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Abstract. A study of ordered structures in ternar} hcp alloys has been undertaken. For
this, the hep structure has been divided into several sublattices and used to generate :
ordered structures with three types of atoms. Nine ground-state ordered structures have
been identified on the basis of maximum or minimum number of 4B, BC and CA bonds.
Complete crystallographic details about these structures have been worked out. In an
alternate approach, ordered ternary structures were obtained by populating 8 types of
sublattices (which generate Ti,Al structure) with three types of atoms. Thus, fortyeight
ordered structures were found. For each structure, complete structural details have also
been worked out, some of which are reported. Configurational energy of each structure has
been calculated using pairwise interactions up to third neighbour distances. To gain insight
regarding low-energy structures, some assumptions were utilized to reduce the number of
independent parameters in the energy expressions and their consequences explored. Two
types of degenerate situations have been observed. One type of degeneracy occurs for ideal
hep alloys where only first neighbour interactions are considered. Another degencrate
situation occurs for non-ideal hep alloys where interactions are considered up to third
neighbour distances.

Keywords. Configurational energy; sublattices; ternary hcp ordered ground-state
structures; low-energy ternary hep-ordered structures. ) '

1. Introduction

The recent spurt of interest in ternary intermetallics based on Ti;Al has led to a
recognition of the need to understand the thermodynamics of mixing of ternary hep
alloys. Differences in the thermodynamic stability of such phases are expected to
lead to differences in their phase transformation behaviour and thus to different
paths of microstructural evolution. Needless to add, these differences would
significantly affect mechanical properties. Thus ternary additions and their
consequent effects would play a key role in the selection of such intermetallics. We
have earlier obtained the ordered ground-state structures in binary hep (hexagonal
close-packed) alloys by division of the hcp atomic sites into several sublattices
(Singh and Lele 1990). Different structures are obtained by populating the atomlc
sites by two types of atoms in appropriate proportions. Energies of these structures
(having non-ideal axial ratio) are obtained by considering pairwise interactions up
to third neighbour distances. Although this method is not an exhaustive procedure
for generating superstructures, it is a powerful method for an initial survey of the
various possibilities.

Richards and Cahn (1971) proposed a somewhat similar method for constructing
superlattice cells using' three non-coplanar basis vectors which join atoms at
second;/third neighbour distances and applied it to fcc and bee structures. Since, in hep
alloys both the second and third neighbour vectors are not lattice vectors for the
fundamental structure, this method is not applicable to such alloys. Several other
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methods (Allen and Cahn 1972; Kanamori 1966; Kudd and Katsura 1976) have
been developed to establish ground state structures for binary bec and fec alloys.

4The present work is concerned with the preliminary extension of the method of
sublattices to ternary hcp alloys. Ordered ternary ground-state structures have been
proposed on the basis of the occurrence of maximum or minimum number of AB,
BC and C4 bonds at first, second and third neighbour distances. An attempt is also
made to identify the low-energy structures under some simplifying assumptions
_ with the 8 sublattice division which generates the Ti;Al (DO, ) structure (Singh and
Lele 1990). This information is expected to be useful in ultimately establishing the
ground-state structures for ternary hep alloys.

2. Model

The present work is concerned with ternary hep alloys having constituents 4, B and
C. We have used the Ising model and considered interactions up to third neighbour
distances with the following assumptions:

(i) The energy is solely a function of pairwise interactions between the 4, B and C
atoms at distances up to third neighbours.
(i) Vibrational and size effects are not taken into account.
(iii) Surface and interfacial effects are also not considered.
(iv) Vacant lattice sites are not allowed. Each lattice site is occupied by an atom of
any one of the constituents A, B or C.

The hep structure with non-ideal axial ratio is divided into several sublattices
ranging from a minimum of 6 to a maximum of 28. The details of the method of
sublattice division have been described in our earlier studies (Singh and Lele 1990).
Briefly the procedure is as follows. (i} Every point of a certain type of sublattice has
as first, second and third nearest neighbours only points belonging to other types of
sublattices. (ii) The division is such that all the sublattices are identical. As shown
earlier (Singh and Lele 1990), sublattice divisions ranging from 6 to 14 are sufficient
to generate most of the ground-state structures for binary alloys. We consider up to
14 sublattice divisions for the determination of ground-state structures on the basis
of the existence of maximum or minimum number of 4B, BC and CA bonds. The
[001] projections illustrating the sublattice divisions are shown in figures 1 to 5.

3. Configurational energy

Let us consider a ternary hep alloy where the structure is divided into M sublattices
(M =6 to 14). Let the alloy consist of lattice sites occupied by N atoms with N,, Ny
and N, atoms of A4, B and C types respectively.

N=§Nﬂ,oc=A,Band C. 1)
Further, let P (i=1 to M) denote the probability of finding an « (A, B or C) type

atom at any site of sublattice i. This is related to the number, N, of « atoms on
sublattice i through
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Figure 1. Basal plane projection of hep structure showing subdivision of the atomic sites
into six sublattices numbered 1 to 6. Large and small circles correspond to sites in
alternate layers along the c-axis. ‘

(a) type 1 {b) type 2

Figure 2. Basal plane projection of hep structure showing subdivision of the atomic sites
into eight sublattices numbered 1 to 8. ’

P, = Ni/(N/M). Q.
It follows that
LP=1, (3)

The atomic concentration C, can be defined as
M
C, = (1/M) _221 No/(N/M). @

Let us first consider the case of eight sublattice divisions which generate Ti,Al
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Figure 3. Basal plane projection of hcp structure showing subdivision of the atomic sites
into 10 sublattices numbered 1 to 10.

(a) type |

Figure 4. Basal plane projection of hep structure showing subdivision of the atomic sites
into 12 sublattices numbered 1 to 12.

structure (figure 2b). It is clear from this figure that an atom situated on any one
sublatgice is surrounded by six sites at first, second and third neighbour distances.
For example, an atom on sublattice 1 is surrounded by 2 first neighbour atoms each
on sublattices 2, 3 and 4, by 2 second neighbour atoms each on sublattices 6, 7 and
8 (for axial ratios greater than the ideal value) and 6 third neighbour atoms on
sublattice 5. For axial ratios less than the ideal one, the roles of first and second
neighbour sites are reversed.

Let the number of kth (k=1 to 3)neighbour A~ B, B—C and C— 4 bonds be g;,
r, and s, respectively. The number of kth neighbour A—B bonds, g,, can be
determined as follows. The number of A atoms on the sublattice 1 is (N/8) P} Any
A atom is surrounded by B atoms at first neighbour distances on sublattices 2, 3

“w
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(a) type 1 (b) type 2

‘ Figure 5. Basal plane projection of hep structure showing subdivision of the atomic sites
into 14 sublattices numbered 1 to 14,

and 4 with probability (P} + P3 + P}). Thus, the number of 4—B bonds at first
neighbour distance for this case is (N/8) P (P§ + P3 + P§). Considering all similar
cases and summing, we have:

4 4 8 8 . '
q1=(N/4)|:Z T PyPy+ X ):P;PQJ. (5)

i=1j=1 i=5j=35
i#j i

In a similar way the second and third neighbour A-B bonds can be shown to be:

4 8 8B &
q2=(N/4)[.Z z Py Pp+ X ')51 P4 PB:l (6)
L_lji;‘fdl L_Sj;Jei—4
4 . . B ) N
q3=(N/4)[ PLPi*+ 3 P;,P;;‘*} )
i=1 i=5

An analogous exercise can be undertaken to determine the number of B—C (ry, 13
and r,) and C—A (s, s, and s;) bonds. Expressions for B—C and C— A bonds
respectively can be obtained by cyclic and anticyclic permutation of 4, B, C in
equations (5) to (7). The configurational energy of mixing by definition is:

3
E=(1/2) ,El @ Wha T 1 Whe ™ 5 W), ®)
where the interchange energies are given by:
Wis= 2Whs— Via— Vs, &)
W%C = 2V,;;C - VléB - V’éc, (10)

and Wk, =2V%, = VEc— Vi, 1)




;
i
i
:
H
i

P 3

" and Vi, Vs Vs Vs B}y and Ve :
" neighbour A—~B, B—C, C— A, A—A, B—Band C— C bonds respectively.

. the configurational energy of mixing for division i
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are the bond energies for the kth (k=1 to 3)

5, and s in (8) one can obtain
nto eight sublattices. A similar

procedure has been adopted to arrive at the configurational energy for other
sublattice divisions.

Substituting the values of g, 42, 43 71> T2 '3 51>

4. Ground state structures and their energies

To identify structures with minimum energy for different interchange ehergy ratios
is a formidable task in this case owing to the large number of independent
interchange energies. In the case of binary alloys, there are only three such
variables. In contrast, for ternary alloys, there are nine variables. Minimization of
energy can only be performed in a 9-dimensional hyperspace. The application of the
minimum energy criterion for different interchange energies will yield the number of
ordered ground state structures.

It is obvious from (8) that if the values of gy, i and s, are either maximum or
minimum, then the corresponding energy of the ordered structures is minimum for
a suitable range of values of the interchange energies. The values of g, ry and s, for

k th neighbour distances must lie in the range

0<q/N<Z, Cy,
0<r/N<Z,C, (16)
0<s,/N<Z, Cy,

where Cy and C, are the concentrations of B and C types of atoms respectively and
Z, the co-ordination number of kth shell. The above discussion is based on the
assumption that C,>Cp2 Cc. For the lower limit of AB, BC and CA bonds, the
minority atoms are completely surrounded by like atoms at the kth neighbour
distances and for the upper limit by unlike atoms. To attain the minimum energy
for maximum values of gy, 7, and s, (k=1 to 3), the corresponding interchange
energies W, Whe and W, must be negative. On the other hand, for minimum g,
r, and s,, the interchange energies dre positive. ’

The procedure is briefly described for 4, BC structure in what follows. An atom
on sublattice 5 (occupied by C atoms) (figure 5a) is surrounded by six first
neighbour atoms on sublattices 3, 4, 6 and 7 (one 3, two 4, two 6 and one 7)
respectively. Similarly, at second and third neighbour distances, it is surrounded by
six atoms on sublattices 10, 11 and 12 (two on each) and 9, 11 and 13 (two on each)
respectively. For A;,BC stoichiometric structure, we can place B atoms either on
sublattice 1 or 2 in order to have the minimum number of BC bonds as also the
maximum number of AB and CA bonds at first neighbour distances. Alternately,
the B atoms can be placed either on sublattice 8 or 14 to have minimum number of
BC bonds as well as maximum number of AB and CA bonds at second or third
neighbour distances. This exhausts all possibilities for 4;, BC structure and results
in four crystallographically different structures with the same energy. The second
type of subdivision into 14 sublattices (figure 5b) yields only one such possibility for
the same stoichiometry. A similar method has been adopted for all possible
stoichiometries using appropriate sublattice division. On the basis of the above

-y,
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discussion, we have found nine energetically distinct structures with stoichiometries
Ay,BC, A;BcC, A,,BC, A¢BsC, AsB,C, A¢BC, A,B;C, A,B;C, and A,B,C to
have minimum energies and thus to represent ground state. The energies of these
structures are given in table 1 while the nature (positive or negative) of interchange -
energies are given in table 2. Structural details such as Bravais lattice, space group,
number of atoms per unit cell, Pearson symbol, lattice parameters and co-ordinates
of equivalent positions have been determined for each structure using International
Tables for Crystallography (Hahn 1989). This information is recorded in table 3.
However, this procedure does not yield any information for those structures for

Table 1. Energies of ground-state superstructures based on the hcp

structure.

Phase Energy
3N

Ay,BC 7y (Wap+ Wea+ Wig+ We o+ Wi+ W2, ]
N

A,B,C 7y [(Whe+6Whgt WE, +6Wip+ W2, ]
N

AloBC Z[WLH+Wé‘A+%B+WgA+W:B+ Wg;{]
N

AgBsC " [Whc+5Wag+ Wi, +5W3,+ W2 ,]
3N

AsB,C I [(WhctdWipt Wiy HaWipt W21
3N

AgBC r [Whe+ Weat Wigt W2+ Wic]
iN

A,B,C Y [(Wic+3Wipt+ W +3Wip+ W2, ]
3N &

A,B5C, m [2Whe+ SW2g+2W2,+5Wa+ 203, ]
N

A;B,C Y [Wic+2Wag+ We,+ Wig+ W2, ]

Table 2. Nature of interchange energies for ordered ground-state structures.

Sign of interchange energies

Structure Wis Wic Wi Wis Wic We4 Wis Wic W,

A;,BC - + - - + - - + -
A,B,C + - + - + - - + -
A;,BC - + - - + - - + -
AgBsC + - + - + - - + -
AB,C + -~ + - + - - + -
A¢BC - + - - + - - + -
A,B,C + ~ + - + - - + -
A,B5C, + + - + - - + -
A3B,C + ~ + - + - - + -
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Table 3. Crystallographic data for the ternary ground-state structures in hep alloys.

A1,BC (1) Hexagonal

P& or Cl; 14 atoms per unit cell

hP14

a=a,[310], b=u,[320] and c=¢, [001]

Atomic positions:

Wyckoff
Atoms notation Symmetry x y z
C, 1(a) 6 0 0 0
B 1) 3 2/3 1/3 12
. A 3() m 6/1 21 0
. A 3() m 177 577 0
‘ A 3(k) m 17721 1/21 12
: A 3(k) m 2/21 10/21 12

Site occupation probabilities: (figure 5b)
pi=1, Pi=1, P\=P}= Py=P4=P§=P)=P{=P=P}'= pPRR=PP=pit=1
. - A,,BC (1I): Monoclinic
. Pm or CL;14 atoms per unit cell
" . mPl4
a=a, [110], b=a, [430] and c=c, [001]
a=tan~! (= 7V3/3)=1039"

Atomic positions:

Wyckoff
Atoms notation Symmetry X y z
c 1(a) m 115 13/14 0
B 1(a) m 4/5 514 0
A 1(a) m 1/3 1/2 0
A 1(a) m 13/15 9/14 0
A 1(a) m 715 11/14 0
A 1(a) m 315 114 0
A 1(a) m 1/5 3/14 0
A 1(b) m 2/3 1/2 12
A 1(b) m /5 9/14 12
A 1(b) m 4/5 11/14 12
i A 1(b) m 2/5 13/14 12
A 1(b) m 14/15 1/14 12
A 1(b) m 815 3/14 12
g A 1(b) m 2/15 9/14 12
N Site occupation probabilities: (ﬁgure 5a)
' Pi=1, Pi=1, PA=P3=P4=P§=P]=P4=Pi=P'=P'=P}=P=P}’=1.
{ A,,BC (11I): Monaclinic
. Pm or C!: 14 atoms per unit cell
P . mP14
it a=a, [110], b=a,[430] and c=c,[001]
E e=tan~t (~7/3/3)=1039°
it Atomic positions:
Wyckoff
i, Atoms notation Symmetry x ! y z
f_;.".: .‘ c 1(a) m 1/5 13/14 0
fro B 1{a) m 13 12 0
‘ A 1(a) m 4/5 5/14 0
W A 1(a) m 13/15 9/14 0
| A 1(a) m s 11/14 0
j
i
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A 1(a) m 3/5 1/14
A 1(a) m 1/5 3/14
A 1(b) m 23 12
A 1(b) m 1/5 9/14
A 1(b) m 4/5 11/14
A 1(b) m 2/5 13/14
A 1(b) m 14/15 1/14
A 1(b) m 8/15 3/14
A 1(b) m

Site occupation probabilities: (figure 5a)

P3=1, Pi=1,Pi=P}=Pi=PS=Pj=Pi=P]=P10=P}i=Pi=PP=P}*=]

A,,BC (IV): Monoclinic

Pm or C!;14 atoms per unit cell

mP14

a=a, [110], b=a, [430] and c¢=c, [001]

a=tan~' (= 7/3/3)=103.9°

Atomic positions:

Wyckoll

Atoms notation Symmetry x y
C 1(a) m 1/15 13/14
B 1(b) m 2/3 12
A 1(a) m 4/5 5/14
A 1(a) m 1/3 1/2
A 1(a) m 13/15 9/14
A L (a) m 7/15 11/14
A 1(a) m 3/5 1/14
A 1{a) m 1/5 3/14
A 1(b) m 1/5 9/14
A 1(b) m 4/5 11/14
A 1(b) m 2/5 13/14
A 1(b) m 14/15 1/14
4 1(b) m 8/15 3/14
A 1(b) m 2/15 9/14

Site occupation probabilities: (figure 5a)

Y15 9/14

12
12
12
12
1/

12
12

cocooJo

[=)

12
12
12
12
12
12

Pi=1, Py=1, Py=P}=P3=Pi=P4=P]=P= P =P} = Pi?= Pi=Plt=|

A,,BC (V). Monoclinic

Pm or C!;14 atoms per unit cell

mP14 .

a=a, [110], b=aq, [430] and e¢=c¢, [001]
a=tan"! (=7v3/3) = 103:9°

Atomic positions:

Wyckoff

Atoms notation ' Symmetry x y
C 1(a) m 1/15 13/14
B 1(b) m 2/15 9/14
A 1(a) m 4/5 5/14
A 1(a) m 1/3 1/2
A 1(a) m 13/15 9/14
A 1(a) m 7/15 11/14
A 1(a) m 3/5 1/14
A 1(a) m 1/5 3/14
‘A 1(b) m 2/3 12

2o
S N}

COoO OO OO
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t A 1(b) " 1/5 9/14 12
i A 1(b) m 4f5 11/14 1/2
j . A 1(h) m 2/5 13/14 12
i1 A 1(b) m 14/15 1/14 12
E_“- A 1(b) m 8/15 3/14 12

Site occupation probabilities: {figure 5a)
P prel, Pl PimPi= Py=FimPl=PhmPim P =P =P =FE =]

A4BC (I): Hexagonal
P& or Cl,; 14 atoms per unit cell
| hP14
. a=a, [310], b=a, [320] and c=¢, [oo1]

Atomic positions:

Ty s s pohgio

: Wyckoft
B Atoms notation Symmetry X y z
e c 1(a) 3 0 0 0,
R B 3() m 6/7 21 0
g B 3()) m 1/7 5/7 0
Lo A 1(f) 6 2/3 1/3 1/2
L A 3(k) m 17/21 /21 1/2
| A 3(k) m 2/21 . 10721 1/2
R } .
S Site occupation probabilities: (figure Sb)
E ! pi=1, plg:pﬁ:pB:pg:pg:p;: 1, pi:p%:pg’: py! =P}2=P}l3=P§“ =1
L A4;B,C (I1): Orthorhombic
i C2mm (Amm2) or C}3;28 atoms per unit cell
b oC28
;‘ : a=a, [110], b=4, [770] and c=¢, [o01]
,‘ \: Atomic positions:
f L Wyckoff
{{) Atoms notation Symmetry x y z
1 C 2(a) 2 mm 0 0 0
o B 4(d) m 12 3/14 0
i B 4(d) m 12 5/14 0
[ B 4(d) m 172 13/14 0
5{ A 2(b) 2mm 1/3 0 1/2
if 1 A 4(e) m 1/3 2/14 1/2
[i , A 4(e) m 1/3 4/14 12
M% ! A 4(e) m 1/3 6/14 1/2
’w Site occupation probabilities: (figure 5a)
} ' Pi=1, PH=P§=P,3;=P“,;=PS=P,7,=1, P3=P3=P}4°=PL‘=P}42=PP=P“4‘=1
A4BC (I): Orthorhombie
Pmm2 (P2mm) or Ch,; 12 atoms per unit cell
oP12
a=ua,[110], b=a, [330] and c=c, [001]
~ Atomic positions:
Wyckoff
Atoms notation Symmetry x y z
c 1(a) 2mm 0 0 0
B 1(d) 2mm 5/6 12 1/2
‘ A 1(b) 2mm 1/2 12 0
| A 1(c) 2mm 1/3 0 12
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A 2(g) m 12 . 1/6
A 2(g) m 0 1/3
A 2(h) m 1/3 1/3
A 2(h) m 5/6 1/6

Site occupation probabilities: (figure 4a)
pPi=1, P3=1, pi=P3=pj=PA=PA=PZ{=PE=P}4°=P},‘=PLZ=l

A10BC (1I): Orthorhombic

Pmm2 (P2mm) or C,; 12 atoms per unit cell
oP12

a=a, [110], b=a, [330] and c=c, [001]

Atomic positions:

Wyckoff
Atoms notation Symmetry x y
C - 1(a) 2mm 0 0
B 1(b) 2mm 1/2 172
A I{c) 2mm 1/3 0
A 1(d) 2mm 5/6 1/2
4 2(g) m 12 1/6
A 2{g) m 0 13
A 2(h) m 1/3 1/3
A 2(h) m '5/6 1/6

Site occupation probabilities: (figure 4a)

Pi=1, Pi=1, Pi=P3=P5=PS=P}=P4=Py=P\°=P} =P}’=]
A, ¢BC (I1T): Monoclinic

Pm or C};12 atoms per unit cell

mP12
a=a, [120], b=a, [220] and c=c, [001]

a=tan"! (- 3+3) =1009°

Atomic positions:

Wyckoff

Atoms notation Symmetry x y
C 1{a) m 0 0
B 1) m 5/9 11/18
A 1(a) m 1/3 1/6
A 1(a) m 2/3 1/3
A 1(a) m 0 1/2
A t (@) m 1/3 2/3
A i(a) m 2/3 5/6
A i (b) m 8/9 5/18
A 1(b) m 2/9 8/18
A 1(b) m 8/9 5/18
A 1(b) m 2/9 8/18
A 1(b) m 5/9 2/18

Site occupation probabilities: (figure 4b)
Pi=1, Py=1, Pi=P}=P4=P5=P4=P]=P{=PP=Pll=P}I=1

AgB5C (I); Orthorhombic

P2mm(Pmm2) or C},; 12 atoms per unit cell
oP12

a=a, [T10], b=a, [330] and c=c, [001]

12
12

1/2
1/2

172
1/2

—

OOOOBO ™~

12
12
12
12
12
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Atomic positions:

Wyckoff
Atoms notation
L(a)
1(b)
2(g)
2(g)
t{c)
1{d)
2(n)
2(h)

B mmO

Symmetry

2mm
2mm
m
m
2mm
2mm
m
m

Site occupation probabilities: (figure 4a)
Pl=1, Pi=P}=Pi=P3=P§=1, P}=Pi=Pj=P\°=P}!=P}?=1

AgBsC (11): Monoclinic
Pm or C%; 12 atoms per unit cell
mPI12

a=a, [120], b=a, [220] and c=c, [001]

a=tan! (—3/N3) =100.9°

Atomic positions:

Wyckoll

notation
1(a)
1{a)
1(a)
L{a)
1{a)
1{a)
1(b)
1(b)
L(b)
1(b)
1(b)

z
2
2
7]

P - N N SO N - )

Symmetry

m

I T I SFTITEE

| =

m

Site occupation probabilities: (figure 4b)
Pi=1, Py=P}=P}=P}=P§=1, P}=P}=P}=P}0=P{'=Pi?=1

AsB,C: Orthorhombic

C2inm (Amm2) or C1%; 20 atoms per unit cell

oC20

a=a, [110], b=a, [550] and c=c, [001]

Atomic positions:.

Wyckoff
Atoms notation

2(a)
4(d)
4(d)
2(b)
4(e)
4(e)

xaxtmmO

Symmetry

2mm

Site occupation probabilities: (figure 3)
Pi=1, Pi=P}=Pi=Pj=1, PS=P|=P5=PI=P}"=1

X

0
12
12

0
13
5/6
1/3
506

X

0
13
23
0
173
23
8/9
209
8/9
2/9
5/9

X
12
12
12
5/6
1/3
5/6

0
12
1/6
13

12
13
1/6

y
0
1/6
1/3
12
2/3
5/6
5/18
8/18
14/18
17/18
2/18

2/10
6/10

1/10
2/10

[==R == ]

12
12
12
12

OO O n

12
12
12
12
12

172
1/2
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A¢BC: Hexagonal

P&m2 or Di,; 8 atoms per unit cell

hP8

a=2a, [100], b=2a, [010] and c=c, [001]

Atomic positions:

Wyckolf
Atoms notation Symmetry
c 1{a) 6m2
B 1(e) om2
A 3G mm2
A 3(k) mm2

Site occupation probabilities: (figure 2b)
Pl=1, Pi=1, P2=P3=Pi=P5=P)=Pi=

A,4B;C (Iy. Hexagonal

P8&m2 or D},;8 atoms per unit cell

hP8

a=2a, [100], b=2a, [010] and c=c, [001]

Atomic positions:

Wyckoff
Atoms notation Symmetry
Cc 1(a) 6m2
B 3(J) mm2
A 1(e) 6m2
A 3(k) mm2

Site occupation probabilities: (figure 2b)
Pi=1, P=P3=Pj=1, Pi=P5=P,=P5=1

A4B+C (II): Orthorhombic

P2mm (Pmm2) or C3,;8 atoms per unit cell
oP8

a=a, [110], b=a, [220] and c=c, [001]

Atomic positions:

Wyckoff

Atoms notation Symmetry
C 1(a) 2mm

B 1(b) 2mm

B 2(g) m

A 1(c) 2mm

A 1{d) 2mm

A 2(h) m

Site occupation probabilities: (figure 2a)
Pl=1, Pi=P}=Pi=1, PS=P5=P}=Pi=1
A4B;sC, (I): Orthorhombic

C2mm (Amm2) or C1#;28 atoms per unit cell
oC28

a=aqa, [T10), b=a, [770] and c=c, [001]

Atomic positions:

Wyckoff
Atoms notation Symmetry
C 4(d) m

B 2(a) 2mm

2/3
1/2
1/6

1/2
2/3
1/6

12
1/3
13
5/6

12

1/3
12
5/6

1/2
1/3

'5/6

12
1/4

12

1/4

y
5/14

12

172

172
1/2

=
Nt

12
12
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have the same energy but different structures. These structures are designated as
A.,BC(), A,,BC(II), A;,BC(III), A;,BC(IV) and A,,BC(V) and their erystallo- -
graphic details are recorded in table 3. A similar behaviour was observed for the
structures A,BsC, A;,BC, AgBsC, A4B;C and A;BsC, each of which is doubly
degenerate. The complete crystallographic details about these degenerate structures
are also given in table 3. This degeneracy can be eliminated by considering higher
neighbour interactions.

5. Ordered structures and their energies

As mentioned earlier, ordered structures have also been generated by populating
the atomic sites in case of division into eight sublattices with all possible
combinations of 4, B and C atoms (figure 2b). This results in five stoichiometries
namely, A¢BC, AsB,C, A4B,C, A,B,C,, and A3B;C, with C 2 Cp > Cc while other
stoichiometries can be obtained by interchanging 4, B and C atoms. All the
possible ordered structures for each stoichiometry have been enumerated and their
energies evaluated. Some crystallographic information for these structures is given
in tables 4-8. The procedure adopted is illustrated for the case of the AgBC?
structure in the following. In this structure, C atoms are placed on sublattice 1, B
on sublattice 2 and the remaining sublattices are populated by 4 atoms. The [001]
projection of the structure AgBC? is shown in figure 6. Now one can write the
different Pi as follows: :

PL=1,P:=0 (i=2 to 8),
Py=0,Pi=1,P;=0 (i=3to 8) (15)
Pi=0(=1102),P,=1 (i=3to8).

One can obtain the g, r, and s, (equations (5) to (7)) using the above probabilities

and utilize these for the calculation of the configurational energy (equation (8)).
Other structures with the same stoichiometry are obtained by taking A, B and C

Table 4. Crystal structure and energy of ordered superstructures with A¢BC

stoichiometry.
Ordered Space group*
structure Pearson Lattice
designation symbol parameters** Energy
Pém2 a=2a, [100] (N/B)[3Wig+3WE, +
AgBC? D}, b=2a, [010] 3N+ 3WE 4 3W5]
hP8 c=c¢, [001]
PL=1, Pj=1, PA=Pi=P4{=P5=P}=Pi=1
C2mm (Amm?2) a=2a, [210] (N/8) 2Wig+ Whc+
AgBC? Ccit b=2a, [010] WL+ 3We+3WE +
oC16 c=c¢, [001] 3W3p+3WE,]
Pi=1, P}=1, Pi=P4=P}=P5=P]=Pi=1
C2mm (Amm?2) a=2a, [210] (NS BW g +3W L, +2W i+
AgBC? ci b=2a, [010] Wie+2Wh 4+ 3W3+3WE,]
oC16 ¢=c, [001]

Pl=1,P§=1, Pi=Pi=Pi=Pi=P5=1

*International notation (standard orientation)/Schoenflies notation.
**g, and ¢, are lattice parameters of the disordered structure.
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Table 5. Crystal structure and energy of ordered superstructures with A4B,C stoichiometry ‘

Ordered Space group
structure Pearson Lattice
designation symbol parameters Energy
C2mm (Amm?2) a=2a, [210] (N/8) [SW'g+ Wict
AsB,C? cit b=2a, [010] WL, AW IWE T
oC16 ¢=c, [001] IW3+3WE]
Pl=1, P3=Pi=1, P4=P4=P5=P}=Pi=1
C2mm (Amm?2) a=2a, [210] (N/BY[5Wis+ Whct
AsB,C? cit b=12a, [010] WL+ SWopt Wict
oC16 e=¢, [001] 2WE,+3WE,]
pPl=1, P2=pS=1, Pd=Pi=Pi=Pl=PS=1
C2mm (Amm2) a=ga,[220] - (N/B)[2Wig+2Whc+
A;B,C? Cit b=a, [220] WL +6Wi+3Wi,+
oC16 c=c¢, [001] 6W3,+3W3,]
Pl=1, P3=P}=1,P{=Pi=P=P}=P}=1
Pm a=2a, [100] (N/B)[SWip+ Wict
A4B,C* cl b=2a, [010] WL +IWE,+ Whot
mP8 e=c, [001] W2+ 6W+3WE,]
Pl=1,Pi=Pl=1, Pi=Pi=Pi=Pi=Pi=1
C2mm (Amm2) a=2a, [210] (N/B)[AW p+3WL, +
AsB,C3 e b=2a, [010] SW2g+ Wic+2WE,+
oCl16 c=c, [001] IW3et3IWa]
Pi=1, Pj=P§=1, Pi=Pi=P{=P]=P}=1
C2mm (Amm2) a=a, [220] (N/B)AW g +3W e, +
AsB,CS Cis b=a, [220] AWi+2We A Wi+
oC16 c=c, [001] 6W3p+3W3,]

P¢=1, Py=P3=1, Pi=P;=Pi=Pi=Pi=1

atoms in the same proportions but populating the sublattices in all possible distinct
ways. In a similar manner, all the structures for each of the stoichiometries listed
earlier were obtained and the results are given in tables 4-8. We have arrived at
three A4BC, six AsB,C, eight 4,BC, sixteen A,B,C,, and fifteen A3B,C, ordered
stfuctures in the present investigation. Of the 48 ordered structures, 15 are
monoclinic, 29 orthorhombic and 4 hexagonal. Two structures namely 4,BC" and
A,B;C* of the above list are ground state obtained by the procedure mentioned
earlier.

6. Discussion

The ground-state structures 4,,BC, 4,B4C, 4,,BC, A¢BsC, AsB,C, 4¢BC, A,BC,
A,BsC, and A;B,C can be obtained from 14 (figures Sa and b), 14 (figures Sa
and b), 12 (figures 4a and b), 12 (figures 4a and b), 10 (figure 3), 8 (figure 2b), 8
(figures 2a and b), 14 (figures Sa and b} and 12 (figure 4a) types of sublattice division
respectively. The 43B,C structure can also be generated by division into six
(figure 1) sublattices.

The ground-state structures obtained in the- present study (table 1) can also be
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Table 6. ‘Trystal structure and energy of ordered superstructures with A,B,C

stoichiometry.
Ordered Space group
structure Pearson Lattice
designation symbol parameters Energy
Pém2 a=2a, [100] (N/SY[3W i+ 9W2p+
A B,5C! Dy, b=2a, [010] IWE,+9IW3+3WE,]
hP8 c=¢, [001]
PL=1, Pi=P3}=P}=1, Pi=Pi=P,=P}=
Pm a=2a, [100] (N/B)[SWig+2Wict
A.B,C? c! b=2a, {010} WL, +6Wiz+ Wi+
mP8 c=c¢, [001] WL, +3Wp+3IWR,]
Pi=1, Pi=P3=P§=1, P4{=Pi=P)=P5=1
C2mm (Amm?2) a=a, [220] (N/B)[6W iy+ Wic+
A.B,C? cit b=a, [220] QWL+ Wi+ Whe+
oC16 c=c¢, [001] 2W2,+3Wil
Pl=1, Pt=P§=Pi=1, Pi=Pi=P5=P)=1
C2mm (Amm?2) a=a, [220] (N/Q)[SWig+2Whc+
A4B,C* cit b=a, [220] WL, +SWip+3WE,+
oC16 c=c, [001] 6W3is+3Wic]
Pi=1, P=P3=Pj=1, P4{=P5=P)=P}=1
C2mm (Amm?2) a=a, [220] (N/B)[SW g+ 2Wict+
A4B,C* cit b=a, [220] Wk +4Wi,+ Wi+
oC16 c=¢, [001] 2WE,+IW3+3WE,]
Pi=1, Pi=P3=P3=1, P4=P5=P5=P}=1
Pm a=2a, [100] (N/B)[6W g+ Whe+
A.B,C" C b=2a, [010] 2WL AW+ Wit
mP3 c=c, [001] 2WE,+6W3+3Wic]
PL=1, Pi=P}=P§=1, P4=Pi=P)=Pi=1
C2mm (Amm?2) a=a, [220] (N/®Y[3Wip+3Wh,+
A B;C" cls b=a, [220] TWig+2Wie+ Wi, +
oCl6 c=c, [001] 6W3y+3Wic]
Pl=1, P}=P4=P}=1, Pi=P}=Pi=Pi=1
P6m2 a=2a, [100] N/ [BW s +3WeE, +-
A,B,C8 D}, b=2a, [010] 6Wi,+3Wi +
hP8 c¢=¢, [001] OW3,+3WE,]

PL=1, P§=P}=Pj=1, Pi=Pi=Pi=Pi=1

generated by appropriate substitution of some C atoms in binary ground-state
structures identified in our earlier study using sublattice division method (Singh and
Lele 1990). The A,B4C, A¢BsC, AsB,C and 4,B,C structures can be obtained by
replacing one B atom of AB* structure while A;BsC, and A3B,C structures can be
generated by replacing two B atoms by C atoms. The A4,,BC structure can be
derived from a binary 4,,B structure. We have not considered this binary structure
as ground state owing to entropy effects, but its energy is equal to the erlergy of a
two-phase mixture of A and A;B in an appropriate ratio. Similarly, the structure
A,oBC can be generated by appropriate substitution of B atoms by C atoms in the

binary AsB structure.
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gﬁ, ﬁ ’ Table 7. Crystal structure and energy of ordered superstructures with 44B,C,
3 { stoichiometry.
% Ordered Space group
J structure Pearson Lattice
: designation symbol parameters Energy
. C2mm (Amm2) a=2a, [210] (N/8)[4W g+ 2Wpe +
ol AB,C! cit b=2a, [010] WL AW+ 2 W+
A ‘ oC16 c=c, [001] AW, +6W,]
Pl=Pi=1,P}=P}=1, P4=P5=P5=P}=1 |
P2mm (Pmm2) a=a, [210] (N/B)[4W i p+4W}, +
0 A,B,C Cl, b=a, [010] 4Wip+ 2Wihet
i oP4 c=c, [001] AWE+6W ]
i Pl=Pi=1, Pi=Pi=1, Pi=P4{=P|=Pi=1
o . Cmem a=2a, [210] (N/R)[4W g +2W et
; AB,C3 Dy} b=2a, [010] 4L AW+
o oC16 c=c, [001] QWi +4WE,]
Lo Pt=P¢=1, Pj=P§=1, Py=Pi=P}=Pi=1
. : ' P2mm (Pmm?2) a=a, [210] (N/B)[AW ho+ 6 W2yt
, AB,CY cl, b=a, [010] 6W2,+6W3,+6W3,]
Lo oP4 c=c, [001]
| Pi=Pi=1, Pj=Pi=1, P=P4=F}=Pi=
} o Pm a=2a, [100] (N/BY[AW g+ 2W e+
T A4B,C3 C! b=2a, [010] QWL 4 IW e+ Wit SWE +
Lo mP8 c=c, [001] 3IW3,+IWS+3WE,]
[ PL=P}=1, P3=Pj=1, P4=P§=P]=Pi=1
.‘3 o C2mm (Amm2) a=2a, [210] (N/B)[4W g +2W et
C A4B,C} cit b=2a, [010] AW+ 2W 2+ 20+
;! oC16 e=c, [001] 4WE,+6Wip+6We,]
P Pi=P3=1, Pj=P§=1, P4=P{=P=P]=1
b Pm a=2a, 100} (NB) AWy +4 WL+
e A,B,C} C! b=2a, [010] W2+ 3Who+3WE, +
1 mP8 c=c¢, [001] W+ IWE+IWE]
PL=Pi=1, Pi=P]=1, PY=P4=P§=Pi=1
' P2mm (Pmm2) a=a, [210] (N/8)[4W iy +aWl, +
) A,B,C8 Cl, b=a, [010] QW2 +4WE+2WE 4+
¥ oP4 c=c, [001] 6W3+6Wi,]
i PL=Pi=1,Pl=Pi=1, PA=Pi=Pi=Ps=|
P C2mm (Amin2) a=a, [220] (NBY2Wip+2Wi -+
T ‘ A4B,C3 cit b=a, [220] WL HAW L +2W .+
e oC16 c=c, [001] 4AWZE, +6W35]
IR Pl=Pi=1,P}=P}=1, P{=P§=P}=Pi=1
; Ce2m (Ama2) a=a, [220] (N [AW g2 Wt
AB,CY° Cié b=a, [220] AWL F2Wi 2w+
oC16 c=c, [001] AL, +6W3,]
v PE=P{=1,P}=Pi=1, Pi=Pi=P5=Pi=1
Pm a=2a, [100] (N/8)[2W g+ 2 WL+
A,B,C}! c! b=2aq, [010] AWL +5Wig+ Wi+
mP8 c=c, [001] IWEH3IW3+
IWic+3We]
= PL=Pé=1,P}=P}=1, PA=pP5=P,=P8=1
3
ek il




Ordered structures in ternary hep alloys RS

Table 7 (Contd.)

Cemm (Cmem) a=2a, [210] (N/8)[4W g+ 2W ket
A,B,C1? Dy7 b=2a, [010] AWE FAW 2+

oC16 e=c, [001] AWE,+6Wic]
PC?P3=1, Pi=P3=1, Py=Pi=Pi=P;=1

Pm a=2a, [100] (N/B)[AW iy + 2W b+ AW L+
A,B,C13 c! b=2a, [010] IW g+ Wic+3W2, o+

mpP8 e=c, [001] W3+ IWE+3IWE]
Pl=Pi=1,Pj=Pp=1, P.34=PA=PA=P§=]

C2mm (Amm?2) a=2a, [210] (N/®)[2Wig+2Whe+
A,B,CH cit b=2a, [010] AWL +4W 2+ 2Who+ .

oC16 e=c, [001] AW+ 6 Wyt 6W2,]
Pi=P8=1, Pi=P}=1, Pi=Pi=P|=P}=1

Cc2m (Ama?2) a=2a, [210] (NBY[AW g +2Whe+
A4B,CY} Cis b==2a, [010] AWE AW g+ 2W e+

oC16 c=c, [001] IWE,+6WE,]
Pi=P8=1, P}=P}=1, Pi=P4=P}=P}=1

Pm a=2a, [100] (N/8)[4W 5+ 2W ke +
A4B,C38 c! b="2a, [010] AW, +2W3y+ WD+

mP8 e=c, [001] WL +6W3p+6W,]

PLl=po=1, P}=PEi=1, Pi=P4=P5=P]=1

Table 8. Crystal structure and energy of ordered superstructures with A3B;C,
stoichiometry.

Ordered Space group
structure Pearson Lattice
designation symbol parameters Energy
C2mm (Amm?2) a=2a, [210] (NBYBW iy +4Whe+
A3B;C} Cid b=2a, [010] SWiy+2Wic+4Wk,+
oC16 c=c, [001] IW3p+6WE,]
Pl=Pi=1, P}=P3}=Pj3l, P5=P5=P5=1
C2mm (Amm?2) a=2a, [210] (N/®)[SWig+2Whc+
A3B;C3 Ccit b=2a, [010] QWL HIWL+2WE+
oC16 c=¢, [001] AWE, +3W3+6Wic]
PLl=Pi=1, P}=Pj=P5=1, Pi=P}=P5=1
Pm a=2a, [100] (N/B)’[5W§,+2W},C+
A3B,C} cl b=2a, [010] WL, +AWE,+3Whc+
mP8 c=¢, [001] IWE,+3Wiae+3WE,]
Pi=Pi=1, Py=P§=P}=1, Pi=P5=P}=
Pm a=2a, [100] (N/8)[4W g+ 3W e+
A3B,C} C! b=2a, [010] IWL AW+ 3IW e+
mP8 c=c, [001]} 3WE,+3W3,)]
Pl=P}=], Pi=P3=P§=1, P4=P]=P5=1
C2mm (Amm2) a=2a, [210] (N/B)[3W \p+4Who+
A3B;C3 Cit b=2a, [010] AW2+ Wi+ SWE,+
0oC16 c=¢, [001] W3, 3Wi+3WE,]

PL=Pi=1, Py=Pi=P3=1, P§=P}=Pi=1
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:‘;i ? Table 8 (Contd.)
‘r
HJ; Ordered Space group .
! structure Pearson Lattice
i E'{T designation symbo} parameters Energy
! Pm a=2q, [100] (N/s)[SWL,,+2W§c2+ ,
" A3ByCS" C! b=2a, [010] WL+ 2IW+3W e+ IWE +
E. i mP8 c=c, [001] 6Wip+3Wac+3WE,]
! v Pl=P2=1, Pj=P}=P}=1, P{=P=Ppi=|
} 5 C2min (Amm2) a=2a, [210] (NBY3W g +4W e+
Loy A3ByC] cit b=2a, [010] SW2,+4W2 +2WE, +
- oC16 c=c, [001] IW3et6W3]
B Pi=Pi=1, Pj=Pj=Pl=1,Pi=P4=Pi=|
‘ C2mat (Amm?2) a=2a, [210] (N/B)[3W i +dWL +
cis b=2a, [010] AW+ SWic+ Wi+
oC16 c=c, [001] 6W3 5t 3W3+3W3,]
Pi=Pl=1,P{=P]=P§=1, Pi=P4=p3=|
Pém2 a=2a, {100] (N/8)[3W he+3WL, +6Whp+
t A3B,C? Dl, b=2a, [010] 3IW3e+3IWE,+IW3,]
i hP8 c=c, [001]
s Pe=Pi=1, Pi=Pj=Pi=1,P§=P]=Pi=|
s C2mm (Amm2) a=a, [220] (N/8)[AW L+ 30+
j A3B,CL0 cls b=a, [220] 3Wé,+zwé,,+3w,?,c+
i oC16 e=c, [001] WL, FIW3,]
' Pi=Pi=1, P}=P}=Pi=1, P4=pPS=p]=
o C2mm {Amm?2) a=2aq, [210] (NBY[3Wlc+3WE,+
8 A3B,CY cls h=2a, [010] Wi+ LW 3+ 2WE, +
- oC16 e=c, [001] 63+ 3Wic+3W3,]
I
i Pi=P¢=1, Pj=P}=Pi=1, P5=P]=pi=|
‘% } ) Pm a=2a, [100] (N/B)[4W s +3Whe+
S A3B,Ci? C! b=2a, [010] IWi AW+ Wi+
HE mP8 e=¢, [001] 3WE+3W3,+ 6]
i P{=P{=1, P}=P}=Pj=1, P4=P]=pi=|
1
i Pm a=2a, {100] (N/B)[AW \y+3W .+
| A3B,C13 c! b=2a, [010] IV +SW R+ 2w+
mP8 c=¢, [001] WEHIW+3WE)
Pl=Pi=1, P}=P}=P}=1, P4=P3=pi=|
Pm a=2a, [100] (N/8)[4W Ly +3 Wi+
AyB,C14 c! h=2q, [010] W4 IWE, 2w+
mP8 e=c, [001] WE W3+ 3W e+ 302, ]
Pi=Pi=1, Pi=Pi=P}=1, P4=P}=P}=1
‘ Pm a=2a, [100] (N/BY[4W Ly +3W Lo+
A3B,C* C! b=2a, [010] IWh AW, +3WE +
mP8 e=c, [001] Wi, +3W3,+6W2,]

PL=Pe=1, Pj=Pi=P}=1, P{=P}=Pi=1

As mentioned earlier, it is difficult to determine all the ground-state structutes in
view of the large number of parameters involved. However, this can be attempted
under some assumptions which reduce the number of parameters. Let the axial
ratio be close to ideal and the third neighbour interchange energies be negligible.
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AgBC?

Figure 6. Basal plane projection of A¢BC? structure. 4, B and C atoms are represented
by ®, O and & respectively.

These assumptions imply that Wig~ Wap, Wie~ Whe, Wic = Wic and Wig
~ Wie ~ W3¢ ~0. Using these values, we have simplified the energy expressions
for the different stoichiometric structures (tables 4-8). A consideration of these
energy expressions shows that, in several instances, ordered phases with the same
stoichiometry but different structures e.g. A¢BC*> and AgBC3, have the same
energy. This is the second type of degeneracy noted in the present study and occurs
for ideal hcp ternary alloys. Such a degeneracy is lost, when third neighbour
interactions are considered. Subsequently, we selected all the energetically different
structures for each stoichiometry and focused our attention on the determination of
the domains (ranges of w, = Whc/Wip and w, = Wi/W)p) of stability of all
structures. Structures having lowest energy within their class (stoichiometry) were
found and the corresponding domain of w’s identified for negative value of W by

drawing iso-energy lines as explained below. For example, under the assumptions-

mentioned earlier, there are only 6 energetically distinct structures for the
stoichiometry A4,B;C, in contrast to the 15 given in table 7. On equating the
energies of these structures in pairs, iso-energy lines for each pair were obtained. A
plot of these iso-energy lines on a plot with w, and w, as axes leads to different
domains in which one of the structures (amongst the six) has lowest energy. As
shown in figure 7 only four structures, namely, A;B;C3, A3B3C3, A,B,C3 and
A,B,C% have lowest energy in the four different domains. A similar procedure was
followed for each stoichiometry and this resulted in two AgBC (4¢BC* and 4,BC?),
two A,B,C (AsB,C' and AsB,C?), two A4B3C (4,B5C* and A4B5C3), three
A.B,C, (A4B,C, A,B,C3 and A,B,C3) and four 4;B,C, (A3B5Ch, A3B,C3,
A4B,C3 and A4,B,C3) low-energy ordered structures. The assumptions under which
these ordered structures have been shown to have low energies will be valid to only
a limited extent in real structures. However, lacking more complete specification of
all the interchange energies, they provide some insight regarding the possible stable
structures.

All the 48 structures mentioned above can also be generated by substituting some
atoms with C atoms in binary ground-state structures, obtained by eight sublattice
division (Singh and Lele 1990). For example, if we start with A;B!, the DO, 4 type
of structure, and replace half the B atoms by C atoms, we get A¢BC! structure.
Similarly, by replacement of some of the 4 atoms by C atoms in A;B! binary alloy,
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Figure 7. Stability regions of different low energy ordered structures with stoichi
A3B;C, as a function of interchange energy ratios w; and w,.

,ope'éan obtain AsB,C?, A4B,C}, A,B,C3 and A,B,CL® structures. Some stru
can also be generated by simultaneous replacement of appropriate fractions

. and B atoms in binary alloys by C atoms. We found a large number of stru

with AB stoichiometry in our earlier studies (Singh and Lele 1990) which
greater energy than the AB!, AB?, AB®, AB* and AB?® structures. We also nof
AB!, AB? and AB? structures are obtained by eight sublattice division cons
in the present investigation. The other AB stoichiometric structures obtained 1
procedure can also be used to generate ternary structures, for example, A,
A,B,C5 and A,B,C3. It is difficult to predict the stability of these stru
however, ternary additions may possibly stabilize these structures.

Banerjee et al (1988) have recently reported Ti,AINb (space group Cmcm)
which precipitates out from a-Ti,Al (DO, ) base ternary alloy Ti-25 at.%
at.% Nb. They assigned the space group and also determined the atomic po
using convergent beam electron diffraction and channelling microanalysis
result has been confirmed by Mozer et al (1990) using neutron powder diffr
They concluded that ordering causes breaking of the hexagonal syn
accompanied by distortion of the unit cell. A contraction of b and expansic
parameters occurs while ¢ parameters of both phases are the same. This sti
corresponds to our low energy A,B,C3 structure which, as mentioned earli
be derived from the ground state A3B' structure. This former structu
minimum energy for Wz <0, w, >0 and w,>0. This means that all first nei
interchange energies are attractive and stabilize the A,B,C3 structure. It i
that C(Nb) atoms replace some A(Ti) atoms preferentially to stabili:
structure. Hence, if we know the initial binary phase, it is possible to prec
different ternary structures formed by suitable ternary additions.
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7. Conclusions

(i) Nine energetically distinct ground-state ordered structures with the stoichio- ..,
metries 4,,BC, A;B¢C, A1oBC, AsBsC, AsB4C, A¢BC, A,B3C, A;B5C, and A,B,C
have been found.

(ii) Fortyeight ordered structures have been identified in ternary hep alloys on the
basis of a division of the disordered structure into 8 sublattices. : .

(iii) The structures have Bravais lattices which are hexagonal, orthorhomblc or
monoclinic. ‘ .
(iv) Thirteen ordered structures (of 48) have low energies under the assumptions
that the axial ratio is close to ideal and third neighbour 1nterchange energies are
negligible.

(v) Two types of degeneracy have been found. One type of degeneracy occurs for
ideal hcp alloys where only first neighbour interactions are considered. Another .-
degenerate situation occurs with the ground state structures even when third
neighbour interactions are considered.
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