw(l + 116Wt) — (k’g + w)126 z b — k’lk’g(l — Il6°"t)> ’

where w = \/k3 — 4.

2(t) = (58)
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Interestingly one can consider several sub-cases. In the following we discuss some impor-
tant ones which are being widely discussed in the current literature. In particular, the dif-
ference in dynamics arises mainly depending on the sign of the parameter o (= \/m ).
We consider the cases (i) k3 < 4\, (i) k3 > 4\ and (i71) k3 = 4)\; separately. The
restriction k3 < 4\; reduces the solution (BS) to the form?,

o(t) = A cos(wot + 0) ’ (59)

k .
(eft + 3(%&3;3) (2w sin(wot + 0) — ko cos(wot + 5)))

SN, 1.2
where wy = 4)‘21 " and 0, A are arbitrary constants. A further restriction ko = 0 gives us

the purely sinusoidally oscillating solution!®

Asin (wot + 6)
1—(

0< A< oV (60)

x(t) = JAcos (wot +6) k-’

_k
3wo
where A and ¢ are arbitrary constants. The associated equation of motion, namely & +
kyxx + %xg + Az = 0, admits very interesting nonlinear dynamics, see for example in Ref.
19.

On the other hand, in the limit k3 > 4\; the solution looks like a dissipative/front-like
one'”. A further restriction \; = 0 takes us to the solution of the form!!

3k2([16k2t — 1)
t) = . 61
l’( ) (]{jl + ]{32(3]2 + klflt)e’f?t ( )

Case (ib): ks = &, ky = 5k2 12 — 4\, ky and ky : arbitrary:

The third choice k3 = 4); in (B) leads us to the solution

3(I; +1) ) (62)

x(t) = ( Cym—
3]26 3l k—gl(Q + 11]{72 + kgt)

Further parametric restriction ko, A; = 0 provides us the general solution of the form

(t) = (lﬁ( 65 +1) ) (63)

I + )2 + 61,

The underlying equation, that is, & + kjzt + %x‘g =0, is the [ = 1 integrable case of Eq. (@)
with the solution () (see for example in Refs. 18 and 19).
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Case (il) ]{73 = 0, ]{74 =k (]{72 + ]{7% - 4)\1), ]{71, ]{32 and )\1 . arbitrary:

1

In this case we have the equation of the form

i+ (kv + ko) + Zl(kg + /K2 — 403 + Az = 0. (64)

The associated first integral reads (vide case (i7) in Table 1)

2 _ koEq/k3—4x
o (s BEYEII ) e )

2

Note that Eq. ([BH) can be rewritten as a Riccati equation of the form?!

e (S 0

.:[(
x (& 2 B

The general solution of the Riccati equation is known to be free from movable critical points
and satisfies the Painlevé property. In this sense Eq. (64]) can be considered as integrable in

the Painlevé criteria sense. However, in the general case, (B8, it is not clear whether it can

be explicitly integrated further. However, for the special case \; = % it can be integrated

as follows.

2
The restriction Ay = % fixes the equation of motion (&4]) and the first integral (GH) in

the forms
i+ (ki + ko)i + %:ﬁ + %k%x =0, (67)
and
= (:c + %x + %:ﬁ)e?t, (68)
respectively. Now rewriting (B8) in the form (B), we get
I= e?t<%(:ﬂe?t)) + %(:)sek'o‘zt)z. (69)

Identifying the dependent and independent variables from (£9) and using the identities (1),

we obtain the transformation

3 .
w = :zse%zt, b= 2o (70)
k2
Using the transformation () the first integral (68) can be rewritten in the form
- k
[ =w + 2w? (71)

2
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which in turn leads to the solution by an integration, that is,

w(z) = \/% tanh { %(z - zo)} , (72)

where zj is arbitrary constant. Rewriting ([2) in terms of old variables we get

() = 1| et tann | (/B =0 — )] (73)
kl ]fg 2

where tj is the second integration constant.

Case (iii): ki, k3 =0, A\ = %, ko and k4 : arbitrary:

The corresponding equation of motion is
2

6k
i+ kot + ky2® + 2—52x = 0. (74)

Rewriting the associated first integral [, given in Case (ii7) in Table I, in the form (#Y), we

get
1 2k \° k
1=3 (:c + ?2:5) eshat 4 34:53@%’“2# (75)
Now splitting the first term in Eq. ([[d) further in the form (E), we obtain
o (d, 1 N\ k
[=e% (%(%xez?)) + f(ze%kzt)g. (76)

Identifying the dependent and independent variables from ([f]) and using the relations (&),
we obtain the transformation

w = ixe%, z= —36_%. (77)

V2

Using this transformation, ([[7), the first integral ([H) can be rewritten in the form

I=w?+ %w?’, (78)
where 154 = 2\/§k4, which inturn leads to

w”? = 4w? — gs, (79)
where z = 2\/%2 and g3 = —%. The solution of this differential equation can be

represented in terms of Weierstrass function'®!3 o(2;0, g3).
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Case (iv): k3 = (27,21 k2 ky = klgkz, A\ = %, ki, ko and r : arbitrary (but not zero):

The above parameters fix the equation of motion () in the form

1)k kyk 2k3
UL L S Z2p =0, r#£0. (80)

Z+ (kix + ko) + 572 5 5

The associated first integral reads (vide case (iva) in Table I)

(
( — D k20t + (i + Bo)(d+ 2o+ %:ﬁ)))

I= x (x + 8+ —(’“;)klf) S, r 0,2 (B
. 4(kox+31
| Skt + log(4kyr + 3kia? + 12i) — (Wigk; jm), r=2.

Rewriting Eq. () in the form (B), we get

(
((T;Bk% (xek%t)4 + j (Iekft) (i(xekft)eg t 4 %(Ie%t)2)e%2t)
I = X (%(m@’?t)e’?t + kl(;’;l).(l'€lca‘2t)2) ’ 40,2 (82)
ko ko
4%(:{:@7'5)6715 B k2 1o 4 Koy ko, B
\ kl(:ce%gt)z-i-ﬁx%(xe%t)e%t log | ka(we )"+ 4‘# (wesh)est ), r=2

Identifying the dependent and independent variables from (82) and the relations (&1I), we

obtain the transformation
w=xe3', z=——e 3" (83)
In terms of the new variables, (83)), the first integral I given above, (82), can be written as

<w’ + —(Tz_rl)klw2> {—(z;g)k%w‘l +w'(w' + %w2) . r#0,2
I= (84)

7,611042“1%, — log(kyw? + 4uw'), r=2.

On the other hand the transformation (83)) modifies the equation (B0) to the form

— 1)k?
7(T22> L =0, r#0 and’ = —
r

w” + kww' + )
dz

(85)

23



Finally, for the case r = 0, we have an equation of the form (vide case (ivb) in Table I),
T+ kod + kg + %k%x = 0, which is nothing but the force-free Duffing oscillator equation.
Again using the transformation (83), the associated time dependent integral given in Table

I can be rewritten as
I=—+4+—w", r=0. (86)

Though it is difficult to integrate the above time independent first integrals, (84]), as they
are in complicated forms, one can easily check that Eq. ([BB) (r = 0) can be integrated in
terms of Jacobian elliptic function'® and the case r = 1 is already discussed as case (i) in
this section. For the other cases one can give a Hamiltonian formulation as in Sec. [TTA]
and write the corresponding Hamiltonian as

(

:ﬁ:Z_
((T—l)p)
|: _p((T;Tl)kle) ) T%071727

(r=2)

k1,2 4k _
o) qw p+10g(p ), r=2 (87)
e + Ew?, r=1
2y hagpyd r=20
L2 T1W,

where

(88)

Thus one is ensured of Liouville integrability of system (BH) and so (B) for all values of
r. Further, following the analysis in the above subsection [II’AT, one can make a canonical

transformation (vide Eqs. ([2)-(E4)) to standard nonlinear oscillator equations.
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E. Summary of results for the ¢ = 1 case:

To summarize the results obtained in this section, we have identified six integrable cases
in Eq. (I0) among which four of them were already known in the literature and the remaining

two are new. In the following, we tabulate all of them for convenience.

1. Integrable equations already known in the literature

1 i+ k1x+k2i+k—%x3+@x2+)\1$20,

9 3

kik 2432
(2) i+ (kyx + ko) + %zﬁ + TQI =0, ©7)

i} . ,  G6k2
2 4 s v =Y,

(3) :)3+k:):+k:x+25at 0 ([z2)
(4) j+k3$3+k4$2+)\1$:0. (HBH)

We note that the dynamics and certain transformation properties of Eq. (B3) have been
studied in detail by three of the present authors in Refs. 9 and 11 recently. In particular, we

have shown that this equation admits certain unusual nonlinear dynamics!®. The dynamics

of Egs. (&1),([) and (B3d) can be found in Ref. 12.

2.  New integrable equations

(1) &+ kywd + ksa® + Mo =0, B3D)
kik 2k?2

(2) i+ (kyw + ko)i + ksx® + %xz + ?235 =0, (80)

where r2k; = % and ki, ko, \; and r are arbitrary parameters. We note that (B3H)

includes the first equation of MEE hierarchy (@) as a sub-case. Importantly, we showed that
(B3D) is a Hamiltonian system (see Eq. (El)) and so it is Liouville integrable. Equation (80)

can be transformed to the integrable Eq. (8H). Explicit general solution of certain special

1

5 are reported in Ref. 20.

cases, namely, r = 3 or % and r = —1 or
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IV. GENERALIZED FORCE FREE DVP FORM OF EQUATIONS

Let us now consider the case ¢ = 2 in Eq. ([{@) or equivalently ([ITl), that is,
T = _((k1$2 + kQ)QU + ]fg.ﬁ(fs + ]{?4253 + )\1£U) = (b(l‘, .CL’) ([D])

Interestingly Eq. () includes another class of physically important nonlinear oscillators.
For example, choosing k3 = 0 one can get force-free Duffing-van der Pol oscillator equation.
With the choice ko, ks, A1 = 0, it coincides with the second equation in the MEE hierarchy
equation. Equation ([Il) with the restriction k3 = %, ky = 2E2 and A = (wd + %g), has
been investigated in a different perspective in Ref. 4. However, the general equation of the
form () has never been considered for integrability test and so we perform the same here.

To identify integrals of motion and the general solution of Eq. ([Il) we again seek the PS

procedure. As the calculations are similar to the ¢ = 1 case of Eq. (@) which was carried

out in the previous section, in the following, we give only the important steps.

A. The case I; =0

By considering the same arguments given in Sec. [IT’ATl the null form S can be fixed

easily in the form

S — _ ((k‘ll’2 + k’g)l’ + k’gl’s + k‘4l’3 + )\11’)

: (59)
The respective R equation becomes
Rt + SL’PLm — ((1{311’2 + ]fg)ilf + ]fgi(fs + ]{341’3 + )\15(7)Rm
ki2? + ko)d + ksz® + kg + A
(ka2 + k) + ((k12® 4 ko)d + 3 + kax” + 1x))R. (90)

T
To seek a particular form for R one may seek a suitable ansatz. We assume R to be of the
form (28) and investigate the system (@) as before. Following a similar procedure we find
that a nontrivial particular solution for (@) exists in the form
T
R=— —, (91)
(D (kg3 4 ko) + d)r

where 7, k1 and ko are arbitrary parameters and the remaining parameters, ks, ks and \q,
are fixed by the relations

k'3 - (T _ 1)]{5%’ k4 = Mk‘lk% )‘1 = (T — 1)]{53 (92)

3r2 372 72
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Further, we confirmed the compatibility of the functions S and R with the extra constraint
&) also. We note that unlike the earlier case, ¢ = 1, we do not get a nontrivial solution
for the parametric restriction ko, k4 = 0. The above restrictions fix the Eq. () to the
following specific forms:

(r—1) 4(r — 1)k1k2z3 n (r —1)k3

372 3r2 r2

(ib) &4 ksa® +hgr® + Nz =0, 7r=0 (93b)

ia) &+ (kix® + ko)i + k2a® +
1

x =0, r#0(93a)

Now substituting (89) and (@) into ([ZH) and evaluating the integrals we obtain the first

integrals in the form

(r—1)

b

(ia) I, = (i+ (Fe +k2:c))_r

k —-1) k
X [x(m + 31553 + kox) + (r = )(31:173 + kox)?|, r#£0,2, (94a)
62
b L = -1 ¢+ 3k kya® =2 4b
(7' ) 1 (6x+3k2x+k1x3) 0g<6x+3 2:1:+ 1 )7 r ) (9 )
.. i k3 6 ]’{54 4 )\1 2
) Il—?jtgx —I—ZZB —G—?ZB, r=0. (94c¢)

Further, as in the ¢ = 1 case in Sec. [IT’A4], the integrals (4] can be recast into the

Hamiltonian form

r—2

r—1
((T - 1)19)

, r—1) k
(ia) H= { =) | . )p(glzv?’ + kox)|, r#0,1,2, (95a)

k k 6
(ib) H= gxp + Elx?’p + log(;), r=2, (95b)

k

(ic) H=e"+ 31:)33 + kox, T =1, (95¢)

2

i _ b @ 6 @ 4 ﬁ 2 —

(74) H—2+6$+4x+2x,r—0. (95d)

where the corresponding canonical momenta respectively are

. (1-r)
(ia,b)  p= o i D <:c + (r " D (%x?’ + l{:gx)) , r#0,1, (96a)
(ic) p=logz, r=1, (96D)
(44) p=a, r=0. (96¢)
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Note that in the above the parameters r, ki, ko, k3 and \; are all arbitrary. We also note
here that unlike the ¢ = 1 case discussed in Sec. [Il, so far we have been unable to find
suitable canonical transformations for the above Hamiltonian systems so that the standard

‘potential” equation results. The problem is being further investigated.

B. The case I; #0

Now let us study the case I; # 0. In this case S has to be determined from Eq. (22), that

is,

St + ZL'SI — ((k‘ll’2 + k’g)l’ + k’gl’s + k‘4l’3 + )\11’)596
= (2]{311'1’ + 5]{331'4 + 3]{341'2 + )\1) — (k‘ll’2 + k’g)S + 52. (97)

As we did in the ¢ = 1 case of Eq. (@) we proceed to solve Eq. (@7) with the same form of
ansatz ([@1). Doing so we find that Eq. (07) admits non-trivial forms of solutions for certain
specific parametric restrictions. We report both the parametric values and their respective
forms of S in Table II.

Now substituting the forms of S into Eq. ([£3) and solving the resultant equation we
obtain the corresponding forms of R. Once S and R are determined then one has to verify
the compatibility of this solution with the extra constraint (24]). Then one can substitute
the null forms and integrating factors into () and construct the associated integrals of
motion. We report the integrating factors (R) and time-dependent integrals of motion (I)
in Table II.

The remaining task is to derive the general solution and establish the complete integra-
bility of Eq. () for each parametric restriction. We again adopt the procedure given in Sec.
[MTC and transform the time dependent integrals into time independent ones and integrate
the latter and deduce the general solution. As the procedure is exactly the same we provide
only the results in the following.

Case (ia): k3 = ]f—z,

ks = klfz, ki, ko and A : arbitrary:

Substituting the parametric restrictions given above in Eq. ([[II), we get

5¢+(k;2k'k—%5@3A—0 98
1x+2)x+16x+4x+1x—. (98)

28



6¢

TABLE II: Parametric restrictions, null forms (), integrating factors (R) and time dependent integrals of motion (I) of

&4 (k12? + ko) + k3x® 4 kyz® + A2z = 0 (identified with the assumed ansatz form of S and R)

Cases| Parametric restrictions |Null form (5) Integrating factor (R) |Integrals of motion (1)
. k2 _ kk _ 43+2(kodw)z+k1 23
O fo=fhm=te | (a) I = ¥ (Uit thon)
k1.3 _ » Fwt
5o — @ xe e 1
: (& — By 4 ko 7 =
(k1, k2, A1 : arbitrary) (b) I = — k3 =4\
(Fat+=L+i)
1 (kptw) kgtw
(ii) kgzO,k4:%(k2:|:w), §(k‘2 Fw)+ ka? ez ! I= <i+@$+k—§$3>e( Tk
k1, ko, A1 : arbitrary w=(kZ—4)\ 3
2
ky i | k3 3
2 Li4 Z2x+ kyx .k 4 4 , . 2
(111) kla k3 - 07 )\1 - % < 3 w j_ @w ! > (1’ + gm)ﬁgkﬁ I = e§k2t |:%2 + If3_2xx + %$2 4 %$4:|
3
(ko, k4 : arbitrary)
k2 .
(iva) |ks = (TT:Z&, ky = %, I= (%xE’ + (x4 %23:)(3: + %SL’ + %x3)>
(G —r
3k2 ko 2 dksx® | (kow +4d)e 1 2 ( k 3> 82-r))
M==21#0 — + kit 4+ — x|+ 2z +rksx e- 1 M £2D
1= T 4 M (4 + kor) | (B2a 4 rkgad + &)r 4 ’ 7
(k1, ko, 7 : arbitrary) 1= %k‘gt + log(6kox + 4kyx3 4 247)
B 6(kox + 412) r—9
(6]{721' + 4]4311’3 + 245&)’ N
ko k3 5
. 2o+ 2x+ kax 3ky, .k ko, (. ) 2
(ivb) |k1 =0, k4 =0, <4 :L"f@:n > > e22t(w+zzw) I=e 22t<g—2+%ww+§—§x2+%w6>
4
2
)\1 = %,T‘ =0
(kg, ks : arbitrary)




We observed that the first integral of this case (i) (see Table II), when rewritten, is nothing
but the Bernoulli equation which can be integrated strightforwardly?' and it leads to the

general solution of the form

x(t) = Bkada(e — 1) : (99)
N 112]{31]{32(—/{52 + w) — 62°"tk’1k’2(k’2 + (U) + 8[2k2)\16(k2+w)t + 8[1](?1)\16‘“ ’

where w = \/k2 — 4\;. A sub-case of the Eq. (@), namely, k3 < 4\; has been studied by
Smith*?2 who showed that the corresponding equation of motion admits a damped oscillatory

form of solution, namely,

£(t) = Acos(wot + 6) ’ (100)

<6k2t _ % + #’Lg) <2wosin2(wot + 0) — kycos2(wot + 5)))

N

where wg = %\/4)\1 + k2 and 4, A are arbitrary constants.
On the other hand for k2 > 4);, the solution (@) becomes dissipative type having a

front-like structure. In particular, for A\; = 0 we get a solution of the form

2/ ko (et — 1
2(t) = ( o(he ) ) (101)
(—k’l + 2k?1]16k2t(2 + k211t6k2t) + 4k2[262k2t)5
Case (ib): ks = 5 ky = 5k2 12 — 4\, ky and ky : arbitrary:
In this case we get the general solution of the form from (1) as
2(I) + )2 :
x(t):( __ 22(1+)22 ) (102)
2ek2t [y — é(Q + I7k3 + 2kot + k312 4 211 ko (1 + kot))

One may note that a sub-case of this equation, namely, ko = A; = 0 leads us to the second

equation in the MEE hierarchy () and the corresponding solution follows from Eq. ([02) as

_ (I +1)? 2
#(t) = \/6<612 + kqt(31% + 311t + t2)> ' (103)

This form exactly coincides with the solution (@) for [ = 2.

Case (il) ]{73 = 0, ]{74 =k (]{72 + ]{7% - 4)\1), ]{71, ]{32 and )\1 . arbitrary:

6
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The repective equation of motion and the first integral are (see Table II)

i+ (kya? + ko) + El(l@ + /K2 — 403 + Az = 0, (104)

and

ko FARE— AN kp ) REV/EA
I = <9L"—I— 2T > 1$+§1:E3)e et (105)

Eq. (I3) can be rewritten as an Abel’s equation in the form

@ﬁ_(m\/M)CE_E 3 (106)
2

;= Jel— 3 :
X (& 31’

It is not clear whether Eq. () can be explicitly integrated in general. However, for the
special case A\; = -=k3 it can be integrated as follows.

2
The restriction \; = % fixes the equation of motion ([04) and the first integral () in

the forms
kik 3k3
i+ (kyz® + ko) + %x?’ + 1—62:5 =0, (107)
and
k k
I=(a+ 204 53" (108)
4 3
respectively.

Now following our procedure given in Sec. 3.3 one arrives at the general solution! as

2= —o F log (M) + V/3arctan <2_w‘/§>

109
w? + aw + a? a+w ’ (109)

t 2 k2

. ko ko :
with w = vet!, z = —Ze 2" and a = 3/3L

= and zp is the second integration constant.

Rewriting w and z in terms of old variables one can get the explicit solution.

Case (ifi): ki, ks =0, Ay = 22 &y and ky : arbitrary:

The parametric restrictions given above fix the equation of motion ([Il) to the force-free
Duffing oscillator, namely, & + kod + kg2 + ?1’ = 0. We have already discussed the general

solution of this equation in Sec. [Tl (vide case (iv)).
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Case (iv): ky = CDM = kb \ =3 4 kand r: arbitrary:

The equation of motion turns out to be

-1 2 2
+ (k‘ll’2 + k’g)l’ + (T )kl 1'5 + @1’3 + %

— . 11
32 1 1655 0, 7#0 (110)

Rewriting the associated first integral I, given in Case (iv) in Table I, in the form (B0), we

get
(et + et (laet9eH + Baet? ) o)
d Bayy E2¢ | ka(r—1) 24\ g -
<\ @lwe ezt + == (ze ) ) r#0,2,
- (111)
61 (mek42t)ek72t . . .
kdt 3 % _lOg(kl(x€4t)3+6dt(xe4t)ezt)7 r—9
k1(ze 7 )3+6 L (a et t)ed
2
1<i($eft)) k2t+k3($e4t)6a r—0
\

and identifying the dependent and independent variables from ([[I1l) and the relations (&),

we obtain the transformation

2
w=gxet!, z=-——¢ —Ft (112)

ks

In terms of the new variables (II2) the first integral I given above, ([IIl) can be written as

(

<w’+ (T?,_rl)klwg) [w'(w’+ k—?jw?’) + grgl Eiws|, r#0,2

I = k1w63w+/—6w/ — log(k1w3 _l_ 6w/)’ r = 2’ (113)
\ wT/Z - %w(j’ r=0.

On the other hand substituting the transformation ([[IZ) into the equation of motion
(1) we get

(r = 1)k

w//—|—]€ waI_'_
! 3r2

w®=0, r#0, = —. (114)
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In the case r = 0, we have an equation of the form (vide case (ivb) in Table II)
2

3k
&+ kot + kgz® + 1—6255 =0. (115)

We note that the Eq. (II4) is the [ = 2 case of Eq. (). As we mentioned in the introduction

the general solution of this equation can be obtained only for certain specific choices, namely,
N2

(r 3:2)k1 = %. This in turn gives r = 4k; or %k‘l. The respective solutions for these values

of r of Eq. (14) can be fixed from Eq. ([d) with [ = 2. The other cases do not seem to

be amenable to explicit integration. However, all of them can be recast in the Hamiltonian
form as we see below.
As the first integrals ([T3)) are now ‘time’ independent ones, one can give a Hamiltonian

formalism for all the integrals ([IT3) by following the ideas given in Sec. [ITAZl Doing so we

obtain
( r—2
r—1
((T—l)p)
[ = - (Tg_rl)klw?’p ,r#0,1,2
k1,3 6 _
H = Gwir+log(y), r=2 (116)
ef + w3, r=1
z + kagy6 r=20
[ 2 6 W
where
( (1-r)
(rll) (w’ + —(T;Tl)klw?’) ,r#0,1
p= log w’, r=1 (117)
\ %2 + Bf, r=0.

In this sense these cases may be considered as Liouville integrable systems. Finally,
for r = 0 case in Eq. (IT3) can be integrated in terms of Jacobian elliptic function (see for
example in Ref. 23). Again, here, we have not been able to identify canonical transformations

which can lead to the identification of suitable 'potential’ equations.
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C. Summary of results in ¢ = 2 case:

To summarize the results obtained for the ¢ = 2 case, we have identified six integrable
cases in Eq. () among which three of them were already known in the literature and the

remaining three are new. In the following, we tabulate both of them.

1. Integrable equations already known in the literature

. 2 . k1k2 3 3k§

. : 5, 2k3
(2) T+ kot + ksx® + 5 %= 0, (118)
(3) T+ k3$5 + ]f4.l’3 + >\1£U =0. (ma)

We mention that Eq. (TI7) is nothing but the force-free DVP whose integrability is estab-
lished in Ref. 1 and Eq. (IIX) is nothing but the force-free Duffing oscillator!?!4,

2.  New integrable equations

4(’/“ — 1)k1k2$3 i (’l“ — 1)]{,’%

(1) &+ (kiw? + ky)d + ksa® + r=0,7r%#0 ([@3a)

3r2 r2
2 . kiks
(2) @4 (k2?4 k)i + 1—6:175 + T:ﬁ” + Az =0, @)
k1k 3k2
(3) i+ (kia® 4 ko)i 4 ksa® + %x?’ + 1—62:c =0, (M)

=
3

where 7%k; = and ki, ko, A\; and r are arbitrary parameters. We proved that Eq. (G3al)
is Liouville integrable one. As far as equation (@8) is concerned we derived the general
solution for arbitrary values of ki, ky and A\;. Finally, for Eq. (I0) though we identified
only one time dependent integral, we have demonstrated that it can be transformed into

time independent Hamiltonian and thereby ensuring its Liouville integrability.
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V. EXTENDED PRELLE-SINGER METHOD TO GENERALIZED EQ. (@)

One can investigate the integrability properties of Eq. ([@) by considering the cases
qg = 3,4,5,..., one by one and classify the integrable equations. Since the procedure and
the mathematical techniques in exploring the integrating factors (R), null forms (5), first
integrals (/) and general solution are the same in each case we do not consider each case in
detail. We straightaway move to the case ¢ = arbitrary, that is, ¢ € R and not necessarily
an integer, and present the outcome of our investigations.

As we did earlier, we consider the cases I; = 0 and I; # 0 separately for the choice

q = arbitrary also. First let us consider the case I; = 0.

A. The case I; =0

By considering the same arguments given in Sec. 3.1.1 the null form S and the integrating

factor R can be fixed easily in the form

kllﬂ +’k2)i'+’k3$2q+l'+'k4$1+q'+'A1$)
T

P

R= ° (119)

(C (Biaett + ko) + &)

where k; and ks are arbitrary and the remaining parameters, ks, ks and \{, are related to

the parameters k1 and ko through the relations

ks = - 1)(61 + Dk, k= r- 1)(61 +2)kiks, A= r- 1)k§’ (120)

r2 r2 r2

k1
(g+1)°

where ki = The above restrictions fix Eq. ({) to the following specific forms:

. . - . r—1 -
(ia) @4+ ((¢+ 1)kix? + ko)d + ( - )[(q + 1)kt

+(q 4 2k ko™ + K22] =0, r £ 0 (185
(ib) &4 ksx® T 4 kg™ + Nz =0, 7= 0. (121)

Now substituting (IT9) into (Z3) and evaluating the integrals we obtain the first integrals
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of the form

(ia) I, = (x I Gl Y kﬂ)) -

.
—1)
(r )(/ﬁx‘”l +kox)?|, 7#0,2, (122a)

X {:i:(:'c + ka ™ + kox) +

7"2
; ke  k
(ib) I = — T —log(i + =z + —a9™), r=2, (122b)
(& + 2a + Baat!) 2 2
i? ks k A
i) L= Pl T a2y P2, 122
() I 2+2<q+1>:v +(q+2)x +2:)3, r (122c¢)

Further, using the above forms of the first integrals, one can show that the equation of

motion (@), with the parametric restrictions ([20), can also be derived from the Hamiltonians

r—2

(ia) H= {((T ) 1>p) . _(r= 1>p(l%1xq+1 )|, r#£0,1,2,  (123a)

(r—2) r
(i) H = %xp + %xqﬂp P U (123b)
(ic)  H=e" +kya™ 4 kox, r=1, (123¢)
(i) H= %2 + ﬁﬂq“) + (quf 1)xq+1 + %x{ r=0, (123d)

where the corresponding canonical momenta respectively are

N ) (1-7)
(ia7 b) p= (T — 1) <LE + (T ” 1) (l{fl.flfq—i—l + ]fg.f(f)) , T % 0,1, (124&)
(ic) p=logi, r=1, (124b)
(17) p=&, r=0. (124c)

With the above Hamiltonian formulation, for the parametric set ([20), the integrability
of the associated equation of motion is assured for these parametric cases through Liouville

theorem.

B. The case I; #0

We use the same ansatz and ideas which we followed for the ¢ = 1 and ¢ = 2 cases to

determine the forms of S and R. As the procedure is exactly the same as in the earlier cases
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we present the parametric restrictions and the respective form of expressions of the inte-

grating factors, null forms and integrals of motions in Table III without further discussion.

Since we derived only one integral, which is also a time dependent one for each parametric
restriction, we need to integrate each one of them further and obtain the second integration
constant in order to prove the complete integrability of each of the cases reported in Table
ITI. In the following we deduce the second integral and general solution by utilizing the

proceduce given in Sec. [ITCl

Case (ia): k3 = %, ky = (ng), k1, ko and A : arbitrary:

We have an equation of the form
i+ (g + 2)k1a? + ko) + B! + ko™ + Dz =0, (T3)

where k1 = (¢ + 2)12:1. The corresponding first integral given in Table 3 is nothing but the
Bernoulli equation which can be solved using the standard method?!. The general solution

turns out to be

-1
w(t) = (et — 1, | [ 34 (I, + k e -h th ' (125)

where w = y/k2 — 4\;. We note here that a sub-case of the above, namely, k3 < 4\, has
been studied by Smith* who had shown that the corresponding system admits the general

solution of the form

x(t) = Acos(wot + 5)6_%2'5 (1 + gy A / e%kztcosq(wot + 5)dt) q, (126)

where wy = %\/ 4)\; + k2 and §, A are arbitrary constants. For k2 > 4\, the solution
become a dissipative type/front-like structure. In particular, for A; = 0 the general solution

takes the form

z(t) = (ekztll — 1) [eq’m (IQ + kg / (Il — e_l‘”t)th)] _%. (127)
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8¢

TABLE III: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

&4 (k129 + ko) + k3z?0t + kg9t + N2z = 0 (identified with the assumed ansatz form of S and R)

Cases|Parametric restrictions |[Null form (.5) Integrating factor (R) Integrals of motion (/)
. (koFw) F1 _q+1
.  kik . ¢ T——5—"T+ 5T
(1) k (q+2)27 k4 (q:_22) (CL) I = esz <x_ (k%iw)x+(?1zxq+l> )
q
( ak1_.q+1 — &) Fwt
(g12) . iw)“e ko M #£ 0, w = (k2 — 4)\1)3
x (x 2 T+ (q+2) xq+1)2
(k1, ko, Ap : arbitrary) (b) I =—t+ #7 k2 =4\
(Fot+=L o)
1 (kgtw) . kotw
(i) |ks="gam0 ks =0, |5(he Fw) +hat, ¢ 7! = (x + Ry 4 (q’fﬁl)qu)e( =)
k1, ko, A1 : arbitrary w= (k3 —4)\ 3
2
+ + kyxd ok 2(+2) 2(q+2) . 2 2
_ _ 2(‘1+2)k% (q+4) ((I+4)2 . 2T ﬁkzt — o) kot 2kox 2k3z kazdt2
(111) ki,ks =0, = (q+4)2 (:L' I é’ff)) (l' + 7(q i 4))6 q+4 I =¢ + (g+4) + (q+4)2 (q+2)
2, k4 :arbitrary
ko, k bi
. _ (r—=1)k2 | kga2(etD) . k . k oy pd+1
(iv)a ks = Gt I= ( L (B (6 4 R 4 b )>
(kex + (¢ + 2)2) (H(l)g)ﬂ‘) kot T (g+1)(2-7)
_ ik kot | (K22 + (g e @ ko G+ 5| o Clare ket
ki = G55y (q+2)+k713: —I—(x ) E ot ket 3 X\ Gry T trksetT ) e 0 T2
(q+2)
+1)
A = <(‘1q+2 r#0 = Lkt + log(klxq+1 +2(g+ 1)@ + 2a))
2(qg+1)(@ + +2 )
(k1, ko, 7 : arbitrary) : , r=2
k T 24T T ( k TR 1)(33 : q+2$) (24+2)
. 2 3L 294 Dkyy 2 ; koo i pap2at2 | (Bat2ka,
()b ihn =0, k1 =0 @t Gty | Tarn” |17 <% S+ e + Yy e
q+2
2
A= WUk
(¢+2)% 7
(ka, ks : arbitrary)




Case (ib): ks = 5 ky = 5k2 k) — 4\, ky and ky : arbitrary:

A general solution for this case can be fixed from (IZ1) as

_1
2(t) = (I + t)e 7! (Iz + qlh/e—‘”?t(ll + t)th) . (128)
On the other hand the general solution for the parametric choice ks, A\; = 0 turns out to be

B (q+ 1)(I; + 1) @
#{t) = <1%1q<11 POt (gt 1)12) ’

(129)

which exactly coincides with the result () obtained by Feix et al.? for integer q(= [) values.

Case (ii): k3 =0, ky = 2(5-11) (kg &+ \/k2 — 4\1), k1, ko and Ay : arbitrary:

The associated equation of motion and the first integral are (see Table III)

~

. - .k
2+ ((q+ Dkiz? + ko)z + El(k’g + /K3 —4\)z? + A2 =0, (130)

and

k k2 — 4\ R kot / k3 —4x
I <9L"—I— 2TV > 1:E+k:155q+1)e(2 S (131)

where k1 = (¢ + 1)1%1. Like in the earlier cases, that is, ¢ = 1 and ¢ = 2, we are able to
integrate the first integral ([I3]) explicitly only for a specific parametric restriction, namely,
A = (q+1)k2, where ky = (q+2)ky. In this case the equation of motion (I30) and the first
integral, Eq. (IZ), can be recast in the form

G+ (kya? + (q+ 2)ko)i + kkoa®™ + (¢ 4+ Vk3z = 0, ™)
and
I= (:[; + oz + l%lxq“) elatDhat (132)
respectively. Now comparing ([32) with (&), we get

I = ekt (%(:cel;ﬁ)) + oy (wekety D) (133)
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Next identifying the dependent and independent variables from ([33]) using the relations

(E10), we obtain the transformation

w=xet 7= —ie‘qk?t. (134)

Using the transformation ([34)) the first integral (I33]) can be rewritten in the form
I =w + kywt) (135)

which in turn leads to the solution by an integration, that is,
d
Z—ZOZ/A—“’, (136)
I — kjlw(lﬁ-l)

where z is an arbitrary constant. Solving Eq. (I3H) we get?!

4 q71 g—1

2 21 2 21
P; cos ; sin T
q+1Z q+1 q+1;Q q+1
1 L 4w) a positive odd number,
B TP (137)

Igttn 20+ 1

2141
q+1ZRcos 7r q+1ZTSIHq+1

+1ln(1 +w), q-a positive even number,

\ q
where g = k—; and
1 2 — cos 2L
P, = —In| w? — 2w cos ' x +1), Q;=arctan —H ,
2 q+1 sin ﬁw

1 w + cos 2t
+1 T+ 1), T, = arctan [T‘fﬂ]

S =T

1 2
R, = =In <w2 + 2w cos ‘
2 q+1

q+

Rewriting w and z in terms of old variables one can get the explicit solution.

Case (iii): ki, k3 =0, \| = 2233 22, ke and ky : arbitrary

The parametric choice given above fixes the equation of motion of the form
+ (g + 4 ko + kg0 4 2(q + 2)k2z = 0, ()
where ky = (q + 4)k,. Rewriting the first integral I given in Case (i) in Table IIL, in the
form ([EJ), we get

N +2 .
I= (:c + 21%2x>2 exardiat T gt (138)

1
2 (g +2)
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Now splitting the first term in Eq. ([38) further in the form of (B0),

A 2 a2 RN
[ = e d (2 ) |7y Bk () (139)
dt \v/2 (¢+2) \v2

and identifying the dependent and independent variables from ([[39) using the relations (&),

we obtain the transformation

w = et Le_qw. (140)

) =

\/§ q]%Q

Using the transformation ([40) the first integral (I38) can be brought to the form

(44)
I =uw?+ 227]{;41,0(“2). (141)
(¢+2)
Separating the dependent and independent variables and integrating the resultant equation
we get
d
P / N (142)
VI — k;4w(Q+2)
> ()
where k; = 2(q oy k4 and zp is an arbitrary constant.
Case (iv): ks = o0 ky = Bke A = W%k kyand 7 arbitrary:
The equation of motion in this case turns out to be
. - AL r—1)-
-+ (g D+ (g + ki + (g + D ke
thkoat + k2)z =0, r#0 (gl

where ky = (¢4 1)k1, ks = (¢4 2)ks. Rewriting the associated first integral I, given in Case
(tv) in Table I11, in the form (B), we get

(((r—DE N R T i
( T2 1($6k2t)2(q+1)+£($6k2t) <£($€k2t)€qk2t+k1($€k2t)q+1)€qk2t)7

A, e ot k1P —=1) ”
X <E(:cek2t)eqk2t + 71(rr )(xe'”t)qﬂ) , r#0,2
I = (143)
d kgt ql;zt 7.
re e k A d ; ;
dt( ) _ _ 10g<_1(xek2t>q+1 + _(xel'fgt)eql'fzt)7 r=29
71( wekat)atl 4 4 (pekat)eahat 2 dt
~ 2 ~
\ %(%(Iekgt)) 62qk2t + 2(5‘11) (l.eth)2(q+1)’ r=20.
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Identifying the dependent and independent variables from (IZ3) and the relations (&), we
obtain the transformation

1 N

Te_qkzt. (]_44)
qk2

Subsituting the transformation ([Z4l) into ([IH), one obtains

-1

r2

w=uzxe? z=-

Bttt =0, r#£0, = dﬁ. (145)
z

w” + (q+ Dkywiw’ + (g +1)

In terms of the new variables ([44]) change the time dependent first integral into time

independent ones of the form

( -r
(w’ + @klw‘”l) [w’(w’ + kywetty + CH 226D | e L) 2,

I'=9q —% — —log(w' + Bwth), r=2, (146)

k
w’+71xq+1

w'? k3 2(g+1)
\ 2 T oW

Y

Once again one can deduce the Hamiltonians in the form

( r—2

—I1
<(7‘—1)p) .
{ — it |, £0,1,2,

(r=2)

17 ,.q+1 2(g+1) —

eP + kywtt, r=1,
2 k

with

( ) (1-r)

=y (w’ + —“;”klwq“) , T #0,1
p= log(w’), r=1 (148)

w', r=0,

\

and thereby ensuring liouville integrability of Eq. (Id).
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C. Summary of results in ¢ = arbitrary case:

To conclude the integrability of Eq. (@), we have established the fact that the following

equations, are integrable

1 kro? + (q + 2)k2)3 + kykox ™ + (¢ + 1)k3z = 0,

(1) @+

(2) i+ ((q+2)k12? + ko)& + KE2* T 4 kykox®™ + Nz = 0,
(3) &4 (q+ d)kod + kg2 + 2(q + 2)kjz = 0,

O U (g + hza

+(q + 2)kikor? + k3)x =0, 7 #£ 0

BB BEE

(5) i+ ((q+ Dkx? + (q + 2)ko)@ + (q + 1) (k32® + kykox? 4+ k3)z = 0,

where 12k = (r — 1)k? and ky, ko, k4, A1 and 7 are arbitrary parameters (for simplicity we
have removed hats in k;’s, i = 1,2, in Eqs. ([A)-([IH)) . The significance and newness of the
equations ([[2)-(I6) are already pointed out in Sec. [Bl

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the integrability properties of Eq. (@) and shown that
it admits a large class of integrable nonlinear systems. In fact, many classical integrable non-
linear oscillators can be derived as sub-cases of our results. One of the important outcomes
of our investigation is that the entire class of Eq. () can be derived from a conservative
Hamiltonian (vide Eq. ([Z3))) eventhough the system deceptively looks like a dissipative
equation.

From our detailed analysis we have shown that Eq. () admits both conservative Hamil-
tonian systems and dissipative systems, depending on the choice of parameters. As far as
the former is concerned we have deduced the explicit forms of the Hamiltonians for the
respective equations. In fact, for the case, ¢ = 1, we have constructed suitable canonical
transformations and transformed the equations into conservative nonlinear oscillator equa-
tions. However, the canonical transformations for the conservative Hamiltonian systems for
the cases ¢ = 2, ..., arbitrary, if at all they exist, still remain to be obtained. Exploring the
classical dynamics underlying these conservative Hamiltonian systems is also of consider-

oble interest for further study. As far as dissipative systems are concerned we have not only
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shown that Eq. (@) contains the well known force-free Helmholtz, Duffing and Duffing-van
der Pol oscillators but also have several integrable generalizations which is another important
outcome of our investigations. The study of chaotic dynamics of these nonlinear oscillators
under further perturbations is one of the current topics?? in the contemporary literature
in nonlinear dynamics. In principle one can extend such analysis to the above generalized
equations as well.

In this paper, we have also not touched the question of linearizability of the integrable
cases of Eq. ([@). In our earlier work, we have shown that the Eq. (BH) is linearizable to the

free particle equation, CC%; = 0. Of course one can show that this is the only linearizable

91118 However, linearizablity of

equation in (@) through invertible point transformation
other integrable cases through more general transformations still remains to be explored.

In addition to the above, we have also carried out the Painlevé singularity structure
analysis of Eq. (@) and compared the results obtained through both the methods. The
details of this will be published elsewhere.

As we mentioned at the end of Sec. [l the crux of the PS procedure lies in finding the
explicit solutions satisfying all the three determining Eqs. (22)-(24)). In this paper we have
considered only certain specific ansatz forms to determine the null forms S, and integrating
factors R. As a consequence only a specific class of integrable equations have been derived.
It is not clear, whether these ansatz forms used in this paper exhaust all possible integrable
cases of Eq. ([@). One needs to consider more generalized ansatz forms, and if possible to

solve Eqgs. (22)-(24)) for the most general forms of R and S, and try to identify all possible
integrable cases underlying Eq. (). This is being explored further.
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