arXiv:solv-int/9704005v1 6 Apr 1997

A (241) dimensional integrable spin model:
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Abstract

A non-isospectral (241) dimensional integrable spin equation is investigated. It is
shown that its geometrical and gauge equivalent counterparts is the (2+1) dimensional
nonlinear Schrédinger equation introduced by Zakharov and studied recently by Stra-
chan. Using a Hirota bilinearised form, line and curved soliton solutions are obtained.
Using certain freedom (arbitrariness) in the solutions of the bilinearised equation, ex-
ponentially localized dromion-like solutions for the potential is found. Also, breaking
soliton solutions (for the spin variables) of the shock wave type and algebraically lo-

calized nature are constructed.
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The nature of (141) dimensional integrable systems is now well understood [1]. On the
other hand, examples of (2+1) dimensional integrable equations solvable by Inverse Scat-
tering Transform method (IST) are fewer in number and such systems are being actively
investigated from different points of view at present [1,2]. An interesting subclass of inte-
grable systems, useful both from the mathematical and physical points of view, is the set
of integrable spin systems. Since the identification of the first integrable spin model twenty
years ago, namely the continuum isotropic Heisenberg spin systems [3,4], several other in-
tegrable spin systems in (141) dimensions have been identified and investigated (see for
example, refs.[5,6]) through geometrical and gauge equivalence concepts and IST method.

Again in (2+1) dimensions, only a small number of integrable spin systems are known,
among which the Ishimori equation (IE) is the most prominent one admitting different
kinds of spin excitations such as solitons, vortices, dromions and so on[2]. Since the spin
equations can also be considered as the nonrelativistic version of O(3) sigma models, which
in turn have wide physical ramifications in (241) dimensions in problems such as high
T, superconductors and quark confinement, construction of any integrable spin model in
higher dimensions assumes considerable significance. Moreover, since the spin systems have
a natural connection with nonlinear Schrodinger family of equations in general, it is relevent
from the soliton theory point of view to establish such connections in (2+1) dimensional
cases also (as in the case of IE and Davey -Stewartson equation).

Recently a new family of integrable and nonintegrable (but admitting exact solitary wave
solutions) (N+1) dimensional (N = 1,2) classical spin models was proposed in refs[7-9]. One

interesting nonlocal integrable spin model is (the so called M-I equation)|[7]
S, = {§A §y+u§}x, (la)

—

u, =—5- (S A S,). (1b)

Here, subscripts stand for partial derivatives, S = (S1, 52, 53) and 52 = S2+r2(S7+52) =1,
r? = 1. As in the case of IE, the quantity



Q- % [ dzdyS - (5.1 5,) @)
may be called the topological charge. Both eq.(1) as well as IE in the (1+1) dimensional case
reduce to one and the same equation - the well known (141) dimensional isotropic classical
continuous Heisenberg ferromagnet model[3]. The Lax representation of eq.(1) was given in
ref.[7] and some of its properties were studied in refs.[8-11]. The aim of this letter is to find
the equivalent (geometrical and gauge) counterpart namely the (2+1) dimensional nonlinear
Schrodinger equation(NLSE) and to obtain physically interesting solutions such as line and
curved solitons, exponentially localized and breaking solitons of eq.(1).

To begin with, let us find the geometrically equivalent counterpart of eq.(1), for r? =1,
that is, when S2 = $2 4+ 52 + S2 = 1. For this purpose, we will extend the geometrical
method applicable to (1+1) dimensional systems suitably to the (241) dimensional case.
We associate a moving space curve parametrised by the arclength x, and endowed with
an additional coordinate y with the spin system[3,15,16]. Then the Serret-Frenet equation

associated with the curve has the form

where

5 = Téi + Hgg (3b)

and €;’s, i = 1,2,3 form the orthogonal trihedral. Mapping the spin on the unit tangent

vector

—

S(z,y,t) = e, (4)

the curvature and the torsion are given by



Due to the orthonormality nature of the trihedral, é€j;.€; = 0, €,.¢; = 0, 4,7 = 1,2,3 and

using the compatibility condition €, = €;,,, we find the equation for the y-part

where 7 = (71,72, 73) and
1 =u+9;'7, (Ta)
Uy
Yo = (76)
K
=0 (= T2, (7c)
K
Now, from eq.(1) and using egs.(3) and (6), we can easily find the time evolution of the
trihedral
with
Q = (w1, ws, ws) = (% — 70,17, —ky, —m@;lfy> : 9)

Ultimately, the compatibility condition €;,; = €}, which is also consistent with the
relation €, = €y, @ = 1,2, 3 yields the following evolution equations for the curvature and

torsion

ke = —(KT)y — K20, 'y, (10a)

T, = [@ — 7O 7, + KRy (100)
K x
On making the complex transformation|3],
t T
vt = "L ey [ [* (ot g yaa], (1)
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the set of equations (10) reduce to the following (2+1) dimensional nonlinear Schrédinger

equation(NLSE)

z.,lvbt = ¢xy + T2V’l7b, (12(1,)

Vo =20, ¢ (120)

Here, 72 = +1, that is, we have the attractive type NLSE (The case > = —1 corresponds
to the repulsive case). Eq.(12) was originally introduced by Zakharov[12] and was recently
rederived by Strachan (for r? = +1)[13]. Its Painlevé property and some exact solutions
were also obtained [14]. N- soliton solutions of eq.(12) for both the cases (r? = 1) can be
found in ref.[17]. Here, we have proved that eq.(12) is equivalent to eq.(1) in the geometrical
sense.

Next, it is always of interest to note that eqs. (1) and (12) are also gauge equivalent in

the sense of Zakharov and Takhtajan[18]. To this end, we write the Lax representation of

eq-(D)[7],

¢12 = U191, (13a)
O1e = Vig1 + g1y, (13b)
where

’ Ss  rS”
0= 2s g7 , (14a)

2 ’I“S+ —Sg

A : n :

Vi= 1 ([S, Syl + 2iusS), S*™ =5 £1iS,. (14b)

Here, ) is the eigen value parameter which satisfies the following equations of Riemann wave

type



It means that for solving eq.(1), we must in general use the non-isospectral IST. To obtain
gauge equivalent counterpart of eq.(1), in the usual way we consider the following gauge

transformation

¢ =g ' ¢o, (16)

where g(z,y,t) and ¢o(z,y,t, A) are temporarily arbitrary matrix functions. Substituting

eq.(16) into eq.(13), after some algebra we get the following system of linear equations for

o5

P22 = Uz o, (17a)
Par = Voo + Ay (170)
with
U2 = QO’g + G, G= s (18&)
2 —r¢ 0
Vs = ioy (g - Gy> . 1= diag(1,1), (18b)
V=200, (1) (18¢)

The compatibility condition of eq.(17) with (15) becomes (12), that is, eq.(1) and eq.(12)
are gauge equivalent to each other. The above transformation is in fact reversible and we
can similarly prove that eq.(12) is gauge equivalent to eq.(1).

The integrable eq.(1) allows an infinite number of integrals of motion. The first two

conservation laws are

Oy S+ Se A Sua| =0, (19a)



2(3- (5. 15,
G2

xT

) —2(82) - 4§§} =0 (19b)

and so on. Next, we present some important formulae which are just consequences of geo-

metrical /gauge equivalence of eqs. (1) and (12). We have

tr(S%) = 8 | 1 |*= 252 (20a)

In a similar manner we find that

~2iS - (S, A Spa) = tr(8:8Su0) = 40 — Y1) (200)

These relations are obviously equivalent to eq.(11). One may note that these are of the same
form as in the case of (141) dimensional Heisenberg chain [3].
Now, we wish to find a class of exact solutions of eq.(1), such as line and curved solitons

as well as exponentially localized solutions. Introducing the stereographic variable

, 2w 1— | w|?
St —6 148, — ¥ g 19l 21
1+ 202 1+‘w|27 3 1+‘w‘27 ( )
eq.(1) takes the form
) 2w ww
i (wp — uwy) + wyy — m =0, (22a)
2i(wwi — wiwy)
Uy + vy TV = 0. (22b)
(I+ [w [?)?
On writing
g
w = ) 23
7 (23)

where g and f are complex valued functions, and after using the Hirota’s D-operators, eq.(22)

becomes



(iDy = Do Dy)(f* 0 g) =0, (24a)

(iDt_Dny) (f*of—g*og) :Oa (246)

D, (f*of+g og)=0, (24c)

while the potential u(z,y,t) is

D,(f*o *o
w(z,y,t) = —i yjffofi;fogg). (24d)

In terms of g and f, the spin field S takes the form

2f*g [ fP—1gl?
St= 27 - Sg=_"" " 25
FP+IaP P TIFP+1gP 29)
and for u(z,y,t) we get the following formula (using the properties of D-operators)
ug(w,y,t) = =205, n (| f > + | g |*). (26)

The construction of the solutions to the M-I equation (1) now becomes standard. One

expands the functions f and g as a power series in the arbitrary parameter e,

9= " g1, [=14> " fon. (27)
n=1

n=0

Substituting these expansions into (24 a,b,c) and equating the coefficients of €” yields

10y + 0,0,) gon1 = — > D'(f35 0 Gom+1), (28a)

k+m=n

[@—%Mﬁfﬁmzn< > B OGmi— Y ﬁ@m&%; (28D)

ni+ns=n—1 mi1+mo=n

ax(fgn - f2n) =D, ( Z g;nl—i-l O G2no+1 — Z f2*n1 © f2n2> ’ (286)

ni+ng=n—1 ni+ns=n



with D' = iD, — D, D,, fo = 0. In order to construct exact N-soliton (line and curved)

solutions (N-SS) of eq.(1), we make the ansatz

N

g1=Y expxj, Xj =Nz +m;(y,t)+c;. (29)
j=1

We note here the important fact that m;(y,t) is an arbitrary complex function of (y,t) of

the form (see eq.(28a))

mj(yv t) = mj(p)> pP=Y + i)\jta (30)

where ); is an arbitrary complex parameter. As an example, we write the forms of g and f

for N=1 as

g1=expxi, fo=-exp2(xar+v), (31)

where

X1 = Xir + ix11, A1 = 0+ i€, my = mar(p) +imar(p), xar = nx + mag(p) + cig,

—)\?
=T+ + i1, ¢ =1In(2n/X), Np=—"1
xir = &z +mar(p) + e, ¢ = In(2n/A]), exp2¢ (A1 + AD)2
mir(p) = Remy(p), mir(p) = Imm(p). (32)
The corresponding 1-SS of eq.(1) takes the form
21 2
S3($,y,t) =1- 772 + 52 sech X1R; (33@)
2 .
S*(x,y,t) = % [i§ — ntanhx:r] sechx1r, (33b)
U
while for the potential
(g 1) = 5 (€ml — ) sech®un (33¢)
n2 +§2

in which the prime has been used to denote the differentiation with respect to the real part
of the arguement. We note that the 1-SS(33) depends on two arbitrary functions mqg(p)

and mys(p) as in the case of some other (2+1) dimensional integrable equations.
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Now for the particular choice,

my = l{:l(y + i)\lt),

where k; is a complex constant, in eq.(33), we get the usual line 1-SS of eq.(1). For fixed
(y.,1), it follows from (33) that S — (0,0,1) as 2 — oo and the wavefront itself is defined
by the equation y1g = nx+mir(p)+c1r = nx+kiy — &t + c1g = 0. For other choices of my,
we can obtain more general solutions. Particularly, we present the dromion type localized
solutions of eq.(1), the so-called induced localized structures/or induced dromions[14] for the
potential u(xz,y,t). This is possible by utilising the freedom in the choice of the arbitrary

functions mir and my;. For example, if we make the ansatz

ma(p) = kmur(p) = tanh(pr), (34)

u=2n(&— n/ﬁ)secthRsech[nx + tanhpr — Ny, (35)

where pr = y — &t and k is a real constant. Similarly, the expressions for the spin can
be obtained from eqs.(33). The solution (35) for u(x,y,t) decays exponentially in all the
directions, eventhough the spin S itself is not fully localized though bounded. Analogously

we can construct another type of “induced dromion” solution with the choice

dpr

miy = KMmig = + my, 36
= = [ e (36)
where pg and my are constants, so that
2n(€ — wy) 2 [ dpr
u(x,y,t) = sech x+/ —Nxo| - 37
(.9.9) (PR + po)* + 1 ! (PR + po)* + 1 o (37)

Generalizations of these solutions are also possible, which will be considered elsewhere.
Finally, we note here that we have a non-isospectral problem, as the spectral parameter

A satisfies eq.(15). The above presented solutions correspond to the constant solution of

eq.(15), that is A = A\; = constant. One may consider other interesting solutions of eq.(15).

For example, one can have a special solution

10



_y+k+in

A=M = T](y,t) + Zg(yvt) - b—+t (38>

where b, k and 7 are real constants. Corresponding to this case, we may call the solutions of
egs. (1) and (12) as breaking solitons[19]. Using the Hirota method, one can also construct

the breaking 1-SS of eq.(1) associated with (38). For this purpose, we take g; in the form

g=g1i=expx, X=ax+m+c=xg+ixr, (39)

where a = a(y,t), m = m(y,t) and ¢ = ¢(t) are functions to be determined. Substituting

(39) into the first of eq.(28a), we get

ia; +aa, =0, imy +am, =0, iA; + Aa, = 0, (40)

where A = exp(c). Particular solutions of eqs.(40) have the forms

_n—ily+k) o — y+k+in A Ao (41)
b—t ’ b—t’

where 7, k, b and Ay are some constants. From eqs. (28 b,c), we obtain

AP (y+k+in)?

= Bexp?2 B = 42
f2 €XP Z2XR, 4772(b — t)2 ( )
Now, we can write the breaking 1-SS of eq.(1) (using equations (25), (39)-(42))
SH,y.1) = 2nexpi(xs + o) (y +3k‘ —in) [(y + k)coshz — insinhz| ’ (430)
[(y + k)2 + 522 cosh?z
21
Ss(z,y,t) =1— h%z, 43b
R (VR e o
where z = ﬁ:ﬂ —Ihnfy+k)?=7nl+¢, ¢ =1In| 7‘402(%%;") L, x1 = —((Z{,J_rf))x +
my (%) We see that the solution (43) corresponds to an algebraically decaying solution

for large x, y.
Finally, we note that eq.(1) is a particular case of the following family of (241) dimen-

sional equation

11



S, ={SAS,+uS}, +F, (44)

where u and F satisfy the eq.(1b) and S F = 0 respectively. Eq.(44) admits many integrable
reductions, for example,

a) the isotropic M-I eq.(1), when F = 0;

b) the anisotropic M-I equation, when F=SAAS, where A = diag(ay, as, az), and

¢) the M-II equation, when F = mvS, + ngy, where v, = k:(§§)y, m, k, n are constants;
and so on. All of these equations are integrable in the sense that the corresponding Lax
representations exist[7] and their gauge equivalent counterparts can be constructed[10](see
also [20]-[21]). So further studies of them will give more insight into the structure of nonlinear

spin excitations in (2+1) dimensions.
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