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Abstract

In this paper, we consider a generalized second order nonlinear ordinary differential equation of

the form ẍ + (k1x
q + k2)ẋ + k3x

2q+1 + k4x
q+1 + λ1x = 0, where ki’s, i = 1, 2, 3, 4, λ1 and q are

arbitrary parameters, which includes several physically important nonlinear oscillators such as the

simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscillator, force-free Duffing

and Duffing-van der Pol oscillators, modified Emden type equation and its hierarchy, generalized

Duffing-van der Pol oscillator equation hierarchy and so on and investigate the integrability prop-

erties of this rather general equation. We identify several new integrable cases for arbitrary value

of the exponent q, q ∈ R. The q = 1 and q = 2 cases are analyzed in detail and the results are

generalized to arbitrary q. Our results show that many classical integrable nonlinear oscillators can

be derived as sub-cases of our results and significantly enlarge the list of integrable equations that

exist in the contemporary literature. To explore the above underlying results we use the recently

introduced generalized extended Prelle-Singer procedure applicable to second order ODEs. As an

added advantage of the method we not only identify integrable regimes but also construct integrat-

ing factors, integrals of motion and general solutions for the integrable cases, wherever possible,

and bring out the mathematical structures associated with each of the integrable cases.
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I. INTRODUCTION

A. Overview of the problem

In a recent paper1 we have shown that the force-free Duffing-van der Pol (DVP) oscillator,

ẍ + (α + βx2)ẋ − γx + x3 = 0, (1)

is integrable for the parametric restriction α = 4
β

and γ = − 3
β2 . In Eq. (1) over dot

denotes differentiation with respect to t and α, β and γ are arbitrary parameters. Under

the transformation

w = −xe
1
β

t
, z = e

− 2
β

t
, (2)

Eq. (1) with restriction α = 4
β

and γ = − 3
β2 was shown to be transformable to the form

w′′ − β2

2
w2w′ = 0, (3)

which can then be integrated1.

In a parallel direction, while performing the invariance analysis of a similar kind of prob-

lem, we find that not only the Eq. (1) but also its generalized version,

ẍ + (
4

β
+ βx2)ẋ +

3

β2
x + x3 + δx5 = 0, δ = arbitrary parameter, (4)

is invariant under the same set of Lie point symmetries2. As a consequence one can use the

same transformation (2) to integrate the Eq. (4). The transformation (2) modifies Eq. (4)

to the form

w′′ − β2

2
w2w′ + δw5 = 0 (5)

which is not so simple to integrate straightforwardly. However, we observe that this equa-

tion coincides with the second equation in the so called modified Emden equation (MEE)

hierarchy, investigated by Feix et al.3,

ẍ + xlẋ + gx2l+1 = 0, l = 1, 2, . . . , n, (6)

where g is an arbitrary parameter.

In fact Feix et al.3 have shown that through a direct transformation to a third order

equation the above Eq. (6) can be integrated to obtain the general solution for the specific
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choice of the parameter g, namely, for g = 1
(l+2)2

. For this choice of g, the general solution

of (6) can be written as

x(t) =

(

(2 + 3l + l2)(t + I1)
l

l(t + I1)l+1 + (2 + 3l + l2)I2

)
1
l

, I1, I2 : arbitrary constants. (7)

Consequently Eq. (4) can be integrated under the specific parametric choice δ = 1
16

, and

it belongs to the l = 2 case of the MEE hierarchy (6) with g = 1
16

. Now the question arises

as to whether there exist other new integrable second order nonlinear differential equations

which are linear in ẋ and containing fifth and other powers of nonlinearity. As far as our

knowledge goes only few equations in this class have been shown to be integrable. For

example, Smith4 had investigated a class of nonlinear equations coming under the category

ẍ + f(x)ẋ + g(x) = 0, (8)

with f(x) = (n + 2)bxn − 2a and g(x) = x(c + (bxn − a)2) where a, b, c and n are arbitrary

parameters. He had shown that the Eq. (8) with this specific forms of f and g admits explicit

oscillatory solutions. However, one can also expect that there should be a number of inte-

grable equations which also admit solutions which are both oscillatory and non-oscillatory

types in the class

ẍ + (k1x
q + k2)ẋ + k3x

2q+1 + k4x
q+1 + λ1x = 0, q ∈ R, (9)

where ki’s, i = 1, 2, 3, 4 and λ1 are arbitrary parameters. When q = 1, Eq. (9) becomes the

generalized MEE

ẍ + (k1x + k2)ẋ + k3x
3 + k4x

2 + λ1x = 0, (10)

and for q = 2 it becomes

ẍ + (k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x = 0. (11)

We note that Eq. (4) is a special case of (11).

Needless to say Eq. (9) is a unified model for several ground breaking physical systems

which includes simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscil-

lator, force-free Duffing oscillator, MEE hierarchy, generalized DVP hierarchy and so on.

As noted earlier there exists no rigorous mathematical analysis in the literature for the

second order nonlinear differential equations which contain fifth or higher degree nonlinearity
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in x and linear in ẋ and the results are very scarce on integrability or exact solutions. Our

motivation to analyze this problem is not only to explore new integrable cases/systems of

Eq. (9) but also to synthesize all earlier results under one approach.

Having described the problem and motivation now we can start analyzing the integra-

bility properties of Eq. (9). To identify the integrable regimes we employ the recently in-

troduced extended Prelle-Singer procedure applicable to second order ODEs5−11. Through

this method we not only identify integrable regimes but also construct integrating factors,

integrals of motion and general solution for the integrable cases, wherever possible.

B. Results

We unearth several new integrable equations for any real value of the exponent q in

Eq. (9). In the following we summarize the results for the case q = arbitrary only and

discuss in detail the q = 1, q = 2 and q = arbitrary cases separately in the following

sections.

For the choice q = arbitrary we find that the following equations are completely inte-

grable (after suitable reparametrizations), all of which appear to be new to the literature:

ẍ + (k1x
q + (q + 2)k2)ẋ + k1k2x

q+1 + (q + 1)k2
2x = 0 (12)

ẍ + ((q + 2)k1x
q + k2)ẋ + k2

1x
2q+1 + k1k2x

q+1 + λ1x = 0 (13)

ẍ + (q + 4)k2ẋ + k4x
q+1 + 2(q + 2)k2

2x = 0 (14)

ẍ + ((q + 1)k1x
q + k2)ẋ +

(r − 1)

r2
[(q + 1)k2

1x
2q+1

+(q + 2)k1k2x
q+1 + k2

2x] = 0, r 6= 0 (15)

ẍ + ((q + 1)k1x
q + (q + 2)k2)ẋ + (q + 1)[

(r − 1)

r2
k2

1x
2q+1

+k1k2x
q+1 + k2

2x] = 0, r 6= 0, (16)

where k1, k2, k4, λ1 and r are arbitrary parameters. We stress that the above results are

true for any arbitrary values of q. We discuss the special cases, namely, q = 1 and q = 2

separately in detail in sections 3 and 4 in order to put the results of q arbitrary case in

proper perspective.

We show that the Eq. (12) is nothing but a generalization of the Duffing-van der Pol

oscillator Eq. (1). In a recent work1,9 three of the present authors have established the
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integrability of Eq. (12) with q = 2. However, in this work we show that the generalized

Eq. (12) itself is integrable. Eq. (13) is nothing but the generalized MEE among which the

hierarchy of Eq. (6), studied by Feix et al.3, can be identified as a sub-case. In fact the

general solution constructed by Feix et al., Eq. (7), can be derived straightforwardly as a

sub-case. Eq. (13) also contains the family of equations studied by Smith4. In particular

the latter author have derived general solution for the case k2
2 < 4λ1, which turns out to be

an oscillatory one. However, in this work, we show that even for arbitrary values of k2 and

λ1 one can construct the general solution. Interestingly, the system (14) generalizes several

physically important nonlinear oscillators. For example, in the case q = 1 and 2, Eq. (14)

provides us the force-free Helmholtz and Duffing oscillators, respectively, whose nonlinear

dynamics is well documented in the literature12−16. Here, we present certain integrable

generalizations of these nonlinear oscillators. Eq. (15) admits a conservative Hamiltonian

for all values of the parameters r, k1 and k2 and any integer value of q. We also provide

the explicit form of the Hamiltonian for all values of q. As a result we conclude that it is a

Liouville integrable system. As far as Eq. (16) is concerned we construct a time dependent

integral of motion and transform the latter to time independent Hamiltonian one and thereby

ensuring its Liouville integrability.

The plan of the paper is us follows. In the following section we briefly describe the ex-

tended Prelle-Singer procedure applicable to second order ODEs. In Sec. III, we consider

the case q = 1 in (9) and identify the integrable parametric choices of this equation through

the extended PS procedure. To do so first we identify the integrable cases where the system

admits time independent integrals and construct explicit conservative Hamiltonians for the

respective parametric choices. We then identify the cases which admit explicit time depen-

dent integrals of motion. To establish the complete integrability of these cases we use our

own procedure and transform the time dependent integrals of motion into time independent

integrals of motion and integrate the latter and derive the general solution. In Sec. IV,

we repeat the procedure for the case q = 2 in Eq. (9) and identify the integrable systems.

In Sec. V, we consider the case q = arbitrary in (9) and unearth several new integrable

equations and their associated mathematical structures. Finally, we present our conclusions

in Sec. VI.
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II. GENERALIZED EXTENDED PRELLE-SINGER (PS) PROCEDURE

In this section we briefly recall the generalized extended or modified PS procedure before

applying it to the specific problem in hand. Sometime ago, Prelle and Singer5 have pro-

posed a procedure for solving first order ODEs that admit solutions in terms of elementary

functions if such solutions exist. The attractiveness of the PS method is that if the given

system of first order ODEs has a solution in terms of elementary functions then the method

guarantees that this solution will be found. Very recently Duarte et al.7,8 have modified the

technique developed by Prelle and Singer5,6 and applied it to second order ODEs. Their

approach was based on the conjecture that if an elementary solution exists for the given

second order ODE then there exists at least one elementary first integral I(t, x, ẋ) whose

derivatives are all rational functions of t, x and ẋ. For a class of systems these authors have

deduced first integrals and in some cases for the first time through their procedure7. Re-

cently the present authors have generalized the theory of Duarte et al.7 in different directions

and shown that for the second order ODEs one can isolate even two independent integrals

of motion9−11 and obtain general solutions explicitly without any integration. This theory

has also been illustrated for a class of problems1,9−11. The authors have also generalized

the theory successfully to higher order ODEs10,17. For example, in the case of third order

ODEs the theory has been appropriately generalized to yield three independent integrals of

motion unambiguously so that the general solution follows immediately from these integrals

of motion17.

We stress that the PS procedure has many advantages over other methods. To name

a few, we cite: (1) For a given problem if the solution exists it has been conjectured that

the PS method guarantees to provide first integrals. (2) The PS method not only gives the

first integrals but also the underlying integrating factors, that is, multiplying the equation

with these functions we can rewrite the equation as a perfect differentiable function which

upon integration gives the first integrals directly. (3) The PS method can be used to solve

nonlinear as well as linear second order ODEs. (4) As the PS method is based on the

equations of motion rather than on Lagrangian or Hamiltonian description, the analysis is

applicable to deal with both Hamiltonian and non-Hamiltonian systems.
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A. PS method

Let us rewrite Eq. (9) in the form

ẍ = −((k1x
q + k2)ẋ + k3x

2q+1 + k4x
q+1 + λ1x) ≡ φ(x, ẋ). (17)

Further, we assume that the ODE (17) admits a first integral I(t, x, ẋ) = C, with C constant

on the solutions, so that the total differential becomes

dI = Itdt + Ixdx + Iẋdẋ = 0, (18)

where each subscript denotes partial differentiation with respect to that variable. Rewriting

Eq. (17) in the form φdt− dẋ = 0 and adding a null term S(t, x, ẋ)ẋ dt−S(t, x, ẋ)dx to the

latter, we obtain that on the solutions the 1-form
(

φ + Sẋ

)

dt − Sdx − dẋ = 0. (19)

Hence, on the solutions, the 1-forms (18) and (19) must be proportional. Multiplying (19)

by the factor R(t, x, ẋ) which acts as the integrating factors for (19), we have on the solutions

that

dI = R(φ + Sẋ)dt − RSdx − Rdẋ = 0. (20)

Comparing Eq. (18) with (20) we have, on the solutions, the relations

It = R(φ + ẋS), Ix = −RS, Iẋ = −R. (21)

Then the compatibility conditions, Itx = Ixt, Itẋ = Iẋt, Ixẋ = Iẋx, between the Eqs. (21),

provide us

St + ẋSx + φSẋ = −φx + φẋS + S2, (22)

Rt + ẋRx + φRẋ = −(φẋ + S)R, (23)

Rx − SRẋ − RSẋ = 0. (24)

Solving Eqs. (22)-(24) one can obtain expressions for S and R. It may be noted that any

set of special solutions (S, R) is sufficient for our purpose. Once these forms are determined

the integral of motion I(t, x, ẋ) can be deduced from the relation

I = r1 − r2 −
∫
[

R +
d

dẋ
(r1 − r2)

]

dẋ, (25)
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where

r1 =

∫

R(φ + ẋS)dt, r2 =

∫

(RS +
d

dx
r1)dx.

Equation (25) can be derived straightforwardly by integrating the Eq. (21).

The crux of the problem lies in finding the explicit solutions satisfying all the three

determining Eqs. (22)-(24), since once a particular solution is known the integral of motion

can be readily constructed. The difficulties in constructing admissible set of solutions (S, R)

satisfying all the three Eqs. (22)-(24) and possible ways of obtaining the solutions have been

discussed in detail in Ref. 9.

III. APPLICATION OF PS PROCEDURE TO EQ. (10)

Let us first consider the case q = 1 in Eq. (9) or equivalently (10)

ẍ + (k1x + k2)ẋ + k3x
3 + k4x

2 + λ1x = 0. (10)

Eq. (10) itself includes several physically important models. For example, choosing ki =

0, i = 1, ...4, we get the simple harmonic oscillator equation and the choice k1, k2 = 0 gives

us the anharmonic oscillator equation. When k1, k4 = 0 Eq. (10) becomes the force-free

Duffing oscillator equation12. The choice k2, k4, λ1 = 0 provides us the MEE18. In the limit

k3 =
k2
1

9
, k4 = k1k2

3
, Eq. (10) becomes MEE with linear term which is another linearizable

equation which we have studied extensively in Refs. 9 and 19. The restriction k1, k3 = 0

leads us to the force-free Helmhotz oscillator12,13. In the following we investigate whether

the system (10) admits any other integrable case besides the above.

We solve Eq. (10) through the extended PS procedure in the following way. For a given

second order equation, (10), the first integral I should be either a time independent or time

dependent one. In the former case, it is a conservative system and we have It = 0 and in

the later case we have It 6= 0. So let us first consider the case It = 0 and determine the null

forms and the corresponding integrating factors and from these we construct the integrals

of motion and then we do extend the analysis for the case It 6= 0.
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A. The case It = 0

1. Null forms

In this case one can easily fix the null form S from the first equation in (21) as

S =
−φ

ẋ
= −((k1x + k2)ẋ + k3x

3 + k4x
2 + λ1x)

ẋ
. (26)

2. Integrating Factors

Substituting this form of S, given in (26), into (23) we get

Rt + ẋRx − ((k1x + k2)ẋ + k3x
3 + k4x

2 + λ1x)Rẋ

=

(

(k1x + k2) + ((k1x+k2)ẋ+k3x3+k4x2+λ1x)
ẋ

)

R. (27)

Equation (27) is a first order linear partial differential equation with variable coefficients.

As we noted earlier any particular solution is sufficient to construct an integral of motion

(along with the function S). To seek a particular solution for R one can make a suitable

ansatz instead of looking for the general solution. We assume R to be of the form,

R =
ẋ

(A(x) + B(x)ẋ)r
, (28)

where A and B are functions of their arguments, and r is a constant which are all to be

determined. We demand the above form of ansatz, (28), due to the following reason. To

deduce the first integral I we assume a rational form for I, that is, I = f(x,ẋ)
g(x,ẋ)

, where f and g

are arbitrary functions of x and ẋ and are independent of t. Since we already assumed that

I is independent of t, we have, Ix = fxg−fgx

g2 and Iẋ = fẋg−fgẋ

g2 . From (21) one can see that

R = Iẋ = fẋg−fgẋ

g2 , S = Ix

Iẋ
= fxg−fgx

fẋg−fgẋ
and RS = Ix, so that the denominator of the function S

should be the numerator of the function R. Since the denominater of S is ẋ (vide Eq. (26))

we fixed the numerator of R as ẋ. To seek a suitable function in the denominator initially

one can consider an arbitrary form R = ẋ
h(x,ẋ)

. However, it is difficult to proceed with this

choice of h. So let us assume that h(x, ẋ) is a function which is polynomial in ẋ. To begin

with let us consider the case where h is linear in ẋ, that is, h = A(x) + B(x)ẋ. Since R

is in rational form while taking differentiation or integration the form of the denominator

remains same but the power of the denominator decreases or increases by a unit order from
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that of the initial one. So instead of considering h to be of the form h = A(x) + B(x)ẋ,

one may consider a more general form h = (A(x) + B(x)ẋ)r, where r is a constant to be

determined. Such a generalized form of h and so R leads to several new integrable cases as

we see below.

Substituting (28) into (27) and solving the resultant equations, we arrive at the relation

r(ẋ(Ax + Bxẋ) + φB) = (A + Bẋ)φẋ. (29)

Solving Eq. (29) with φ = −((k1x+k2)ẋ+k3x
3+k4x

2+λ1x), we find nontrivial forms for the

functions A and B for two choices, namely, (i) k1, k2 arbitrary and (ii) k1 = arbitrary, k2 = 0

with restrictions on other parameters as given below. The respective forms of the functions

and the restriction on the parameters are

(i) k1, k2 : arbitrary

A(x) =
(r − 1)b0

r
(
k1

2
x2 + k2x), B(x) = b0 = constant, r = constant,

k3 =
b0(r − 1)

2r2
k2

1, k4 =
3b0(r − 1)

2r2
k1k2, λ1 =

b0(r − 1)k2
2

r2
, (30a)

(ii) k1 = arbitrary, k2 = 0

A(x) =
(r − 1)b0

2r
k1x

2 +
rλ1

k1
, B(x) = b0,

k3 =
b0(r − 1)

2r2
k2

1, k4 = 0, λ1 = arbitrary parameter (here). (30b)

We note that the case (ii) cannot be derived from case (i) by taking k2 = 0. For example,

choosing k2 = 0 in (30a) we get not only k4 = 0 but also λ1 = 0 whereas in the case (ii) we

have the freedom λ1 = arbitrary, so the cases (30a) and (30b) are to be treated as separate.

Making use of the forms of A and B from Eqs. (30a) and (30b) into (28), the integrating

factor, ‘R’, for the two cases can be obtained as

(i) k1, k2 : arbitrary

R =
ẋ

[

(r−1)
r

(k1

2
x2 + k2x) + ẋ

]r , r 6= 0 (31a)

(ii) k1 = arbitrary, k2 = 0

R =
ẋ

[

(r−1)
2r

k1x2 + rλ1

k1
+ ẋ

]r , r 6= 0. (31b)
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We note that b0 is a common parameter in the above and it is absorbed in the definition of

‘R’, see Eqs. (23) and (24). While deriving the above forms of R (Eqs. (31a) and (31b)) we

assumed that r 6= 0 and for the choice r = 0 we obtain consistent solution only if both the

parameters k1 and k2 become zero. Of course, this sub-case can be treated as a trivial one

since when k1, k2 = 0 the damping term in Eq. (10) vanishes and the system becomes an

integrable anharmonic oscillator. In this trivial case we have the integrating factor of the

form:

(iii) k1, k2 = 0

R = ẋ, r = 0. (31c)

Finally one has to check the compatibility of forms S and R with the third Eq. (24). We

indeed verified that the sets

(i) S = −
((k1x + k2)ẋ + (r−1)

r2 (
k3
1

2
x2 + 3k1k2

2
x2 + k2

2x))

ẋ
,

R =
ẋ

( (r−1)
r

(k1

2
x2 + k2x) + ẋ)r

, k1, k2 = arbitrary, r 6= 0 (32a)

(ii) S = −
(k1xẋ + (r−1)

2r2 k2
1x

3 + λ1x)

ẋ
,

R =
ẋ

( (r−1)
2r

k1x2 + rλ1

k1
+ ẋ)r

, k1 = arbitrary, k2 = 0, r 6= 0 (32b)

and

(iii) S = −(k3x
3 + k4x

2 + λ1x)

ẋ
, R = ẋ, k1, k2 = 0, (32c)

satisfy the Eq. (24) individually. As a consequence all the three pairs form compatible sets

of solution for the Eqs. (22)-(24).

3. Integrals of motion

Having determined the explicit forms of S and R one can proceed to construct integrals

of motion using the expressions (25). The parametric restrictions (30a) and (30b) fix the
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equation of motion (10) to the following specific forms,

(i) ẍ + (k1x + k2)ẋ +
(r − 1)

2r2

(

k2
1x

3 + 3k1k2x
2 + 2k2

2x

)

= 0, r 6= 0, (33a)

(ii) ẍ + k1xẋ +
(r − 1)k2

1

2r2
x3 + λ1x = 0, r 6= 0, (33b)

(iii) ẍ + k3x
3 + k4x

2 + λ1x = 0, r = 0. (33c)

In the above k1, k2, k3, k4, λ1 and r are arbitrary parameters.

We note that the transformation x = y − k2

k1
transforms equation (33a) to the form

ÿ + k1yẏ +
(r − 1)k2

1

2r2
y3 − (r − 1)k2

2

2r2
y = 0, r 6= 0. (34)

Eq. (34) is obtained from Eq. (33b) by fixing λ1 = − (r−1)k2
2

2r2 . So, hereafter, we consider

Eq. (33a) as a special case of Eq. (33b) and so discuss only Eq. (33b) as the general one.

It may be noted that Eq. (33b) includes several known integrable cases. For example, the

choice r = 3 and λ1 = 0 in Eq. (33b) yields the MEE18. On the other hand the choice

r = −1 leads us to the equation ẍ + k1xẋ− k2
1x

3 + λ1x = 0 which can be solved in terms of

Weierstrass elliptic function20. The other choices of r lead to new integrable cases as we see

below.

Substituting the forms of S and R (vide Eqs. (32b) and (32c)) into the general form of

the integral of motion (25) and evaluating the resultant integrals, we obtain the following

time independent first integrals for the cases (33b) and (33c):

(iia) I1 =

(

ẋ +
(r − 1)

2r
k1x

2 +
rλ1

k1

)−r

(35a)

×
[

ẋ(ẋ +
k1

2
x2 +

r2λ1

(r − 1)k1

) +
(r − 1)

r2
(
k1

2
x2 +

r2λ1

(r − 1)k1

)2

]

, r 6= 0, 1, 2,

(iib) I1 =
4k1ẋ

k2
1x

2 + 4k1ẋ + 8λ1
− log(k2

1x
2 + 4k1ẋ + 8λ1), r = 2, (35b)

(iic) I1 = ẋ +
k1

2
x2 − λ1

k1

log(k1ẋ + λ1), r = 1, (35c)

(iii) I1 =
ẋ2

2
+

k3

4
x4 +

k4

3
x3 +

λ1

2
x2, r = 0. (35d)

Note that in Eq. (35a), r can take any real value, except 0, 1, 2. In the above integrals I1

given by Eqs. (35a) - (35c) correspond to the ODE (33b), while (35d) corresponds to the

Eq. (33c).
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Due to the fact that the integrals of motion (35) are time independent, one can look for

a Hamiltonian description for the respective equations of motion. In fact, we obtain the

explicit Hamiltonian forms for all the above cases.

4. Hamiltonian Description of (35)

Assuming the existence of a Hamiltonian

I(x, ẋ) = H(x, p) = pẋ − L(x, ẋ), (36)

where L(x, ẋ) is the Lagrangian and p is the canonically conjugate momentum, we have

∂I

∂ẋ
=

∂H

∂ẋ
=

∂p

∂ẋ
ẋ + p − ∂L

∂ẋ
=

∂p

∂ẋ
ẋ,

∂I

∂x
=

∂H

∂x
=

∂p

∂x
ẋ − ∂L

∂x
. (37)

From (37) we identify

p =

∫

Iẋ

ẋ
dẋ,

L =

∫

(pxẋ − Ix)dx +

∫

[p − d

dẋ

∫

(pxẋ − Ix)dx]dẋ. (38)

Plugging the expressions (36) into (38) one can evaluate the canonically conjugate mo-

mentum and the associated Lagrangian as well as the Hamiltonian. They read as follows:

(a) The canonical momenta :

(iia, b) p =
1

r − 1

(

ẋ +
(r − 1)

r

k1

2
x2 +

rλ1

k1

)1−r

, r 6= 0, 1 (39a)

(iic) p = log(k1ẋ + λ1), r = 1 (39b)

(iii) p = ẋ, r = 0. (39c)

(Note in the above r = 2 is included in Eq. (39b) itself).

(b) The Lagrangian :

(iia) L =
1

(2 − r)(r − 1)

(

ẋ +
(r − 1)

r

k1x
2

2
+

rλ1

k1

)2−r

, r 6= 0, 1, 2 (40a)

(iib) L = log(4k1ẋ + 8λ1 + k2
1x

2), r = 2 (40b)

(iic) L =
λ1

k1
log(k1ẋ + λ1) + ẋ(log(k1ẋ + λ1) − 1) − 1

2
k1x

2, r = 1 (40c)

(iii) L =
ẋ2

2
− k3

4
x4 − k4

3
x3 − λ1

2
x2, r = 0. (40d)

13



(c) The Hamiltonian :

(iia) H =

[

(

(r − 1)p

)
r−2
r−1

(r − 2)
− p(

(r − 1)

2r
k1x

2 +
rλ1

k1
)

]

, r 6= 0, 1, 2 (41a)

(iib) H =
2λ1

k1

p +
k1

4
x2p + log(

4k1

p
), r = 2 (41b)

(iic) H =
1

k1

(ep − λ1p +
k2

1

2
x2 − λ1), r = 1 (41c)

(iii) H =
p2

2
+

k3

4
x4 +

k4

3
x3 +

λ1

2
x2, r = 0. (41d)

One can check that the Hamilton’s equations of motion are indeed equivalent to the appro-

priate equation (10).

Since Eqs. (33b) and (33c) admit time independent Hamiltonians they can be classified as

Liouville integrable systems. The important fact we want to stress here is that for arbitrary

values of r, including fractional values, the equation (33b) is integrable.

5. Canonical transformation for the Hamiltonian Eqs. (41)

Interestingly, we also identifed suitable canonical transformation to standard particle in

a potential description for the Hamiltonians (41). Now introducing the canonical transfor-

mations

x = 2rP
k1U

, p = −k1U2

4r
, r 6= 0, 1, (42)

x = P
k1

, p = −k1U, r = 1 (43)

the Hamiltonian H in Eq. (41) can be recast in the standard form (after rescaling)

H =







































































1
2
P 2 + (1−r)

(r−2)

(

(r−1)k1U2

4r

)

(r−2)
r−1

+ (r−1)λ1

4
U2, r 6= 0, 1, 2

1
2
P 2 + λ1

4
U2 + log( 32

U2 ), r = 2

1
2
P 2 + e−k1U + λ1k1U, r = 1

1
2
P 2 + k3

4
U4 + λ1

2
U2, r = 0.

(44)
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It is straightforward to check that when U and P are canonical so do x and p (and vice

versa) and the corresponding equations of motion turn out to be

Ü − 2

(

(r − 1)k1

4r

)

(2−r)
(1−r)

U
(3−r)
(1−r) +

(r − 1)λ1

2
U = 0, r 6= 0, 1 (45a)

Ü − k1e
−U + k1λ1 = 0, r = 1 (45b)

Ü + k3U
3 + λ1U = 0, r = 0. (45c)

One may note that the equations of motion now become standard type anharmonic oscillator

equations.

B. The case It 6= 0

In the previous sub-section we considered the case It = 0. As a consequence S turns out

to be −φ

ẋ
. However in the case It = 0, the function S has to be determined from Eq. (22),

that is,

St + ẋSx − ((k1x + k2)ẋ + k3x
3 + k4x

2 + λ1x)Sẋ

= (k1ẋ + 3k3x
2 + 2k4x + λ1) − (k1x + k2)S + S2. (46)

Since it is too difficult to solve Eq. (46) for its general solution, we seek a particular solution

for S, which is sufficient for our purpose. In particular, we seek a simple rational expression

for S in the form

S =
a(t, x) + b(t, x)ẋ

c(t, x) + d(t, x)ẋ
, (47)

where a, b, c and d are arbitrary functions of t and x which are to be determined. Of

course, the analysis of this form alone does not exhaust all possible cases of interest. We

hope to make a more exhaustive study of Eq. (46) separately. Substituting (47) into (46)
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and equating the coefficients of different powers of ẋ to zero, we get

dbx − bdx − k1d
2 = 0,

dbt − bdt + cbx − bcx + axd − adx − 2k1cd − (3k3x
2 + 2k4x + λ1)d

2

+(k1x + k2)bd − b2 = 0,

cbt − bct + dat − adt + cax − acx − k1c
2 − 2(3k3x

2 + 2k4x + λ1)cd

+2(k1x + k2)ad − 2ab = 0,

cat − act − (k3x
3 + k4x

2 + λ1x)(bc − ad) − (3k3x
2 + 2k4x + λ1)c

2

+(k1x + k2)ac − a2 = 0. (48)

The determining equation for the functions a, b, c and d have now turned out to be nonlinear.

To solve these equations we further assume that the functions a, b, c and d are polynomials in

x with coefficients which are arbitrary functions in t. Substituting these forms into Eqs. (48)

we obtain another enlarged set of determining equations for the unknowns and solving the

latter consistently we obtain nontrivial solutions for the functions a, b, c and d for four sets

of parametric choices. We present the explicit forms of the associated null function S given

by (47) and the parametric restrictions in Table I.

Now substituting the forms of S into Eq. (23) and solving the resultant equation we

obtain the corresponding forms of R. To solve the determining equation for R we again seek

the same form of ansatz (28) but with explicit t dependence on the coefficient functions, that

is, R = Sd

(A(t,x)+B(t,x)ẋ)r , where Sd is the denominator of S. We report the resultant forms of

R in Table I. Once S and R are determined then one has to verify the compatibility of this

set (S, R) with the extra constraint Eq. (24). We find that the forms S and R given in Table

I do satisfy the extra constraint equation and form a compatible solution. Now substituting

Si’s and Ri’s into Eq. (25) one can construct the associated integrals of motion. We report

the integrals of motion (I) in Table I along with the forms S and R.

At this stage, we note that the first integral for the case (i) with k2, λ1 = 0 has been

derived in Ref. 18 through Lie symmetry analysis. However, recently, we have derived9 the

first integral for arbitrary values of k2 and λ1. The case (ii) is new to the literature. The

first integral for the case (iii) was reported recently in Refs. 9,12 and 13. The first integral

for the case (iva) is new to the literature. The case r = 0 discussed as (ivb) is nothing but

the force-free Duffing oscillator whose integrability has been discussed in Refs. 12 and 14.
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TABLE I: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

ẍ + (k1x + k2)ẋ + k3x
3 + k4x

2 + λ1x = 0 (identified with the assumed ansatz form of S and R)

Cases Parametric restrictions Null form (S) Integrating factor (R) Integrals of motion (I)

(i) k3 =
k2
1
9 , k4 = k1k2

3 (a) I = e∓ωt

(

3ẋ−
3(−k2∓ω)

2
x+k1x2

3ẋ−
3(−k2±ω)

2
x+k1x2

)

,

(
k1
3

x2−ẋ)

x

xe∓ωt

(ẋ − (k2±ω)
2 x + k1

3 x2)2
k2, λ1 6= 0, ω = (k2

2 − 4λ1)
1
2

(k1, k2, λ1 : arbitrary) (b) I = −t + x

(
k2
2

x+
k1
3

x2+ẋ)
, k2

2 = 4λ1

(ii) k3 = 0, k4 = k1
4 (k2 ± ω),

1

2
(k2 ∓ ω) + k1x, e

(k2±ω)
2

t I =

(

ẋ + k2∓ω
2 x + k1

2 x2

)

e(
k2±ω

2
)t,

(k1, k2, λ1 : arbitrary) ω = (k2
2 − 4λ1)

1
2

(iii) k1, k3 = 0, λ1 =
6k2

2
25

(2k2ẋ
5 +

4k2
2x

25 + k4x
2)

(ẋ + 2k2
5 x)

(ẋ +
2k2

5
x)e

6
5
k2t I = e

6
5
k2t

(

ẋ2

2 + 2k2
5 xẋ +

2k2
2

25 x2 + k4
3 x3

)

(k2, k4 : arbitrary)

(iva) k3 =
(r−1)k2

1
2r2 , k4 = k1k2

3 , I =

(

k3
2 x4 + (ẋ + k2

3 x)(ẋ + k2
3 x + k1

2 x2)

)

λ1 =
2k2

2
9 , r 6= 0 k2

3 + k1x + 3k3x3

(3ẋ+k2x)

(k2x + 3ẋ)e(
2(2−r)k2

3
)t

(k2
3 x + rk3x2 + ẋ)r

×
(

ẋ + k2
3 x + rk3x

2

)−r

e
2(2−r)

3
k2t, r 6= 2

(k1, k2, r : arbitrary) I = 2
3k2t + log(4k2x + 3k1x

2 + 12ẋ)

− 4(k2x + 3ẋ)

(4k2x + 3k1x2 + 12ẋ)
, r = 2

(ivb) k1 = 0, k4 = 0,
(k2

3 ẋ +
k2
2
9 x + k3x

3)

(ẋ + k2x
3 )

e
4
3
k2t(ẋ +

k2x

3
) I = e

4
3
k2t

[

ẋ2

2 + k2
3 xẋ +

k2
2

18x2 + k3
4 x4

]

λ1 =
2k2

2
9 , r = 0

(k2, k3 : arbitrary)
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Since we obtained only one integral in each case, (except case (i) where we have found

second explicit time dependent integral, see Ref. 9), which are also time dependent ones,

we need to integrate them further to obtain the second integration constant and prove the

complete integrability of the respective systems, which is indeed a difficult task.

In this connection we have introduced a new method1,9 which can be effectively used to

transform the time dependent integral into a time independent one, for a class of problems,

so that the latter can be integrated easily. We invoke this procedure here in order to integrate

the time dependent first integrals and obtain the general solution for all the cases in Table

I (except case (iv), see below). For the case (iv), we prove the Liouville integrability of it.

C. Method of transforming time dependent first integral to time independent one

Let us assume that there exists a first integral for the equation (10) of the form,

I = F1(t, x, ẋ) + F2(t, x). (49)

Now let us split the function F1 further in terms of two functions such that F1 itself is a

function of the product of the two functions, say, a perfect differentiable function d
dt

G1(t, x)

and another function G2(t, x, ẋ), that is,

I = F1

(

1

G2(t, x, ẋ)

d

dt
G1(t, x)

)

+ F2 (G1(t, x)) , (50)

where F1 is a function which involves the variables t, x and ẋ whereas F2 should involve only

the variable t and x. We note that while rewriting Eq. (49) in the form (50), we demand

that the function F2(t, x) in (49) automatically to be a function of G1(t, x). Now identifying

the function G1 as the new dependent variable and the integral of G2 over time as the new

independent variable, that is,

w = G1(t, x), z =

∫ t

o

G2(t
′, x, ẋ)dt′, (51)

one indeed obtains an explicit transformation to remove the time dependent part in the first

integral. We note here that the integration on the right hand side of (51) leading to z can

be performed provided the function G2 is an exact derivative of t, that is, G2 = d
dt

z(t, x) =

ẋzx + zt, so that z turns out to be a function t and x alone. In terms of the new variables,

Eq. (50) can be modified to the form

I = F1

(

dw

dz

)

+ F2(w). (52)
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In other words,

F1

(

dw

dz

)

= I − F2(w). (53)

Now rewriting Eq. (52) one obtains a separable equation

dw

dz
= f(w), (54)

which can lead to the solution after an integration. Now rewriting the solution in terms of

the original variables one obtains a general solution for the given equation.

In the following using the above idea we integrate the first integrals given in Table I and

deduce the second integration constant and general solution.

D. Application

Case (ia): k3 =
k2
1

9
, k4 = k1k2

3
, k1, k2 and λ1 : arbitrary:

The parametric restrictions given above fix the equation of motion (10) in the form

ẍ + (k1x + k2)ẋ +
k2

1

9
x3 +

k1k2

3
x2 + λ1x = 0, (55)

Let us rewrite the first integral associated for this case (vide case (i) in Table I) in the form

I1 = − k1e
k2∓ω

2
tx2

(3ẋ − (−k2±ω)
2

3x + k1x2)

[

d

dt

(

(
−3

k1x
+

−k2 ± ω

2λ1

)e
−k2∓ω

2
t

)]

, (56)

where ω =
√

k2
2 − 4λ1. Comparing this with the equation (50), and using (51), we obtain

w = (
−3

k1x
+

−k2 ± ω

2λ1

)e
−k2∓α

2
t, z = (

−3

k1x
+

−k2 ∓ ω

2λ1

)e
−k2±ω

2
t. (57)

Substituting (57) into Eq. (55), the latter becomes the free particle equation, namely, d2w
dz2 =

0, whose general solution is w = I1z+I2, where I1 and I2 are integration constants. Rewriting

w and z in terms of x and t one gets

x(t) =

(

6λ1(1 − I1e
ωt)

k1ω(1 + I1eωt) − (k2 ± ω)I2e
k2±ω

2
t − k1k2(1 − I1eωt)

)

, (58)

where ω =
√

k2
2 − 4λ1.
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Interestingly one can consider several sub-cases. In the following we discuss some impor-

tant ones which are being widely discussed in the current literature. In particular, the dif-

ference in dynamics arises mainly depending on the sign of the parameter α (=
√

k2
2 − 4λ1).

We consider the cases (i) k2
2 < 4λ1 (ii) k2

2 > 4λ1 and (iii) k2
2 = 4λ1 separately. The

restriction k2
2 < 4λ1 reduces the solution (58) to the form4,

x(t) =
A cos(ω0t + δ)

(

e
k2
2

t + 2k1A

3(k2
2+4ω2

0)
(2ω0 sin(ω0t + δ) − k2 cos(ω0t + δ))

) , (59)

where ω0 =

√
4λ1−k2

2

2
and δ, A are arbitrary constants. A further restriction k2 = 0 gives us

the purely sinusoidally oscillating solution19

x(t) =
A sin (ω0t + δ)

1 − ( k
3ω0

)A cos (ω0t + δ)
, 0 ≤ A <

3ω0

k
, ω0 =

√

λ1, (60)

where A and δ are arbitrary constants. The associated equation of motion, namely ẍ +

k1xẋ +
k2
1

9
x3 + λ1x = 0, admits very interesting nonlinear dynamics, see for example in Ref.

19.

On the other hand, in the limit k2
2 > 4λ1 the solution looks like a dissipative/front-like

one19. A further restriction λ1 = 0 takes us to the solution of the form11

x(t) =

(

3k2(I1e
k2t − 1)

k1 + k2(3I2 + k1I1t)ek2t

)

. (61)

Case (ib): k3 =
k2
1

9
, k4 = k1k2

3
, k2

2 = 4λ1, k1 and k2 : arbitrary:

The third choice k2
2 = 4λ1 in (58) leads us to the solution

x(t) =

(

3(I1 + t)

3I2e
k2
2

t − 2k1

k2
2
(2 + I1k2 + k2t)

)

. (62)

Further parametric restriction k2, λ1 = 0 provides us the general solution of the form

x(t) =

(

6(I1 + t)

k1(I1 + t)2 + 6I2

)

. (63)

The underlying equation, that is, ẍ+k1xẋ +
k2
1

9
x3 = 0, is the l = 1 integrable case of Eq. (6)

with the solution (7) (see for example in Refs. 18 and 19).
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Case (ii): k3 = 0, k4 = k1

4
(k2 ±

√

k2
2 − 4λ1), k1, k2 and λ1 : arbitrary:

In this case we have the equation of the form

ẍ + (k1x + k2)ẋ +
k1

4
(k2 ±

√

k2
2 − 4λ1)x

2 + λ1x = 0. (64)

The associated first integral reads (vide case (ii) in Table 1)

I =

(

ẋ +
k2 ∓

√

k2
2 − 4λ1

2
x +

k1

2
x2

)

e
k2±

√
k2
2
−4λ1

2
t. (65)

Note that Eq. (65) can be rewritten as a Riccati equation of the form21

ẋ = Ie(
−k2∓

√
k2
2
−4λ1

2
)t −

(

k2 ∓
√

k2
2 − 4λ1

2

)

x − k1

2
x2. (66)

The general solution of the Riccati equation is known to be free from movable critical points

and satisfies the Painlevé property. In this sense Eq. (64) can be considered as integrable in

the Painlevé criteria sense. However, in the general case, (66), it is not clear whether it can

be explicitly integrated further. However, for the special case λ1 =
2k2

2

9
it can be integrated

as follows.

The restriction λ1 =
2k2

2

9
fixes the equation of motion (64) and the first integral (65) in

the forms

ẍ + (k1x + k2)ẋ +
k1k2

3
x2 +

2k2
2

9
x = 0, (67)

and

I =

(

ẋ +
k2

3
x +

k1

2
x2

)

e
2k2
3

t, (68)

respectively. Now rewriting (68) in the form (50), we get

I = e
k2
3

t

(

d

dt
(xe

k2
3

t)

)

+
k1

2
(xe

k2
3

t)2. (69)

Identifying the dependent and independent variables from (69) and using the identities (51),

we obtain the transformation

w = xe
k2
3

t, z = − 3

k2

e−
k2
3

t. (70)

Using the transformation (70) the first integral (68) can be rewritten in the form

Î = w′ +
k1

2
w2 (71)
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which in turn leads to the solution by an integration, that is,

w(z) =

√

2I

k1
tanh

[

√

k1I

2
(z − z0)

]

, (72)

where z0 is arbitrary constant. Rewriting (72) in terms of old variables we get

x(t) =

√

2I

k1
e−(

k2
3

)t tanh

[

3

k2
(

√

k1I

2
)(e−

k2
3

t0 − e−
k2
3

t)

]

, (73)

where t0 is the second integration constant.

Case (iii): k1, k3 = 0, λ1 =
6k2

2

25
, k2 and k4 : arbitrary:

The corresponding equation of motion is

ẍ + k2ẋ + k4x
2 +

6k2
2

25
x = 0. (74)

Rewriting the associated first integral I1, given in Case (iii) in Table I, in the form (49), we

get

I =
1

2

(

ẋ +
2k2

5
x

)2

e
6
5
k2t +

k4

3
x3e

6
5
k2t. (75)

Now splitting the first term in Eq. (75) further in the form (50), we obtain

I = e
2k2t

5

(

d

dt
(

1√
2
xe

2k2t

5 )

)2

+
k4

3
(xe

2
5
k2t)3. (76)

Identifying the dependent and independent variables from (76) and using the relations (51),

we obtain the transformation

w =
1√
2
xe

2k2t

5 , z = − 5

k2
e−

k2t

5 . (77)

Using this transformation, (77), the first integral (75) can be rewritten in the form

Î = w′2 +
k̂4

3
w3, (78)

where k̂4 = 2
√

2k4, which inturn leads to

w′2 = 4w3 − g3, (79)

where z = 2
√

3

k̂4
ẑ and g3 = −12I1

k̂4
. The solution of this differential equation can be

represented in terms of Weierstrass function12,13 ̺(ẑ; 0, g3).
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Case (iv): k3 = (r−1)
2r2 k2

1, k4 = k1k2

3
, λ1 =

2k2
2

9
, k1, k2 and r : arbitrary (but not zero):

The above parameters fix the equation of motion (10) in the form

ẍ + (k1x + k2)ẋ +
(r − 1)k2

1

2r2
x3 +

k1k2

3
x2 +

2k2
2

9
x = 0, r 6= 0. (80)

The associated first integral reads (vide case (iva) in Table I)

I =



















































(

(r−1)
4r2 k2

1x
4 + (ẋ + k2

3
x)(ẋ + k2

3
x + k1

2
x2)

))

×
(

ẋ + k2

3
x + (r−1)

2r
k1x

2

)−r

e
2(2−r)

3
k2t, r 6= 0, 2

2
3
k2t + log(4k2x + 3k1x

2 + 12ẋ) − 4(k2x+3ẋ)
(4k2x+3k1x2+12ẋ)

, r = 2.

(81)

Rewriting Eq. (81) in the form (50), we get

I =























































(

(r−1)k2
1

4r2 (xe
k2
3

t)4 + d
dt

(xe
k2
3

t)

(

d
dt

(xe
k2
3

t)e
k2
3

t + k1

2
(xe

k2
3

t)2

)

e
k2
3

t

)

×
(

d
dt

(xe
k2
3

t)e
k2
3

t + k1(r−1)
2r

(xe
k2
3

t)2

)−r

, r 6= 0, 2

4 d
dt

(xe
k2
3 t)e

k2
3 t

k1(xe
k2
3 t)2+4 d

dt
(xe

k2
3 t)e

k2
3 t

− log

(

k1(xe
k2
3

t)2 + 4 d
dt

(xe
k2
3

t)e
k2
3

t

)

, r = 2.

(82)

Identifying the dependent and independent variables from (82) and the relations (51), we

obtain the transformation

w = xe
k2
3

t, z = − 3

k2
e−

k2
3

t. (83)

In terms of the new variables, (83), the first integral I given above, (82), can be written as

I =























(

w′ + (r−1)
2r

k1w
2

)−r[

(r−1)
4r2 k2

1w
4 + w′(w′ + k1

2
w2)

]

, r 6= 0, 2

4w′

k1w2+4w′ − log(k1w
2 + 4w′), r = 2.

(84)

On the other hand the transformation (83) modifies the equation (80) to the form

w′′ + k1ww′ +
(r − 1)k2

1

2r2
w3 = 0, r 6= 0 and ′ =

d

dz
. (85)
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Finally, for the case r = 0, we have an equation of the form (vide case (ivb) in Table I),

ẍ + k2ẋ + k3x
3 + 2

9
k2

2x = 0, which is nothing but the force-free Duffing oscillator equation.

Again using the transformation (83), the associated time dependent integral given in Table

I can be rewritten as

I =
w′2

2
+

k3

4
w4, r = 0. (86)

Though it is difficult to integrate the above time independent first integrals, (84), as they

are in complicated forms, one can easily check that Eq. (86) (r = 0) can be integrated in

terms of Jacobian elliptic function14 and the case r = 1 is already discussed as case (ii) in

this section. For the other cases one can give a Hamiltonian formulation as in Sec. IIIA 4

and write the corresponding Hamiltonian as

H =















































































[

(

(r−1)p

)
r−2
r−1

(r−2)
− p( (r−1)

2r
k1w

2)

]

, r 6= 0, 1, 2,

k1

4
w2p + log(4k1

p
), r = 2

ep + k1

2
w2, r = 1

p2

2
+ k3

4
w4, r = 0

(87)

where

p =















































1
r−1

(

(r−1)
2r

k1w
2 + w′

)1−r

, r 6= 0, 1

log(w′), r = 1

w′, r = 0.

(88)

Thus one is ensured of Liouville integrability of system (85) and so (80) for all values of

r. Further, following the analysis in the above subsection IIIA 5, one can make a canonical

transformation (vide Eqs. (42)-(44)) to standard nonlinear oscillator equations.
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E. Summary of results for the q = 1 case:

To summarize the results obtained in this section, we have identified six integrable cases

in Eq. (10) among which four of them were already known in the literature and the remaining

two are new. In the following, we tabulate all of them for convenience.

1. Integrable equations already known in the literature

(1) ẍ + (k1x + k2)ẋ +
k2

1

9
x3 +

k1k2

3
x2 + λ1x = 0, (55)

(2) ẍ + (k1x + k2)ẋ +
k1k2

3
x2 +

2k2
2

9
x = 0, (67)

(3) ẍ + k2ẋ + k4x
2 +

6k2
2

25
x = 0, (74)

(4) ẍ + k3x
3 + k4x

2 + λ1x = 0. (33c)

We note that the dynamics and certain transformation properties of Eq. (55) have been

studied in detail by three of the present authors in Refs. 9 and 11 recently. In particular, we

have shown that this equation admits certain unusual nonlinear dynamics19. The dynamics

of Eqs. (67),(74) and (33c) can be found in Ref. 12.

2. New integrable equations

(1) ẍ + k1xẋ + k3x
3 + λ1x = 0, (33b)

(2) ẍ + (k1x + k2)ẋ + k3x
3 +

k1k2

3
x2 +

2k2
2

9
x = 0, (80)

where r2k3 =
(r−1)k2

1

2
and k1, k2, λ1 and r are arbitrary parameters. We note that (33b)

includes the first equation of MEE hierarchy (6) as a sub-case. Importantly, we showed that

(33b) is a Hamiltonian system (see Eq. (41)) and so it is Liouville integrable. Equation (80)

can be transformed to the integrable Eq. (85). Explicit general solution of certain special

cases, namely, r = 3 or 3
2

and r = −1 or 1
2

are reported in Ref. 20.
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IV. GENERALIZED FORCE FREE DVP FORM OF EQUATIONS

Let us now consider the case q = 2 in Eq. (9) or equivalently (11), that is,

ẍ = −((k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x) ≡ φ(x, ẋ). (11)

Interestingly Eq. (11) includes another class of physically important nonlinear oscillators.

For example, choosing k3 = 0 one can get force-free Duffing-van der Pol oscillator equation.

With the choice k2, k4, λ1 = 0, it coincides with the second equation in the MEE hierarchy

equation. Equation (11) with the restriction k3 =
k2
1

16
, k4 = k1k2

4
and λ1 = (ω2

0 +
k2
2

4
), has

been investigated in a different perspective in Ref. 4. However, the general equation of the

form (11) has never been considered for integrability test and so we perform the same here.

To identify integrals of motion and the general solution of Eq. (11) we again seek the PS

procedure. As the calculations are similar to the q = 1 case of Eq. (9) which was carried

out in the previous section, in the following, we give only the important steps.

A. The case It = 0

By considering the same arguments given in Sec. IIIA 1, the null form S can be fixed

easily in the form

S = −((k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x)

ẋ
. (89)

The respective R equation becomes

Rt + ẋRx − ((k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x)Rẋ

= ((k1x
2 + k2) +

((k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x)

ẋ
)R. (90)

To seek a particular form for R one may seek a suitable ansatz. We assume R to be of the

form (28) and investigate the system (90) as before. Following a similar procedure we find

that a nontrivial particular solution for (90) exists in the form

R =
ẋ

( (r−1)
r

(k1

3
x3 + k2x) + ẋ)r

, (91)

where r, k1 and k2 are arbitrary parameters and the remaining parameters, k3, k4 and λ1,

are fixed by the relations

k3 =
(r − 1)

3r2
k2

1, k4 =
4(r − 1)

3r2
k1k2, λ1 =

(r − 1)

r2
k2

2. (92)
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Further, we confirmed the compatibility of the functions S and R with the extra constraint

(24) also. We note that unlike the earlier case, q = 1, we do not get a nontrivial solution

for the parametric restriction k2, k4 = 0. The above restrictions fix the Eq. (11) to the

following specific forms:

(ia) ẍ + (k1x
2 + k2)ẋ +

(r − 1)

3r2
k2

1x
5 +

4(r − 1)k1k2

3r2
x3 +

(r − 1)k2
2

r2
x = 0, r 6= 0(93a)

(ib) ẍ + k3x
5 + k4x

3 + λ1x = 0, r = 0 (93b)

Now substituting (89) and (91) into (25) and evaluating the integrals we obtain the first

integrals in the form

(ia) I1 =

(

ẋ +
(r − 1)

r
(
k1

3
x3 + k2x)

)−r

×
[

ẋ(ẋ +
k1

3
x3 + k2x) +

(r − 1)

r2
(
k1

3
x3 + k2x)2

]

, r 6= 0, 2, (94a)

(ib) I1 =
6ẋ

(6ẋ + 3k2x + k1x3)
− log(6ẋ + 3k2x + k1x

3), r = 2, (94b)

(ii) I1 =
ẋ2

2
+

k3

6
x6 +

k4

4
x4 +

λ1

2
x2, r = 0. (94c)

Further, as in the q = 1 case in Sec. IIIA 4, the integrals (94) can be recast into the

Hamiltonian form

(ia) H =

[

(

(r − 1)p

)
r−2
r−1

(r − 2)
− (r − 1)

r
p(

k1

3
x3 + k2x)

]

, r 6= 0, 1, 2, (95a)

(ib) H =
k2

2
xp +

k1

6
x3p + log(

6

p
), r = 2, (95b)

(ic) H = ep +
k1

3
x3 + k2x, r = 1, (95c)

(ii) H =
p2

2
+

k3

6
x6 +

k4

4
x4 +

λ1

2
x2, r = 0. (95d)

where the corresponding canonical momenta respectively are

(ia, b) p =
1

(r − 1)

(

ẋ +
(r − 1)

r
(
k1

3
x3 + k2x)

)(1−r)

, r 6= 0, 1, (96a)

(ic) p = log ẋ, r = 1, (96b)

(ii) p = ẋ, r = 0. (96c)
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Note that in the above the parameters r, k1, k2, k3 and λ1 are all arbitrary. We also note

here that unlike the q = 1 case discussed in Sec. III, so far we have been unable to find

suitable canonical transformations for the above Hamiltonian systems so that the standard

’potential’ equation results. The problem is being further investigated.

B. The case It 6= 0

Now let us study the case It 6= 0. In this case S has to be determined from Eq. (22), that

is,

St + ẋSx − ((k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x)Sẋ

= (2k1xẋ + 5k3x
4 + 3k4x

2 + λ1) − (k1x
2 + k2)S + S2. (97)

As we did in the q = 1 case of Eq. (9) we proceed to solve Eq. (97) with the same form of

ansatz (47). Doing so we find that Eq. (97) admits non-trivial forms of solutions for certain

specific parametric restrictions. We report both the parametric values and their respective

forms of S in Table II.

Now substituting the forms of S into Eq. (23) and solving the resultant equation we

obtain the corresponding forms of R. Once S and R are determined then one has to verify

the compatibility of this solution with the extra constraint (24). Then one can substitute

the null forms and integrating factors into (25) and construct the associated integrals of

motion. We report the integrating factors (R) and time-dependent integrals of motion (I)

in Table II.

The remaining task is to derive the general solution and establish the complete integra-

bility of Eq. (11) for each parametric restriction. We again adopt the procedure given in Sec.

IIIC and transform the time dependent integrals into time independent ones and integrate

the latter and deduce the general solution. As the procedure is exactly the same we provide

only the results in the following.

Case (ia): k3 =
k2
1

16
, k4 = k1k2

4
, k1, k2 and λ1 : arbitrary:

Substituting the parametric restrictions given above in Eq. (11), we get

ẍ + (k1x
2 + k2)ẋ +

k2
1

16
x5 +

k1k2

4
x3 + λ1x = 0. (98)
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TABLE II: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

ẍ + (k1x
2 + k2)ẋ + k3x

5 + k4x
3 + λ1x = 0 (identified with the assumed ansatz form of S and R)

Cases Parametric restrictions Null form (S) Integrating factor (R) Integrals of motion (I)

(i) k3 =
k2
1

16 , k4 = k1k2
4 (a) I = e∓ωt

(

4ẋ+2(k2±ω)x+k1x3

4ẋ+2(k2∓ω)x+k1x3

)

,

k1
2 x3 − ẋ

x

xe∓ωt

(ẋ − (k2±ω)
2 x + k1

4 x3)2
k2, λ1 6= 0, ω = (k2

2 − 4λ1)
1
2

(k1, k2, λ1 : arbitrary) (b) I = −t + x

(
k2
2

x+
k1x3

4
+ẋ)

, k2
2 = 4λ1

(ii) k3 = 0, k4 = k1
6 (k2 ± ω),

1

2
(k2 ∓ ω) + k1x

2 e
(k2±ω)

2
t I =

(

ẋ + k2∓ω
2 x + k1

3 x3

)

e(
k2±ω

2
)t,

(k1, k2, λ1 : arbitrary) ω = (k2
2 − 4λ1)

1
2

(iii) k1, k3 = 0, λ1 =
2k2

2
9

( k2
3 ẋ +

k2
2
9 x + k4x

3

ẋ + k2
3 x

)

(ẋ +
k2

3
x)e

4
3
k2t I = e

4
3
k2t

[

ẋ2

2 + k2
3 xẋ +

k2
2

18x2 + k4
4 x4

]

(k2, k4 : arbitrary)

(iva) k3 =
(r−1)k2

1
3r2 , k4 = k1k2

4 , I =

(

k3
3 x6 + (ẋ + k2

4 x)(ẋ + k2
4 x + k1

3 x3)

)

λ1 =
3k2

2
16 , r 6= 0

k2

4
+ k1x

2 +
4k3x

5

(4ẋ + k2x)

(k2x + 4ẋ)e
3(2−r)

4
k2t

(k2
4 x + rk3x3 + ẋ)r

×
(

ẋ + k2
4 x + rk3x

3

)−r

e
3(2−r)

4
k2t, r 6= 2

(k1, k2, r : arbitrary) I = 3
4k2t + log(6k2x + 4k1x

3 + 24ẋ)

− 6(k2x + 4ẋ)

(6k2x + 4k1x3 + 24ẋ)
, r = 2

(ivb) k1 = 0, k4 = 0,

( k2
4 ẋ +

k2
2

16x + k3x
5

ẋ + k2
4 x

)

e
3k2
2

t(ẋ +
k2

4
x) I = e

3k2
2

t

(

ẋ2

2 + k2
4 xẋ +

k2
2

32x2 + k3
6 x6

)

λ1 =
3k2

2
16 , r = 0

(k2, k3 : arbitrary)
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We observed that the first integral of this case (i) (see Table II), when rewritten, is nothing

but the Bernoulli equation which can be integrated strightforwardly21 and it leads to the

general solution of the form

x(t) =

(

8k2λ1(e
ωt − I1)

2

I2
1k1k2(−k2 + ω) − e2ωtk1k2(k2 + ω) + 8I2k2λ1e(k2+ω)t + 8I1k1λ1eωt

)
1
2

, (99)

where ω =
√

k2
2 − 4λ1. A sub-case of the Eq. (98), namely, k2

2 < 4λ1 has been studied by

Smith4,22 who showed that the corresponding equation of motion admits a damped oscillatory

form of solution, namely,

x(t) =
Acos(ω0t + δ)

(

ek2t − k1A
4k2

+ k1A
4(k2

2+4ω2
0)

(

2ω0sin2(ω0t + δ) − k2cos2(ω0t + δ)

))
1
2

, (100)

where ω0 = 1
2

√

4λ1 + k2
2 and δ, A are arbitrary constants.

On the other hand for k2
2 > 4λ1, the solution (99) becomes dissipative type having a

front-like structure. In particular, for λ1 = 0 we get a solution of the form

x(t) =

(

2
√

k2(I1e
k2t − 1)

(−k1 + 2k1I1ek2t(2 + k2I1tek2t) + 4k2I2e2k2t)
1
2

)

. (101)

Case (ib): k3 =
k2
1

16
, k4 = k1k2

4
, k2

2 = 4λ1, k1 and k2 : arbitrary:

In this case we get the general solution of the form from (101) as

x(t) =

(

2(I1 + t)2

2ek2tI2 − k1

k3
2
(2 + I2

1k
2
2 + 2k2t + k2

2t
2 + 2I1k2(1 + k2t))

)
1
2

. (102)

One may note that a sub-case of this equation, namely, k2 = λ1 = 0 leads us to the second

equation in the MEE hierarchy (6) and the corresponding solution follows from Eq. (102) as

x(t) =
√

6

(

(I1 + t)2

6I2 + k1t(3I2
1 + 3I1t + t2)

)
1
2

. (103)

This form exactly coincides with the solution (7) for l = 2.

Case (ii): k3 = 0, k4 = k1

6
(k2 ±

√

k2
2 − 4λ1), k1, k2 and λ1 : arbitrary:
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The repective equation of motion and the first integral are (see Table II)

ẍ + (k1x
2 + k2)ẋ +

k1

6
(k2 ±

√

k2
2 − 4λ1)x

3 + λ1x = 0, (104)

and

I =

(

ẋ +
k2 ∓

√

k2
2 − 4λ1

2
x +

k1

3
x3

)

e
k2±

√
k2
2
−4λ1

2
t. (105)

Eq. (105) can be rewritten as an Abel’s equation in the form

ẋ = Ie(
−k2∓

√
k2
2
−4λ1

2
)t −

(

k2 ∓
√

k2
2 − 4λ1

2

)

x − k1

3
x3. (106)

It is not clear whether Eq. (106) can be explicitly integrated in general. However, for the

special case λ1 = 3
16

k2
2 it can be integrated as follows.

The restriction λ1 =
2k2

2

9
fixes the equation of motion (104) and the first integral (105) in

the forms

ẍ + (k1x
2 + k2)ẋ +

k1k2

4
x3 +

3k2
2

16
x = 0, (107)

and

I =

(

ẋ +
k2

4
x +

k1

3
x3

)

e
3k2
4

t, (108)

respectively.

Now following our procedure given in Sec. 3.3 one arrives at the general solution1 as

z + z0 = − a

3I

[

1

2
log

(

(w − a)2

w2 + aw + a2

)

+
√

3 arctan

(

−w
√

3

2a + w

)]

, (109)

with w = xe
k2
4

t, z = − 2
k2

e−
k2
2

t and a = 3

√

3I
k1

and z0 is the second integration constant.

Rewriting w and z in terms of old variables one can get the explicit solution.

Case (iii): k1, k3 = 0, λ1 =
2k2

2

9
, k2 and k4 : arbitrary:

The parametric restrictions given above fix the equation of motion (11) to the force-free

Duffing oscillator, namely, ẍ+k2ẋ+k4x
3 +

2k2
2

9
x = 0. We have already discussed the general

solution of this equation in Sec. III (vide case (iv)).
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Case (iv): k3 =
(r−1)k2

1

3r3 , k4 = k1k2

4
, λ1 =

3k2
2

16
, k1, k2 and r : arbitrary:

The equation of motion turns out to be

ẍ + (k1x
2 + k2)ẋ +

(r − 1)k2
1

3r2
x5 +

k1k2

4
x3 +

3k2
2

16
x = 0, r 6= 0. (110)

Rewriting the associated first integral I, given in Case (iv) in Table II, in the form (50), we

get

I =



















































































(

(r−1)k2
1

9r2 (xe
k2
4

t)6 + d
dt

(xe
k2
4

t)

(

d
dt

(xe
k2
4

t)e
k2
2

t + k1

3
(xe

k2
4

t)3

)

e
k2
2

t

)

×
(

d
dt

(xe
k2
4

t)e
k2
2

t + k1(r−1)
3r

(xe
k2
4

t)3

)−r

, r 6= 0, 2,

6 d
dt

(xe
k2
4 t)e

k2
2 t

k1(xe
k2
4 t)3+6 d

dt
(xe

k2
4 t)e

k2
2 t

− log(k1(xe
k2
4

t)3 + 6 d
dt

(xe
k2
4

t)e
k2
2

t), r = 2

1
2

(

d
dt

(xe
k2
4

t)

)2

ek2t + k3

6
(xe

k2
4

t)6, r = 0

(111)

and identifying the dependent and independent variables from (111) and the relations (51),

we obtain the transformation

w = xe
k2
4

t, z = − 2

k2
e−

k2
2

t. (112)

In terms of the new variables (112) the first integral I given above, (111) can be written as

I =















































(

w′ + (r−1)
3r

k1w
3

)−r[

w′(w′ + k1

3
w3) + (r−1)

9r2 k2
1w

6

]

, r 6= 0, 2

6w′

k1w3+6w′ − log(k1w
3 + 6w′), r = 2,

w′2

2
+ k3

6
w6, r = 0.

(113)

On the other hand substituting the transformation (112) into the equation of motion

(110) we get

w′′ + k1w
2w′ +

(r − 1)k2
1

3r2
w5 = 0, r 6= 0, ′ =

d

dz
. (114)
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In the case r = 0, we have an equation of the form (vide case (ivb) in Table II)

ẍ + k2ẋ + k3x
5 +

3k2
2

16
x = 0. (115)

We note that the Eq. (114) is the l = 2 case of Eq. (6). As we mentioned in the introduction

the general solution of this equation can be obtained only for certain specific choices, namely,
(r−1)k2

1

3r2 = 1
16

. This in turn gives r = 4k1 or 4
3
k1. The respective solutions for these values

of r of Eq. (114) can be fixed from Eq. (7) with l = 2. The other cases do not seem to

be amenable to explicit integration. However, all of them can be recast in the Hamiltonian

form as we see below.

As the first integrals (113) are now ‘time’ independent ones, one can give a Hamiltonian

formalism for all the integrals (113) by following the ideas given in Sec. IIIA 4. Doing so we

obtain

H =















































































[

(

(r−1)p

)
r−2
r−1

(r−2)
− (r−1)

3r
k1w

3p

]

, r 6= 0, 1, 2,

k1

6
w3p + log(6

p
), r = 2

ep + k1

3
w3, r = 1

p2

2
+ k3

6
w6, r = 0

(116)

where

p =















































1
(r−1)

(

w′ + (r−1)
3r

k1w
3

)(1−r)

, r 6= 0, 1

log w′, r = 1

p2

2
+ k3

6
w6, r = 0.

(117)

In this sense these cases may be considered as Liouville integrable systems. Finally,

for r = 0 case in Eq. (113) can be integrated in terms of Jacobian elliptic function (see for

example in Ref. 23). Again, here, we have not been able to identify canonical transformations

which can lead to the identification of suitable ’potential’ equations.
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C. Summary of results in q = 2 case:

To summarize the results obtained for the q = 2 case, we have identified six integrable

cases in Eq. (11) among which three of them were already known in the literature and the

remaining three are new. In the following, we tabulate both of them.

1. Integrable equations already known in the literature

(1) ẍ + (k1x
2 + k2)ẋ +

k1k2

4
x3 +

3k2
2

16
x = 0, (107)

(2) ẍ + k2ẋ + k3x
3 +

2k2
2

9
x = 0, (118)

(3) ẍ + k3x
5 + k4x

3 + λ1x = 0. (93b)

We mention that Eq. (107) is nothing but the force-free DVP whose integrability is estab-

lished in Ref. 1 and Eq. (118) is nothing but the force-free Duffing oscillator12,14.

2. New integrable equations

(1) ẍ + (k1x
2 + k2)ẋ + k3x

5 +
4(r − 1)k1k2

3r2
x3 +

(r − 1)k2
2

r2
x = 0, r 6= 0 (93a)

(2) ẍ + (k1x
2 + k2)ẋ +

k2
1

16
x5 +

k1k2

4
x3 + λ1x = 0, (98)

(3) ẍ + (k1x
2 + k2)ẋ + k3x

5 +
k1k2

4
x3 +

3k2
2

16
x = 0, (110)

where r2k3 =
(r−1)k2

1

3
and k1, k2, λ1 and r are arbitrary parameters. We proved that Eq. (93a)

is Liouville integrable one. As far as equation (98) is concerned we derived the general

solution for arbitrary values of k1, k2 and λ1. Finally, for Eq. (110) though we identified

only one time dependent integral, we have demonstrated that it can be transformed into

time independent Hamiltonian and thereby ensuring its Liouville integrability.
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V. EXTENDED PRELLE-SINGER METHOD TO GENERALIZED EQ. (9)

One can investigate the integrability properties of Eq. (9) by considering the cases

q = 3, 4, 5, . . . , one by one and classify the integrable equations. Since the procedure and

the mathematical techniques in exploring the integrating factors (R), null forms (S), first

integrals (I) and general solution are the same in each case we do not consider each case in

detail. We straightaway move to the case q = arbitrary, that is, q ∈ R and not necessarily

an integer, and present the outcome of our investigations.

As we did earlier, we consider the cases It = 0 and It 6= 0 separately for the choice

q = arbitrary also. First let us consider the case It = 0.

A. The case It = 0

By considering the same arguments given in Sec. 3.1.1 the null form S and the integrating

factor R can be fixed easily in the form

S = −((k1x
q + k2)ẋ + k3x

2q+1 + k4x
1+q + λ1x)

ẋ
,

R =
ẋ

( (r−1)
r

( k1

(q+1)
xq+1 + k2x) + ẋ)r

, (119)

where k1 and k2 are arbitrary and the remaining parameters, k3, k4 and λ1, are related to

the parameters k1 and k2 through the relations

k3 =
(r − 1)

r2
(q + 1)k̂2

1, k4 =
(r − 1)

r2
(q + 2)k̂1k2, λ1 =

(r − 1)

r2
k2

2, (120)

where k̂1 = k1

(q+1)
. The above restrictions fix Eq. (9) to the following specific forms:

(ia) ẍ + ((q + 1)k̂1x
q + k2)ẋ +

(r − 1)

r2
[(q + 1)k̂2

1x
2q+1

+(q + 2)k̂1k2x
q+1 + k2

2x] = 0, r 6= 0 (15)

(ib) ẍ + k3x
2q+1 + k4x

q+1 + λ1x = 0, r = 0. (121)

Now substituting (119) into (25) and evaluating the integrals we obtain the first integrals
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of the form

(ia) I1 =

(

ẋ +
(r − 1)

r
(k̂1x

q+1 + k2x)

)−r

×
[

ẋ(ẋ + k̂1x
q+1 + k2x) +

(r − 1)

r2
(k̂1x

q+1 + k2x)2

]

, r 6= 0, 2, (122a)

(ib) I1 =
ẋ

(ẋ + k2

2
x + k̂1

2
xq+1)

− log(ẋ +
k2

2
x +

k̂1

2
xq+1), r = 2, (122b)

(ii) I1 =
ẋ2

2
+

k3

2(q + 1)
x2(q+1) +

k4

(q + 2)
xq+2 +

λ1

2
x2, r = 0. (122c)

Further, using the above forms of the first integrals, one can show that the equation of

motion (9), with the parametric restrictions (120), can also be derived from the Hamiltonians

(ia) H =

[

(

(r − 1)p

)
r−2
r−1

(r − 2)
− (r − 1)

r
p(k̂1x

q+1 + k2x)

]

, r 6= 0, 1, 2, (123a)

(ib) H =
k2

2
xp +

k̂1

2
xq+1p + log(

2(q + 1)

p
), r = 2 (123b)

(ic) H = ep + k̂1x
q+1 + k2x, r = 1, (123c)

(ii) H =
p2

2
+

k3

2(q + 1)
x2(q+1) +

k4

(q + 1)
xq+1 +

λ1

2
x2, r = 0, (123d)

where the corresponding canonical momenta respectively are

(ia, b) p =
1

(r − 1)

(

ẋ +
(r − 1)

r
(k̂1x

q+1 + k2x)

)(1−r)

, r 6= 0, 1, (124a)

(ic) p = log ẋ, r = 1, (124b)

(ii) p = ẋ, r = 0. (124c)

With the above Hamiltonian formulation, for the parametric set (120), the integrability

of the associated equation of motion is assured for these parametric cases through Liouville

theorem.

B. The case It 6= 0

We use the same ansatz and ideas which we followed for the q = 1 and q = 2 cases to

determine the forms of S and R. As the procedure is exactly the same as in the earlier cases

36



we present the parametric restrictions and the respective form of expressions of the inte-

grating factors, null forms and integrals of motions in Table III without further discussion.

Since we derived only one integral, which is also a time dependent one for each parametric

restriction, we need to integrate each one of them further and obtain the second integration

constant in order to prove the complete integrability of each of the cases reported in Table

III. In the following we deduce the second integral and general solution by utilizing the

proceduce given in Sec. IIIC.

Case (ia): k3 =
k2
1

(q+2)2
, k4 = k1k2

(q+2)
, k1, k2 and λ1 : arbitrary:

We have an equation of the form

ẍ + ((q + 2)k̂1x
q + k2)ẋ + k̂2

1x
2q+1 + k̂1k2x

q+1 + λ1x = 0, (13)

where k1 = (q + 2)k̂1. The corresponding first integral given in Table 3 is nothing but the

Bernoulli equation which can be solved using the standard method21. The general solution

turns out to be

x(t) =

(

eωt − I1

)(

e
q

2
(k2+ω)t

(

I2 + k̂1q

∫
(

eωt − I1

e
1
2
(k2+ω)t

)q

dt

))
−1
q

, (125)

where ω =
√

k2
2 − 4λ1. We note here that a sub-case of the above, namely, k2

2 < 4λ1, has

been studied by Smith4 who had shown that the corresponding system admits the general

solution of the form

x(t) = Acos(ω0t + δ)e−
k2
2

t

(

1 + qk̂1A

∫

e
−qk2

2
tcosq(ω0t + δ)dt

)− 1
q

, (126)

where ω0 = 1
2

√

4λ1 + k2
2 and δ, A are arbitrary constants. For k2

2 > 4λ1, the solution

become a dissipative type/front-like structure. In particular, for λ1 = 0 the general solution

takes the form

x(t) =

(

ek2tI1 − 1

)[

eqk2t

(

I2 + k̂1q

∫
(

I1 − e−k2t

)q

dt

)]− 1
q

. (127)
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TABLE III: Parametric restrictions, null forms (S), integrating factors (R) and time dependent integrals of motion (I) of

ẍ + (k1x
q + k2)ẋ + k3x

2q+1 + k4x
q+1 + λ1x = 0 (identified with the assumed ansatz form of S and R)

Cases Parametric restrictions Null form (S) Integrating factor (R) Integrals of motion (I)

(i) k3 =
k2
1

(q+2)2
, k4 = k1k2

(q+2) (a) I = e∓ωt

(

ẋ−
(−k2∓ω)

2
x+

k1
q+2

xq+1

ẋ−
(−k2±ω)

2
x+

k1
q+2

xq+1

)

,

( qk1

(q+2)x
q+1 − ẋ)

x

xe∓ωt

(ẋ − (k2±ω)
2 x + k1

(q+2)x
q+1)2

k2, λ1 6= 0, ω = (k2
2 − 4λ1)

1
2

(k1, k2, λ1 : arbitrary) (b) I = −t + x

(
k2
2

x+
k1xq+1

q+2
+ẋ)

, k2
2 = 4λ1

(ii) k4 = k1(k2±ω)
2(q+1) , k3 = 0,

1

2
(k2 ∓ ω) + k1x

q, e
(k2±ω)

2
t I =

(

ẋ + k2∓ω
2 x + k1

(q+1)x
q+1

)

e(
k2±ω

2
)t,

(k1, k2, λ1 : arbitrary) ω = (k2
2 − 4λ1)

1
2

(iii) k1, k3 = 0, λ1 =
2(q+2)k2

2
(q+4)2

2k2ẋ
(q+4) +

4k2
2x

(q+4)2 + k4x
q+1

(ẋ + 2k2x
(q+4) )

(ẋ +
2k2x

(q + 4)
)e

2(q+2)
(q+4)

k2t
I = e

2(q+2)
(q+4)

k2t

[

ẋ2

2 + 2k2xẋ
(q+4) +

2k2
2x2

(q+4)2
+ k4xq+2

(q+2)

]

(k2, k4 : arbitrary)

(iv)a k3 =
(r−1)k2

1
(q+1)r2 , I =

(

k3x2(q+1)

(q+1) + (ẋ + k2x
q+2)(ẋ + k2x

q+2 + k1xq+1

q+1 )

)

k4 = k1k2
(q+2) ,

k2
(q+2) +k1x

q + k3x2q+1

(ẋ+
k2

(q+2)
x)

(k2x + (q + 2)ẋ)e
(q+1)(2−r)

(q+2)
k2t

( k2
(q+2)x + rk3xq+1 + ẋ)r

×
(

k2
(q+2)x+rk3x

q+1+ ẋ

)−r

e
(q+1)(2−r)

(q+2)
k2t

, r 6= 2

λ1 =
(q+1)k2

2
(q+2)2

, r 6= 0 I = q+1
q+2k2t + log(k1x

q+1 + 2(q + 1)(ẋ + k2
q+2x))

(k1, k2, r : arbitrary) −(
2(q + 1)(ẋ + k2

q+2x)

k1xq+1 + 2(q + 1)(ẋ + k2
q+2x)

), r = 2

(iv)b k1 = 0, k4 = 0,
k2

(q + 2)
+

k3x
2q+1

(ẋ + k2
(q+2)x)

e
(2q+2)k2

(q+2)
t
(ẋ +

k2

(q + 2)
x) I =

(

ẋ2

2 + k2xẋ
(q+2) +

k2
2x2

2(q+2)2 + k3x2q+2

(2q+2)

)

e
(2q+2)k2

(q+2)
t

λ1 =
(q+1)k2

2
(q+2)2

, r = 0

(k2, k3 : arbitrary)
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Case (ib): k3 =
k2
1

16
, k4 = k1k2

4
, k2 = 4λ1, k1 and k2 : arbitrary:

A general solution for this case can be fixed from (127) as

x(t) = (I1 + t)e−
k2
2

t

(

I2 + qk̂1

∫

e−
qk2
2

t(I1 + t)qdt

)− 1
q

. (128)

On the other hand the general solution for the parametric choice k2, λ1 = 0 turns out to be

x(t) =

(

(q + 1)(I1 + t)q

k̂1q(I1 + t)q+1 + (q + 1)I2

)
1
q

, (129)

which exactly coincides with the result (7) obtained by Feix et al.3 for integer q(= l) values.

Case (ii): k3 = 0, k4 = k1

2(q+1)
(k2 ±

√

k2
2 − 4λ1), k1, k2 and λ1 : arbitrary:

The associated equation of motion and the first integral are (see Table III)

ẍ + ((q + 1)k̂1x
q + k2)ẋ +

k̂1

2
(k2 ±

√

k2
2 − 4λ1)x

q+1 + λ1x = 0, (130)

and

I =

(

ẋ +
k2 ∓

√

k2
2 − 4λ1

2
x + k̂1x

q+1

)

e(
k2±

√
k2
2−4λ1

2
)t, (131)

where k1 = (q + 1)k̂1. Like in the earlier cases, that is, q = 1 and q = 2, we are able to

integrate the first integral (131) explicitly only for a specific parametric restriction, namely,

λ1 = (q + 1)k̂2
2, where k2 = (q + 2)k̂2. In this case the equation of motion (130) and the first

integral, Eq. (131), can be recast in the form

ẍ + (k1x
q + (q + 2)k̂2)ẋ + k1k̂2x

q+1 + (q + 1)k̂2
2x = 0, (12)

and

I =

(

ẋ + k̂2x + k̂1x
q+1

)

e(q+1)k̂2t, (132)

respectively. Now comparing (132) with (50), we get

I = eqk̂2t

(

d

dt
(xek̂2t)

)

+ k̂1(xek̂2t)(q+1). (133)
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Next identifying the dependent and independent variables from (133) using the relations

(51), we obtain the transformation

w = xek̂2t, z = − 1

qk̂2

e−qk̂2t. (134)

Using the transformation (134) the first integral (133) can be rewritten in the form

I = w′ + k̂1w
(q+1) (135)

which in turn leads to the solution by an integration, that is,

z − z0 =

∫

dw

I − k̂1w(q+1)
, (136)

where z0 is an arbitrary constant. Solving Eq. (136) we get24

z − z0 =
1

Ig
1

(q+1)



















































− 2

q + 1

q−1
2
∑

i=0

Pi cos
2i

q + 1
π +

2

q + 1

q−1
2
∑

i=0

Qi sin
2i

q + 1
π

+ 1
q+1

ln
(1+w)
(1−w)

, q-a positive odd number,

− 2

q + 1

q−2
2
∑

i=0

Ri cos
2i + 1

q + 1
π +

2

q + 1

q−2
2
∑

i=0

Ti sin
2i + 1

q + 1
π

+ 1
q+1

ln(1 + w), q-a positive even number,

(137)

where g = k̂1

I
and

Pi =
1

2
ln

(

w2 − 2w cos
2i

q + 1
π + 1

)

, Qi = arctan

[

w − cos 2i
q+1

π

sin 2i
q+1

π

]

,

Ri =
1

2
ln

(

w2 + 2w cos
2i + 1

q + 1
π + 1

)

, Ti = arctan

[

w + cos 2i+1
q+1

π

sin 2i+1
q+1

π

]

.

Rewriting w and z in terms of old variables one can get the explicit solution.

Case (iii): k1, k3 = 0, λ1 =
2(q+2)k2

2

(q+4)2
, k2 and k4 : arbitrary

The parametric choice given above fixes the equation of motion of the form

ẍ + (q + 4)k̂2ẋ + k4x
(q+1) + 2(q + 2)k̂2

2x = 0, (14)

where k2 = (q + 4)k̂2. Rewriting the first integral I given in Case (iii) in Table III, in the

form (49), we get

I =
1

2

(

ẋ + 2k̂2x
)2

e2(q+2)k̂2t +
k4x

(q+2)

(q + 2)
e2(q+2)k̂2t. (138)
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Now splitting the first term in Eq. (138) further in the form of (50),

I =

[

eqk̂2t d

dt

(

x√
2
e2k̂2t

)]2

+
2( q+2

2
)k4

(q + 2)

(

x√
2
e2k̂2t

)(q+2)

(139)

and identifying the dependent and independent variables from (139) using the relations (51),

we obtain the transformation

w =
x√
2
e2k̂2t, z = − 1

qk̂2

e−qk̂2t. (140)

Using the transformation (140) the first integral (138) can be brought to the form

I = w′2 +
2( q+2

2
)k4

(q + 2)
w(q+2). (141)

Separating the dependent and independent variables and integrating the resultant equation

we get

z − z0 =

∫

dw
√

I − k̂4w(q+2)
, (142)

where k̂4 = 2(
q+2
2 )

(q+2)
k4 and z0 is an arbitrary constant.

Case (iv): k3 =
(r−1)k2

1

(q+1)r2 , k4 = k1k2

(q+2)
, λ1 =

(q+1)k2
2

(q+2)2
, k1, k2 and r : arbitrary:

The equation of motion in this case turns out to be

ẍ + ((q + 1)k̂1x
q + (q + 2)k̂2)ẋ + (q + 1)(

(r − 1)

r2
k̂2

1x
2q

+k̂1k̂2x
q + k̂2

2)x = 0, r 6= 0 (16)

where k1 = (q +1)k̂1, k2 = (q +2)k̂2. Rewriting the associated first integral I, given in Case

(iv) in Table III, in the form (50), we get

I =























































































(

(r − 1)k̂2
1

r2
(xek̂2t)2(q+1) +

d

dt
(xek̂2t)

(

d

dt
(xek̂2t)eqk̂2t + k̂1(xek̂2t)q+1

)

eqk̂2t

)

,

×
(

d

dt
(xek̂2t)eqk̂2t +

k̂1(r − 1)

r
(xek̂2t)q+1

)−r

, r 6= 0, 2

d
dt

(xek̂2t)eqk̂2t

k̂1

2
(xek̂2t)q+1 + d

dt
(xek̂2t)eqk̂2t

− log(
k̂1

2
(xek̂2t)q+1 +

d

dt
(xek̂2t)eqk̂2t), r = 2

1
2

(

d
dt

(xek̂2t)

)2

e2qk2t + k3

2(q+1)
(xek̂2t)2(q+1), r = 0.

(143)
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Identifying the dependent and independent variables from (143) and the relations (51), we

obtain the transformation

w = xek̂2t, z = − 1

qk̂2

e−qk̂2t. (144)

Subsituting the transformation (144) into (16), one obtains

w′′ + (q + 1)k̂1w
qw′ + (q + 1)

(r − 1)

r2
k̂2

1w
2q+1 = 0, r 6= 0, ′ =

d

dz
. (145)

In terms of the new variables (144) change the time dependent first integral into time

independent ones of the form

I =















































(

w′ + (r−1)
r

k̂1w
q+1

)−r[

w′(w′ + k̂1w
q+1) + (r−1)

r2 k̂2
1w

2(q+1)

]

, r 6= 0, 2,

w′

w′+
k̂1
2

xq+1
− log(w′ + k̂1

2
wq+1), r = 2,

w′2

2
+ k3

2(q+1)
w2(q+1), r = 0.

(146)

Once again one can deduce the Hamiltonians in the form

H =















































































[

(

(r−1)p

)
r−2
r−1

(r−2)
− (r−1)

r
k̂1w

q+1p

]

, r 6= 0, 1, 2,

1
2
k̂1w

q+1p + log(2(q+1)
p

), r = 2,

ep + k̂1w
q+1, r = 1,

p2

2
+ k3

2(q+1)
w2(q+1), r = 0,

(147)

with

p =















































1
(r−1)

(

w′ + (r−1)
r

k̂1w
q+1

)(1−r)

, r 6= 0, 1

log(w′), r = 1

w′, r = 0,

(148)

and thereby ensuring liouville integrability of Eq. (16).
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C. Summary of results in q = arbitrary case:

To conclude the integrability of Eq. (9), we have established the fact that the following

equations, are integrable

(1) ẍ + (k1x
q + (q + 2)k2)ẋ + k1k2x

q+1 + (q + 1)k2
2x = 0, (12)

(2) ẍ + ((q + 2)k1x
q + k2)ẋ + k2

1x
2q+1 + k1k2x

q+1 + λ1x = 0, (13)

(3) ẍ + (q + 4)k2ẋ + k4x
q+1 + 2(q + 2)k2

2x = 0, (14)

(4) ẍ + ((q + 1)k1x
q + k2)ẋ +

(r − 1)

r2
((q + 1)k2

1x
2q

+(q + 2)k1k2x
q + k2

2)x = 0, r 6= 0 (15)

(5) ẍ + ((q + 1)k1x
q + (q + 2)k2)ẋ + (q + 1)(k3x

2q + k1k2x
q + k2

2)x = 0, (16)

where r2k3 = (r − 1)k2
1 and k1, k2, k4, λ1 and r are arbitrary parameters (for simplicity we

have removed hats in ki’s, i = 1, 2, in Eqs. (12)-(16)) . The significance and newness of the

equations (12)-(16) are already pointed out in Sec. I B.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the integrability properties of Eq. (9) and shown that

it admits a large class of integrable nonlinear systems. In fact, many classical integrable non-

linear oscillators can be derived as sub-cases of our results. One of the important outcomes

of our investigation is that the entire class of Eq. (6) can be derived from a conservative

Hamiltonian (vide Eq. (123)) eventhough the system deceptively looks like a dissipative

equation.

From our detailed analysis we have shown that Eq. (9) admits both conservative Hamil-

tonian systems and dissipative systems, depending on the choice of parameters. As far as

the former is concerned we have deduced the explicit forms of the Hamiltonians for the

respective equations. In fact, for the case, q = 1, we have constructed suitable canonical

transformations and transformed the equations into conservative nonlinear oscillator equa-

tions. However, the canonical transformations for the conservative Hamiltonian systems for

the cases q = 2, . . . , arbitrary, if at all they exist, still remain to be obtained. Exploring the

classical dynamics underlying these conservative Hamiltonian systems is also of consider-

oble interest for further study. As far as dissipative systems are concerned we have not only
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shown that Eq. (9) contains the well known force-free Helmholtz, Duffing and Duffing-van

der Pol oscillators but also have several integrable generalizations which is another important

outcome of our investigations. The study of chaotic dynamics of these nonlinear oscillators

under further perturbations is one of the current topics22 in the contemporary literature

in nonlinear dynamics. In principle one can extend such analysis to the above generalized

equations as well.

In this paper, we have also not touched the question of linearizability of the integrable

cases of Eq. (9). In our earlier work, we have shown that the Eq. (55) is linearizable to the

free particle equation, d2w
dz2 = 0. Of course one can show that this is the only linearizable

equation in (9) through invertible point transformation9,11,18. However, linearizablity of

other integrable cases through more general transformations still remains to be explored.

In addition to the above, we have also carried out the Painlevé singularity structure

analysis of Eq. (9) and compared the results obtained through both the methods. The

details of this will be published elsewhere.

As we mentioned at the end of Sec. II, the crux of the PS procedure lies in finding the

explicit solutions satisfying all the three determining Eqs. (22)-(24). In this paper we have

considered only certain specific ansatz forms to determine the null forms S, and integrating

factors R. As a consequence only a specific class of integrable equations have been derived.

It is not clear, whether these ansatz forms used in this paper exhaust all possible integrable

cases of Eq. (9). One needs to consider more generalized ansatz forms, and if possible to

solve Eqs. (22)-(24) for the most general forms of R and S, and try to identify all possible

integrable cases underlying Eq. (9). This is being explored further.
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