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A (2+1) dimensional integrable spin model:
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Abstract

A non-isospectral (2+1) dimensional integrable spin equation is investigated. It is

shown that its geometrical and gauge equivalent counterparts is the (2+1) dimensional

nonlinear Schrödinger equation introduced by Zakharov and studied recently by Stra-

chan. Using a Hirota bilinearised form, line and curved soliton solutions are obtained.

Using certain freedom (arbitrariness) in the solutions of the bilinearised equation, ex-

ponentially localized dromion-like solutions for the potential is found. Also, breaking

soliton solutions (for the spin variables) of the shock wave type and algebraically lo-

calized nature are constructed.
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The nature of (1+1) dimensional integrable systems is now well understood [1]. On the

other hand, examples of (2+1) dimensional integrable equations solvable by Inverse Scat-

tering Transform method (IST) are fewer in number and such systems are being actively

investigated from different points of view at present [1,2]. An interesting subclass of inte-

grable systems, useful both from the mathematical and physical points of view, is the set

of integrable spin systems. Since the identification of the first integrable spin model twenty

years ago, namely the continuum isotropic Heisenberg spin systems [3,4], several other in-

tegrable spin systems in (1+1) dimensions have been identified and investigated (see for

example, refs.[5,6]) through geometrical and gauge equivalence concepts and IST method.

Again in (2+1) dimensions, only a small number of integrable spin systems are known,

among which the Ishimori equation (IE) is the most prominent one admitting different

kinds of spin excitations such as solitons, vortices, dromions and so on[2]. Since the spin

equations can also be considered as the nonrelativistic version of O(3) sigma models, which

in turn have wide physical ramifications in (2+1) dimensions in problems such as high

Tc superconductors and quark confinement, construction of any integrable spin model in

higher dimensions assumes considerable significance. Moreover, since the spin systems have

a natural connection with nonlinear Schrödinger family of equations in general, it is relevent

from the soliton theory point of view to establish such connections in (2+1) dimensional

cases also (as in the case of IE and Davey -Stewartson equation).

Recently a new family of integrable and nonintegrable (but admitting exact solitary wave

solutions) (N+1) dimensional (N = 1,2) classical spin models was proposed in refs[7-9]. One

interesting nonlocal integrable spin model is (the so called M-I equation)[7]

~St = {~S ∧ ~Sy + u~S}x, (1a)

ux = −~S ·
(

~Sx ∧ ~Sy

)

. (1b)

Here, subscripts stand for partial derivatives, ~S = (S1, S2, S3) and ~S2 = S2
3 +r2(S2

1 +S2
2) = 1,

r2 = ±1. As in the case of IE, the quantity

2



Q =
1

4π

∫

dxdy~S ·
(

~Sx ∧ ~Sy

)

(2)

may be called the topological charge. Both eq.(1) as well as IE in the (1+1) dimensional case

reduce to one and the same equation - the well known (1+1) dimensional isotropic classical

continuous Heisenberg ferromagnet model[3]. The Lax representation of eq.(1) was given in

ref.[7] and some of its properties were studied in refs.[8-11]. The aim of this letter is to find

the equivalent (geometrical and gauge) counterpart namely the (2+1) dimensional nonlinear

Schrödinger equation(NLSE) and to obtain physically interesting solutions such as line and

curved solitons, exponentially localized and breaking solitons of eq.(1).

To begin with, let us find the geometrically equivalent counterpart of eq.(1), for r2 = 1,

that is, when ~S2 = S2
1 + S2

2 + S2
3 = 1. For this purpose, we will extend the geometrical

method applicable to (1+1) dimensional systems suitably to the (2+1) dimensional case.

We associate a moving space curve parametrised by the arclength x, and endowed with

an additional coordinate y with the spin system[3,15,16]. Then the Serret-Frenet equation

associated with the curve has the form

~eix = ~D ∧ ~ei, (3a)

where

~D = τ~e1 + κ~e3 (3b)

and ~ei’s, i = 1, 2, 3 form the orthogonal trihedral. Mapping the spin on the unit tangent

vector

~S(x, y, t) = ~e1, (4)

the curvature and the torsion are given by

κ(x, y, t) = (~S2
x)

1

2 , (5a)

τ(x, y, t) = κ−2~S · (~Sx ∧ ~Sxx). (5b)
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Due to the orthonormality nature of the trihedral, ~eit.~ei = 0, ~eiy.~ei = 0, i, j = 1, 2, 3 and

using the compatibility condition ~eixy = ~eiyx, we find the equation for the y-part

~eiy = ~γ ∧ ~ei, (6)

where ~γ = (γ1, γ2, γ3) and

γ1 = u+ ∂−1
x τy, (7a)

γ2 = −
ux

κ
, (7b)

γ3 = ∂−1
x

(

κy −
τux

κ

)

. (7c)

Now, from eq.(1) and using eqs.(3) and (6), we can easily find the time evolution of the

trihedral

~eit = ~ω ∧ ~ei, (8)

with

~Ω = (ω1, ω2, ω3) =
(

κxy

κ
− τ∂−1

x τy,−κy,−κ∂
−1
x τy

)

. (9)

Ultimately, the compatibility condition ~eixt = ~eitx, which is also consistent with the

relation ~eiyt = ~eity, i = 1, 2, 3 yields the following evolution equations for the curvature and

torsion

κt = −(κτ)y − κx∂
−1
x τy, (10a)

τt =
[

κxy

κ
− τ∂−1

x τy

]

x

+ κκy. (10b)

On making the complex transformation[3],

ψ(x, y, t) =
κ(x, y, t)

2
exp

[

−i
∫ x

−∞

τ(x′, y, t)dx′
]

, (11)
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the set of equations (10) reduce to the following (2+1) dimensional nonlinear Schrödinger

equation(NLSE)

iψt = ψxy + r2V ψ, (12a)

Vx = 2∂y| ψ |2. (12b)

Here, r2 = +1, that is, we have the attractive type NLSE (The case r2 = −1 corresponds

to the repulsive case). Eq.(12) was originally introduced by Zakharov[12] and was recently

rederived by Strachan (for r2 = +1)[13]. Its Painlevé property and some exact solutions

were also obtained [14]. N - soliton solutions of eq.(12) for both the cases (r2 = ±1) can be

found in ref.[17]. Here, we have proved that eq.(12) is equivalent to eq.(1) in the geometrical

sense.

Next, it is always of interest to note that eqs. (1) and (12) are also gauge equivalent in

the sense of Zakharov and Takhtajan[18]. To this end, we write the Lax representation of

eq.(1)[7],

φ1x = U1φ1, (13a)

φ1t = V1φ1 + λφ1y, (13b)

where

U1 =
iλ

2
S, S =





S3 rS−

rS+ −S3



 , (14a)

V1 =
λ

4
([S, Sy] + 2iuS) , S± = S1 ± iS2. (14b)

Here, λ is the eigen value parameter which satisfies the following equations of Riemann wave

type

λt = λλy. (15)
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It means that for solving eq.(1), we must in general use the non-isospectral IST. To obtain

gauge equivalent counterpart of eq.(1), in the usual way we consider the following gauge

transformation

φ1 = g−1φ2, (16)

where g(x, y, t) and φ2(x, y, t, λ) are temporarily arbitrary matrix functions. Substituting

eq.(16) into eq.(13), after some algebra we get the following system of linear equations for

φ2

φ2x = U2φ2, (17a)

φ2t = V2φ2 + λφ2y (17b)

with

U2 =
iλ

2
σ3 +G, G =





0 φ

−r2φ 0



 , (18a)

V2 = iσ3

(

V I

2
−Gy

)

, I = diag(1, 1), (18b)

V = 2∂−1
x ∂y

(

| ψ |2
)

(18c)

The compatibility condition of eq.(17) with (15) becomes (12), that is, eq.(1) and eq.(12)

are gauge equivalent to each other. The above transformation is in fact reversible and we

can similarly prove that eq.(12) is gauge equivalent to eq.(1).

The integrable eq.(1) allows an infinite number of integrals of motion. The first two

conservation laws are

(

~S2
x

)

t
+

1

4
∂x







~S2
x∂

−1
x





~S · ~Sx ∧ ~Sxx

~S2
x





y





+

1

4
∂y

[

~S · ~Sx ∧ ~Sxx

]

= 0, (19a)
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[

~S ·
(

~Sx ∧ ~Sxx

)]

t
+

1

2
∂x





(~S2
x)x(~S

2
x)y

4
+ ~S ·

(

~Sx ∧ ~Sxx

)

∂−1
x

(

~S ·
(

~Sx ∧ ~Sxx

))

y





+∂y











(~S2
x)

2
x +

2
(

~S ·
(

~Sx ∧ ~Sxx

))2

~S2
x

− 2
(

~S2
x

)

xx
− 4~S4

x











= 0 (19b)

and so on. Next, we present some important formulae which are just consequences of geo-

metrical/gauge equivalence of eqs. (1) and (12). We have

tr(S2
x) = 8 | ψ |2= 2~S2

x. (20a)

In a similar manner we find that

−2i~S · (~Sx ∧ ~Sxx) = tr(SxSSxx) = 4(ψψ∗

x − ψ∗ψx). (20b)

These relations are obviously equivalent to eq.(11). One may note that these are of the same

form as in the case of (1+1) dimensional Heisenberg chain [3].

Now, we wish to find a class of exact solutions of eq.(1), such as line and curved solitons

as well as exponentially localized solutions. Introducing the stereographic variable

S+ = S1 + iS2 =
2ω

1+ | ω |2
, S3 =

1− | ω |2

1+ | ω |2
, (21)

eq.(1) takes the form

i (ωt − uωx) + ωxy −
2ω∗ωxωy

(1+ | ω |2)
= 0, (22a)

ux +
2i(ωxω

∗

y − ω∗

xωy)

(1+ | ω |2)2
= 0. (22b)

On writing

ω =
g

f
, (23)

where g and f are complex valued functions, and after using the Hirota’s D-operators, eq.(22)

becomes
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(iDt −DxDy)(f
∗ ◦ g) = 0, (24a)

(iDt −DxDy) (f ∗ ◦ f − g∗ ◦ g) = 0, (24b)

Dx (f ∗ ◦ f + g∗ ◦ g) = 0, (24c)

while the potential u(x, y, t) is

u(x, y, t) = −i
Dy (f ∗ ◦ f + g∗ ◦ g)

f ∗ ◦ f + g∗ ◦ g
. (24d)

In terms of g and f , the spin field ~S takes the form

S+ =
2f ∗g

| f |2 + | g |2
, S3 =

| f |2 − | g |2

| f |2 + | g |2
(25)

and for u(x, y, t) we get the following formula (using the properties of D-operators)

ux(x, y, t) = −2i∂2
xy ln (| f |2 + | g |2). (26)

The construction of the solutions to the M-I equation (1) now becomes standard. One

expands the functions f and g as a power series in the arbitrary parameter ǫ,

g =
∞
∑

n=0

ǫ2n+1g2n+1, f = 1 +
∞
∑

n=1

ǫ2nf2n. (27)

Substituting these expansions into (24 a,b,c) and equating the coefficients of ǫn yields

[i∂t + ∂x∂y] g2n+1 = −
∑

k+m=n

D′(f ∗

2x ◦ g2m+1), (28a)

[

i∂t − ∂2
xy

]

(f ∗

2n − f2n) = D′





∑

n1+n2=n−1

g∗2n1+1 ◦ g2n2+1 −
∑

m1+m2=n

f ∗

2m1
◦ f2m2



 , (28b)

∂x(f
∗

2n − f2n) = Dx





∑

n1+n2=n−1

g∗2n1+1 ◦ g2n2+1 −
∑

n1+n2=n

f ∗

2n1
◦ f2n2



 , (28c)

8



with D′ = iDt − DxDy, f0 = 0. In order to construct exact N-soliton (line and curved)

solutions (N-SS) of eq.(1), we make the ansatz

g1 =
N
∑

j=1

expχj, χj = λjx+mj(y, t) + cj . (29)

We note here the important fact that mj(y, t) is an arbitrary complex function of (y, t) of

the form (see eq.(28a))

mj(y, t) = mj(ρ), ρ = y + iλjt, (30)

where λj is an arbitrary complex parameter. As an example, we write the forms of g and f

for N=1 as

g1 = expχ1, f2 = exp 2(χ1R + ψ), (31)

where

χ1 = χ1R + iχ1I , λ1 = η + iξ,m1 = m1R(ρ) + im1I(ρ), χ1R = ηx+m1R(ρ) + c1R,

χ1I = ξx+m1I(ρ) + c1I , c = ln(2η/λ∗1), exp 2ψ =
−λ2

1

(λ1 + λ∗1)
2
,

m1R(ρ) = Rem1(ρ), m1I(ρ) = Imm1(ρ). (32)

The corresponding 1-SS of eq.(1) takes the form

S3(x, y, t) = 1 −
2η2

η2 + ξ2
sech2χ1R, (33a)

S+(x, y, t) =
2η

η2 + ξ2
[iξ − ηtanhχ1R] sechχ1R, (33b)

while for the potential

u(x, y, t) =
2η

η2 + ξ2
(ξm′

1R − ηm′

1I) sech
2χ1R (33c)

in which the prime has been used to denote the differentiation with respect to the real part

of the arguement. We note that the 1-SS(33) depends on two arbitrary functions m1R(ρ)

and m1I(ρ) as in the case of some other (2+1) dimensional integrable equations.
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Now for the particular choice,

m1 = k1(y + iλ1t),

where k1 is a complex constant, in eq.(33), we get the usual line 1-SS of eq.(1). For fixed

(y, t), it follows from (33) that ~S → (0, 0, 1) as x → ±∞ and the wavefront itself is defined

by the equation χ1R = ηx+m1R(ρ)+ c1R = ηx+k1y− ξt+ c1R = 0. For other choices of m1,

we can obtain more general solutions. Particularly, we present the dromion type localized

solutions of eq.(1), the so-called induced localized structures/or induced dromions[14] for the

potential u(x, y, t). This is possible by utilising the freedom in the choice of the arbitrary

functions m1R and m1I . For example, if we make the ansatz

m1I(ρ) = κm1R(ρ) = tanh(ρR), (34)

u = 2η(ξ − ηκ)sech2ρRsech[ηx+ tanhρR − ηx0], (35)

where ρR = y − ξt and k is a real constant. Similarly, the expressions for the spin can

be obtained from eqs.(33). The solution (35) for u(x, y, t) decays exponentially in all the

directions, eventhough the spin ~S itself is not fully localized though bounded. Analogously

we can construct another type of “induced dromion” solution with the choice

m1I = κm1R =
∫

dρR

(ρR + ρ0)2 + 1
+m0, (36)

where ρ0 and m0 are constants, so that

u(x, y, t) =
2η(ξ − κy)

(ρR + ρ0)2 + 1
sech2

[

ηx+
∫ dρR

(ρR + ρ0)2 + 1
− ηx0

]

. (37)

Generalizations of these solutions are also possible, which will be considered elsewhere.

Finally, we note here that we have a non-isospectral problem, as the spectral parameter

λ satisfies eq.(15). The above presented solutions correspond to the constant solution of

eq.(15), that is λ = λ1 = constant. One may consider other interesting solutions of eq.(15).

For example, one can have a special solution
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λ = λ1 = η(y, t) + iξ(y, t) =
y + k + iη

b− t
, (38)

where b, k and η are real constants. Corresponding to this case, we may call the solutions of

eqs. (1) and (12) as breaking solitons[19]. Using the Hirota method, one can also construct

the breaking 1-SS of eq.(1) associated with (38). For this purpose, we take g1 in the form

g = g1 = expχ, χ = ax+m+ c = χR + iχI , (39)

where a = a(y, t), m = m(y, t) and c = c(t) are functions to be determined. Substituting

(39) into the first of eq.(28a), we get

iat + aay = 0, imt + amy = 0, iAt + Aay = 0, (40)

where A = exp(c). Particular solutions of eqs.(40) have the forms

a = −iλ =
η − i(y + k)

b− t
, m = m

(

y + k + iη

b− t

)

, A =
A0

b− t
, (41)

where η, k, b and A0 are some constants. From eqs. (28 b,c), we obtain

f2 = B exp 2χR, B =
| A0 |

2 (y + k + iη)2

4η2(b− t)2
. (42)

Now, we can write the breaking 1-SS of eq.(1) (using equations (25), (39)-(42))

S+(x, y, t) =
2η exp i(χI + φ)(y + k − iη)

[(y + k)2 + η2]
3

2

[(y + k)coshz − iηsinhz]

cosh2z
, (43a)

S3(x, y, t) = 1 −
2η2

[(y + k)2 + η2]
sech2z, (43b)

where z = η
(b−t)

x − 1
2
ln [(y + k)2 − η2] + ψ, ψ = ln | A0(y+k+iη)

2η(b−t)
|, χI = − (y+k)

(b−t)
x +

mI

(

y+k+iη
b−t

)

. We see that the solution (43) corresponds to an algebraically decaying solution

for large x, y.

Finally, we note that eq.(1) is a particular case of the following family of (2+1) dimen-

sional equation
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~St = {~S ∧ ~Sy + u~S}x + ~F , (44)

where u and ~F satisfy the eq.(1b) and ~S · ~F = 0 respectively. Eq.(44) admits many integrable

reductions, for example,

a) the isotropic M-I eq.(1), when ~F = 0;

b) the anisotropic M-I equation, when ~F = ~S ∧ A~S, where A = diag(a1, a2, a3), and

c) the M-II equation, when ~F = mv~Sx + n~Sy, where vx = k(~S2
x)y, m, k, n are constants;

and so on. All of these equations are integrable in the sense that the corresponding Lax

representations exist[7] and their gauge equivalent counterparts can be constructed[10](see

also [20]-[21]). So further studies of them will give more insight into the structure of nonlinear

spin excitations in (2+1) dimensions.
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