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On the complete integrability and
linearization of nonlinear ordinary differential

equations. II. Third-order equations

BY V. K. CHANDRASEKAR, M. SENTHILVELAN AND M. LAKSHMANAN*

Department of Physics, Centre for Nonlinear Dynamics,
Bharathidasan University, Tiruchirapalli 620 024, India

We introduce a method for finding general solutions of third-order nonlinear differential
equations by extending the modified Prelle–Singer method. We describe a procedure to
deduce all the integrals of motion associated with the given equation, so that the general
solution follows straightforwardly from these integrals. The method is illustrated
with several examples. Further, we propose a powerful method of identifying linearizing
transformations. The proposed method not only unifies all the known linearizing
transformations systematically but also introduces a new and generalized
linearizing transformation. In addition to the above, we provide an algorithm to invert
the non-local linearizing transformation. Through this procedure the general solution for
the original nonlinear equation can be obtained from the solution of the linear ordinary
differential equation.

Keywords: integrability; integrating factor; linearization; equivalence problem
*A

Rec
Acc
1. Introduction

In a previous paper (Chandrasekar et al. 2005) we have discussed the complete
integrability aspects of a class of second-order nonlinear ordinary differential
equations (ODEs) through a non-trivial extension of the so-called Prelle–Singer
(PS) (Prelle & Singer 1983; Duarte et al. 2001) procedure. We have illustrated
the procedure with several physically interesting nonlinear oscillator examples.
We have also developed a straightforward algorithmic way to transform the
given second-order nonlinear ODE to a linear free particle equation, if it is
linearizable.

One of the questions raised at the final stage of our earlier work (Chandrasekar
et al. 2005) was what are the implications of the novel features which we
introduced in the extended PS procedure to obtain the second constant of motion
(in the case of second-order ODEs) to third and higher-order ODEs. To have a
closer look at the problem, let us recall our earlier work briefly here. We
considered a second-order ODE of the form d2x=dt2ZPðt; x; _xÞ=Qðt; x; _xÞ,
P;Q2C½t; x; _x�, and explored two pairs of independent functions, say, Ri and
Si, iZ1, 2, associated with the underlying ODE. These functions are nothing but
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the integrating factors and null forms, respectively. Once these two pairs of
functions are determined (by solving an overdetermined system of first-order
partial differential equations (PDEs)), then each pair leads to an independent
integral of motion, which can then be used to find the general solution for the
given equation. Thus, instead of integrating the first integral and obtaining
the general solution which is conventionally followed in the literature, we
implemented some novel ideas in the PS method, such that one can construct the
general solution for the given equation in a self-contained way and, in fact, our
procedure works for a class of problems.

In the case of third-order ODEs, one should have three independent integrals
of motion in order to establish the complete integrability. To deduce these three
integrals, one should have three pairs of independent functions (Ri, Ui and Si),
iZ1, 2, 3. When we extend the PS procedure to third-order ODEs, we find
that the determining equations for the integrating factors and null forms
straightforwardly provide either one or two integrals of motion only. Again the
hidden form of the functions (R3, U3, S3) should be explored in order to establish
the complete integrability of the given equation within the framework of PS
procedure. In this paper we describe a procedure to capture the required set of
functions. With the completion of this task we formulate a simple, straightforward
and powerful method to solve a wide class of third-order ODEs of contemporary
literature.

We stress at this point that the application of PS procedure to third-order
ODEs is not a straightforward extension of the second-order case. In fact, one has
to overcome many faceted problems. The first and foremost one is how to solve
the determining equations in such a way that one could obtain three sets of
independent functions, namely, (Ri, Ui ,Si), iZ1, 2, 3, in a systematic way. In the
present case we have six equations for three unknown functions (in the case of
second-order equations we have three equations for two unknowns). We
overcome this problem by adopting suitable methodologies, the details of
which we present in §3. Another obstacle one could face in higher-order ODEs, at
least in some cases, is that one may be able to get only one integral of motion
and, in this situation, how one would be able to generate the remaining integrals
of motion from the first integral is also tackled by us in this paper.

Our main goal, besides the above, is to bring out a novel and straightforward
way to construct linearizing transformations for third-order ODEs. The latter
can be used to transform the given third-order nonlinear ODEs to a linear
equation. We note that unlike the second-order equations, the third-order ODEs
can be linearized through different kinds of transformations, namely, invertible
point transformation (Ibragimov & Meleshko 2005), contact transformation
(Bocharov et al. 1993; Ibragimov & Meleshko 2005) and generalized Sundman
transformation (Berkovich & Orlova 2000; Euler et al. 2003; Euler & Euler 2004).

In this paper we introduce a new kind of transformation, which can be
effectively used to linearize a class of nonlinear third-order ODEs. In fact, one
can linearize certain equations only through this transformation alone and not
by the known ones in the literature. We call this transformation generalized
linearizing transformation (GLT). We note that generalized Sundman trans-
formation is a special case of this transformation. In the generalized Sundman
transformation, the new independent variable is a non-local one, and so even
though one is able to transform the given nonlinear third-order ODE to a linear
Proc. R. Soc. A (2006)

http://rspa.royalsocietypublishing.org/


1833Integrability and linearization

 on October 22, 2010rspa.royalsocietypublishing.orgDownloaded from 
one, due to the nature of the non-local independent variable, it is not easy to
write down the general solution. In the case of GLT, both the new dependent
and independent variables also contain derivative terms in addition to the
independent variable being non-local. Even for this general case, in this paper, we
succeed in presenting an efficient algorithm to deduce the general solution.

Another fundamental problem regarding linearization is how to deduce the
linearizing transformations systematically. Generally, Lie symmetry analysis and
direct methods are often used to deduce the point and contact transformations
(Steeb 1993; Bocharov et al. 1993; Olver 1995; Bluman & Anco 2002; Ibragimov
& Meleshko 2005). In this work we propose a simple and straightforward method
to deduce linearizing transformations and we derive them from the first integral.
Our method of deducing linearizing transformations has several salient features.
Irrespective of the form of the linearizing transformation (point/contact/
generalized Sundman transformation), it can be derived from the first integral
itself. We also note that one can also linearize a third-order ODE to the second-
order free particle equation through our method. An added advantage of our
method is that suppose a given equation is linearizable through one or more kinds
of transformations, then our procedure provides all these transformations in a
straightforward way and as far as our knowledge goes no such single method has
been formulated in the literature.

The plan of the paper is as follows. In §2, we extend the PS procedure to third-
order ODEs and indicate new features in finding the three independent integrals
of motion. In §3, we describe the methods of solving the determining equations
and how one can obtain compatible solutions from them. We illustrate the
procedure with several examples. In §4, we propose a powerful method of
identifying linearizing transformations. This method not only brings out all the
known transformations systematically, but also a new GLT for the third-order
ODEs. We emphasize the validity of the method with several illustrative
examples arising in different areas of mathematics and physics in §5. We present
our conclusions in §6.
2. Prelle–Singer method for third-order ODEs

(a ) General theory

Let us consider a class of third-order ODEs of the form

fflx Z
P

Q
; P;Q2C½t; x; _x; €x � $Z

d

dt

� �
; ð2:1Þ

where the overdot denotes differentiation with respect to time and P and Q are
polynomials in t, x, _x and €x with coefficients in the field of complex numbers, C.
Let us assume that the third-order ODE (2.1) admits a first integral
I ðt; x; _x; €xÞZC , with C being constant on the solutions, so that the total
differential of I gives

dI Z It dtCIx dxCI _x d _xCI€x d€x Z 0; ð2:2Þ
where each subscript denotes partial differentiation with respect to that variable.
Equation (2.1) can be rewritten as ðP=QÞdtKd€xZ0. Now adding the null terms
Proc. R. Soc. A (2006)
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Uðt; x; _x; €xÞ€x dtKUðt; x; _x; €xÞd _x and Sðt; x; _x; €xÞ _x dtKSðt; x; _x; €xÞdx to this we
obtain that, in the solutions, the one-form

P

Q
CS _xCU €x

� �
dtKS dxKU d _xKd€x Z 0: ð2:3Þ

Looking at equations (2.2) and (2.3) one can conclude that, in the solutions,
these two forms are proportional and the form of equation (2.3) is equivalent to
equation (2.2), except for an overall multiplication factor. Thus, multiplying
equation (2.3) by the factor Rðt; x; _x; €xÞ which acts as the integrating factor for
(2.3), we have in the solutions that

dI ZRðfCS _xCU €xÞdtKRS dxKRU d _xKR d€x Z 0; ð2:4Þ

where fhP/Q. Comparing equation (2.2) with (2.4) we have the following
relations in the solutions:

It ZRðfCS _xCU €xÞ; Ix ZKRS; I _x ZKRU ; I€x ZKR: ð2:5Þ

Now imposing the compatibility conditions, ItxZIxt, It _xZI _xt, It€xZI€x t,
Ix _xZI _xx , Ix€xZI€xx , I _x€xZI€x _x , which exist between equations (2.5), we have the
following equations which constitute three determining equations ((2.6)–(2.8))
for the functions S, U and R along with three constraints ((2.9)–(2.11)) that they
need to satisfy:

D½S�ZKfx CSf€x CUS; ð2:6Þ

D½U �ZKf _x CUf€xKSCU 2; ð2:7Þ

D½R�ZKRðU Cf€x Þ; ð2:8Þ

Rx ZR€x SCRS€x ; ð2:9Þ

R _xS ZKRS _x CRxU CRUx ; ð2:10Þ

R _x ZR€xU CRU€x ; ð2:11Þ

where

DZ
v

vt
C _x

v

vx
C €x

v

v _x
Cf

v

v€x
: ð2:12Þ

The task of solving equations (2.6)–(2.11) can be accomplished in the following
way. Substituting the given expression of f into (2.6) and (2.7) and solving them
one can obtain expressions for S and U. With the known U, equation (2.8)
becomes the determining equation for the function R. Solving the latter one can
get an explicit form for R. Compatible solutions to equations (2.6)–(2.8) can also
be obtained in alternative ways, the details of which are given in §3.

Now the functions R, U and S have to satisfy an extra set of constraints, i.e.
equations (2.9)–(2.11). Suppose a compatible solution satisfying all the equations
has been found, then the functions R, U and S fix the differential invariant
Proc. R. Soc. A (2006)
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I ðt; x; _x; €xÞ by the relation

I ðt; x; _x; €xÞZ r1Kr2K

ð
RU C

d

d _x
½r1Kr2�

� �
d _x

K

ð
RC

d

d€x
r1Kr2K

ð
RU C

d

d _x
½r1Kr2�

� �
d _x

� �� �
d€x ; ð2:13Þ

where

r1 Z

ð
RðfCS _xCU €xÞdt; r2 Z

ð
RSC

d

dx

ð
r1

� �
dx:

Equation (2.13) can be derived straightforwardly by integrating equations (2.5).
Here it is to be noted that for every independent set (S, U, R), equation (2.13)
defines an integral.
(b ) Exploring the complete form of R: theory

From the above discussion, it is clear that equation (2.1) may be considered as
completely integrable once we obtain three independent sets of the solutions
(Si, Ui, Ri), iZ1, 2, 3, which provide three independent integrals of motion
through the relation (2.13). Here we note that since we are solving equations
(2.6)–(2.8) first and then checking the compatibility of this solution with
equations (2.9)–(2.11), one often meets the situation that all the solutions which
satisfy equations (2.6)–(2.8) need not satisfy the constraints (2.9)–(2.11), since
equations (2.6)–(2.11) constitute an overdetermined system for the unknowns R,
S and U. In fact, for a class of problems one often gets one or two sets of S, U, R,
which satisfy all equations (2.6)–(2.11) and another(other) set(s) (S, U, R),
which satisfies(satisfy) only the first three equations and not the other, namely,
(2.9)–(2.11). In this situation we find an interesting fact that one can use the
integral(s) derived from the set(s) which satisfies(satisfy) all the six equations
(2.6)–(2.11) and deduce the other compatible solution(s) ðS;U ; R̂Þ (definition of
R̂ follows). For example, let the set (S3, U3, R3) be a solution of the determining
equations (2.6)–(2.8) and not of the constraints (2.9)–(2.11). After analysing
several examples we find that one can make the set (S3, U3, R3) compatible by
modifying the form of R3 as

R̂3 ZFðt; x; _x; €xÞR3; ð2:14Þ

where R̂3 satisfies equation (2.8), so that we have

ðFt C _xFx C €xF _x CfF€x ÞR3 CF D½R3�ZKFR3ðU3 Cf _xÞ: ð2:15Þ
Further, if F is a constant of motion (or a function of it), then the first term on
the left-hand side vanishes and one gets the same equation (2.8) for R3, provided
F is non-zero. That is, whenever F is a constant of motion or a function of it, then
the solution to (2.8) may provide only a factor of the complete solution R̂3

without the factor F in equation (2.14). This general form of R̂3 along with S3
and U3 can now provide a complete solution to equations (2.6)–(2.11) as discussed
below.
Proc. R. Soc. A (2006)
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(c ) Exploring the complete form of R: method

Now if the sets (Si, Ui, Ri), iZ1, 2 are found to satisfy equations (2.6)–(2.11)
and the third set (S3, U3, R3) does not satisfy equations (2.9)–(2.11), then F may
be a function of the integrals Ii, iZ1, 2, derived from the sets (Si, Ui, Ri), iZ1, 2.
We need to find the explicit form of F(I1, I2) in order to obtain the compatible
solution (S3, U3, R3). To do so let us find the derivatives of R̂3 with respect to x, _x
and €x :

R̂3x Z ðF 0
1I1x CF 0

2I2xÞR3CFR3x ; R̂3 _x Z ðF 0
1I1 _x CF 0

2I2 _xÞR3CFR3 _x ;

R̂3€x Z ðF 0
1I1€x CF 0

2I2€x ÞR3CFR3€x ;

)
ð2:16Þ

where F 0
1ZvF=vI1 and F 0

2ZvF=vI2. Substituting equation (2.16) into equations
(2.9)–(2.11), we have

ðf1F 0
1 C f2F

0
2Þ

f3
Z

F

R3

;
ðf4F 0

1 C f5F
0
2Þ

f6
Z

F

R3

;
ðf7F 0

1 C f8F
0
2Þ

f9
Z

F

R3

; ð2:17aÞ

where

f1ZðI1xKI1€x S3Þ; f2ZðI2xKI2€x S3Þ; f3ZðS3R3€xCR3S3€xKR3xÞ;
f4ZðI1 _xKI1€xU3Þ; f5ZðI2 _xKI2€xU3Þ; f6ZðU3R3€xCR3U3€xKR3 _xÞ;

f7ZðS3I1 _xKI1xU3Þ; f8ZðS3I2 _xKI2xU3Þ; f9ZðR3U3xCU3R3xKR3S3 _xKS3R3 _xÞ:

9>>>=
>>>;

ð2:17bÞ
Equation (2.17a) represents an overdetermined system of equations for the
unknown F. A simple way to solve this equation is to uncouple it for F 0

1ðZvF=vI1Þ
and F 0

2ðZvF=vI2Þ and solve the resultant equations. For example, eliminating F 0
2

from equation (2.17a) we obtain equations for F 0
1 in the form

R3F
0
1

F
Z

ðf3f5Kf2f6Þ
ðf1f5Kf2f4Þ

Z
ðf3f8Kf2f9Þ
ðf1f8Kf2f7Þ

Z
ðf6f8Kf5f9Þ
ðf4f8Kf5f7Þ

: ð2:18Þ

On the other hand, eliminating F 0
1 from equation (2.17a) we arrive at equations for

F 0
2 in the form

R3F
0
2

F
Z

ðf3f4Kf1f6Þ
ðf2f4Kf1f5Þ

Z
ðf3f7Kf1f9Þ
ðf2f7Kf1f8Þ

Z
ðf6f7Kf4f9Þ
ðf5f7Kf4f8Þ

: ð2:19Þ

It can be easily cheeked that the compatibility of the right three expressions in
equations (2.18) or (2.19) gives rise to relations which are effectively nothing but
the constraint equations (2.9)–(2.11) and so no new constraint is added now.
Consequently, equations (2.18) and (2.19) can be written as

vF

vI1
ZgðI1;I2ÞF and

vF

vI2
ZhðI1;I2ÞF; ð2:20Þ

respectively, where gðI1;I2ÞZ1=R3ððf3f5Kf2f6Þ=ðf1f6Kf3f4ÞÞ and hðI1;I2ÞZ1=R3!
ððf3f4Kf1f6Þ=ðf2f4Kf1f5ÞÞ. Now we can solve equations (2.20) and obtain the form
of F(I1, I2). This is demonstrated for several examples in the following sections
Proc. R. Soc. A (2006)
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explicitly. Once F is known we can obtain the complete solution R̂3 from which,
along with S3 and U3, the third integral I3 can be constructed. Thus, with the
explicit forms of the three integrals of motion, the complete integrability of equation
(2.1) is guaranteed.

Finally, if the set (S1, U1, R1) alone is found to satisfy equations (2.6)–(2.11)
and the second set (S2, U2, R2) also does not satisfy equations (2.9)–(2.11), then
F may be a function of the integral I1 alone which was derived from the set
(S1, U1, R1). We need to find the explicit form of F(I1) in order to obtain the
compatible solution (S2, U2, R2). To do so let us find the derivatives of R̂2 with
respect to x, _x and €x :

R̂2x ZF 0
1I1xR2 CFR2x ; R̂2 _x ZF 0

1I1 _xR2 CFR2 _x ; R̂2€x ZF 0
1I1€xR2 CFR2€x ;

ð2:21Þ
where F 0

1ZvF=vI1. Substituting equation (2.21) into equations (2.9)–(2.11), we
have

R2F
0
1

F
Z

s2
s1

Z
s4
s3

Z
s6
s5

; ð2:22aÞ

where

s1 Z ðI1xKI1€x S2Þ; s2 Z ðS2R2€x CR2S2€xKR2xÞ;
s3 Z ðI1 _xKI1€xU2Þ; s4 Z ðU2R2€x CR2U2€xKR2 _xÞ;
s5 Z ðS2I1 _xKI1xU2Þ; s6 Z ðR2U2x CU2R2xKR2S2 _xKS2R2 _xÞ:

9>=
>; ð2:22bÞ

One can again check that the compatibility of the right three expressions in
equation (2.22a) leads to a condition which is deducible from (2.9)–(2.11), and so
no new condition is introduced in reality. Then rewriting equation (2.22a) as

vF

vI1
Z

1

R2

s2
s1

� �
F Z gðI1ÞF ; ð2:23Þ

and solving it, one can obtain an explicit expression for F. Once F is known we
can construct the complete form of R̂2 from which, along with S2 and U2, the
second integral of motion can be obtained. Once I1 and I2 are known, we can
proceed to find the third compatible set (S3, U3, R3) as before and obtain the
third integral I3 to establish complete integrability.
3. Methods of finding the explicit form of R

In §2 we outlined the method of solving the determining equations. However, in
practice, it is difficult to solve equations (2.6)–(2.8) straightforwardly as they
constitute a set of coupled first-order nonlinear PDEs. So one has to look for
some intuitive ideas to solve these equations. We solve them and obtain the
forms R, U and S in the following way. For this purpose, we observe the
important fact that when we rewrite the coupled equations (2.6)–(2.8) into
an equation for a single variable, namely, R, the resultant equation turns out to
be a linear PDE. Then we solve this ‘R equation’ with a suitable ansatz
Proc. R. Soc. A (2006)
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(say polynomial or rational in €x). Once R is found the remaining functions U and
S can be easily deduced.

As noted, rewriting equations (2.6)–(2.8), we arrive at a third-order linear
PDE for R in the form

D3½R�KD2½Rf€x �CD½Rf _x �KfxRZ 0; DZ
v

vt
C _x

v

vx
C €x

v

v _x
Cf

v

v€x
: ð3:1Þ

Solving equation (3.1) with a suitable ansatz in €x is relatively easier in many
cases than solving equations (2.6)–(2.8). Once the explicit form of R is obtained,
U can be deduced from equation (2.8) as

U ZK
D½R�
R

Cf€x

� �
; ð3:2Þ

from which S can be fixed by using equation (2.7). Now if this set (S, U, R) forms
a compatible set for the remaining equations (2.9)–(2.11), then the corresponding
integral I can be found using equation (2.13). To illustrate this idea, let us look
into the following examples.

(a ) Example 1

Let us begin with a simple example, namely a linear third-order ODE,

fflxClx Z 0; ð3:3Þ
where l is an arbitrary parameter. Substituting fZKlx into (3.1), we get the
following equation for R:

D3½R�ClRZ 0; DZ
v

vt
C _x

v

vx
C €x

v

v _x
Klx

v

v€x
: ð3:4Þ

We now assume an ansatz for R in the form

RZ aðt; x; _xÞCbðt; x; _xÞ€x ; ð3:5Þ
where a and b are arbitrary functions of t, x and _x. Substituting (3.5) into (3.4)
and equating the coefficients of different powers of €x to zero, we get a set of linear
PDEs for the variables a and b. Solving them one obtains three non-trivial
solutions,

R1 ZKekt; R2 ZKð2€x Ck _xKk2xÞeKkt; R3 ZK

ffiffiffi
3

p
k

2
ð _xCkxÞeKkt; ð3:6Þ

where k3Zl. Now substituting the form of Ri’s, iZ1, 2, 3, separately into
equation (3.2), we get

U1 ZKk; U2 Z
ð2k2 _xCk€x Ck3xÞ
ð2€x Ck _xKk2xÞ ; U3 ZK

ð€xKk2xÞ
ð _xCkxÞ : ð3:7Þ

Now substituting the forms of Ui’s, iZ1, 2, 3, into (2.7), one can fix the forms of
Si’s, iZ1, 2, 3, as

S1 Z k2; S2 Z
2k4xCk3 _xKk2€x

2€x Ck _xKk2x
; S3 ZKk

ð€x Ck _xÞ
ð _xCkxÞ : ð3:8Þ

As a consequence now we have three sets of independent solutions for equations
(2.6)–(2.8). Now we check the compatibility of these solutions with the remaining
equations (2.9)–(2.11).
Proc. R. Soc. A (2006)
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We find that the solutions (S1, U1, R1) and (S2, U2, R2) satisfy equations (2.9)–
(2.11), and become compatible solutions. Substituting the forms (S1, U1, R1) and
(S2, U2, R2) separately into equation (2.13) and evaluating the integrals we get

I1 Z
1

3k2
ð€xKk _xCk2xÞekt; ð3:9Þ

I2 Z
2

3k2
ð€x 2 Ck2 _x2Ck4x2 Ck _x€xKk2x€x Ck3x _xÞeKkt: ð3:10Þ

However, the set (S3, U3, R3) does not satisfy the extra constraints (2.9)–(2.11),
which means that the form of R3 may not be the ‘complete form’ but might be a
factor of the complete form. As mentioned in §2, in order to recover the complete
form R̂3, one may assume that R̂3ZFðI1; I2ÞR3, where F(I1, I2) is a function of
the integrals I1 and I2. Now we have to determine the form of F(I1, I2) explicitly
and for this purpose we proceed as follows. Substituting

R̂3 ZFðI1; I2ÞR3 ZK

ffiffiffi
3

p
k

2
ð _xCkxÞeKkt

� �
FðI1; I2Þ; ð3:11Þ

into equations (2.18) and (2.19), along with (2.17b), we obtain two equations for
F as

F 0
1 Z 0; I2F

0
2CF Z 0; ð3:12Þ

where F 0
1 and F 0

2 denote partial derivatives of F with respect to I1 and I2,
respectively. Upon integrating (3.12), we get FZ1/I2 (the integration constants
are set to zero for simplicity), which fixes the form of R̂3 as

R̂3 Z
R3

I2
ZK

ffiffiffi
3

p
k

2

ð _xCkxÞ
ð€x 2Ck2 _x2 Ck4x2Ck _x€xKk2x€x Ck3x _xÞ : ð3:13Þ

Now one can easily check that this set ðS3;U3; R̂3Þ is a compatible solution for
equations (2.6)–(2.11), which, in turn, provides I3 through the relation (2.13) as

I3 ZK

ffiffiffi
3

p
k

2
tCtanK1 €xKk _xK2k2xffiffiffi

3
p

ð€x Ck _xÞ

" #
: ð3:14Þ

Using the explicit forms of the integrals I1, I2 and I3, the solution to equation
(3.3) can be deduced directly as

xðtÞZ I1 e
Kkt C

ffiffiffiffi
I2

p
eðk=2Þt cos

ffiffiffi
3

p
k

2
tCI3

� �
: ð3:15Þ

The result exactly coincides with the solution presented in Polyanin & Zaitsev
(1995).
(b ) Example 2

The applicability of this method to nonlinear ODEs can be illustrated by
considering an equation of the form

fflx Z
€x 2

_x
C

_x€x

x
: ð3:16Þ
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Equation (3.16) is a sub-case of the general form of a scalar third-order ODE,
which is invariant under the generators of time translation and rescaling
(Polyanin & Zaitsev 1995; Feix et al. 1997). A sub-case of equation (3.16),
namely, fflxKcð€x 2= _xÞZ0, has been considered by both Bocharov et al. (1993) and
Ibragimov & Meleshko (2005) to show that it can be linearized to a linear third-
order ODE through a contact transformation. On the other hand, Euler & Euler
(2004) have considered the equation fflxKð _x€x=xÞZ0 and showed that it can be
linearized through the Sundman transformation (see §5c). Here we consider the
combined form (3.16) and derive integrating factors, integrals of motion and the
general solution of this equation. Further, we show that equation (3.16) itself can
be linearized by the GLT (see §5d).

As before, substituting fZð€x 2= _xÞCð _x€x=xÞ into (3.1), we get the following
linear PDE for R:

D3½R�KD2 2€x

_x
C

_x

x

� �
R

� �
KD

€x 2

_x2
K

€x

x

� �
R

� �
C

_x€x

x2
RZ 0; ð3:17Þ

where ‘D’ is defined by equation (2.12). Now substituting the ansatz (3.5) into
(3.17) and proceeding as before, we get

R1 ZK
1

_xx
; R2 Z

x

_x
; R3 Z

t _x2Kxð _xC t€xÞ
2x _x2

: ð3:18Þ

Following the ideas given in example 1, one can deduce the corresponding forms
of Si’s and Ui’s, iZ1, 2, 3, as

S1 ZK
€x

x
; U1 ZK

€x

_x
; ð3:19Þ

S2 Z
€x

x
; U2 Z

K2 _x

x
K

€x

_x
; ð3:20Þ

S3 Z
_x€xðxC t _xÞ

xðKt _x2Cxð _xC t€xÞÞ ; U3 Z
x€xð2 _xC t€xÞ

_xðt _x2Kxð _xC t€xÞÞ : ð3:21Þ

The solutions (Si, Ui, Ri), iZ1, 2, satisfy the constraints (2.9)–(2.11), so that
they lead to first and second integrals of the form

I1 Z
€x

_xx
; I2 Z

2 _x2Kx€x

_x
: ð3:22Þ

Also in the present case the set (S3, U3, R3) does not satisfy the extra constraints
and so one has to explore the complete form of R̂3. To do so, we proceed as before
and obtain the forms of F and R̂3 as FZ1=

ffiffiffiffiffiffiffiffi
I1I2

p
and

R̂3 Z
t _x2Kxð _xC t€xÞ
2

ffiffiffiffiffiffiffiffi
I1I2

p
ð Þx _x2 ; ð3:23Þ

where the explicit forms of I1 and I2 are given in equation (3.22). Now one can

check that the set ðS3;U3; R̂3Þ satisfies all the six equations (2.6)–(2.11) and
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furnishes the third integral I3 through the relation (2.13) as

I3 ZK
1

2

ffiffiffiffiffiffiffiffi
I1I2

p� 	
tCtanK1

ffiffiffiffiffi
I1
I2

s
x: ð3:24Þ

Using the explicit forms of the integrals I1, I2 and I3, the solution to equation
(3.16) can be deduced directly as

xðtÞZ
ffiffiffiffiffi
I2
I1

s
tan

1

2

ffiffiffiffiffiffiffiffi
I1I2

p
tC2I3

� 	� �
: ð3:25Þ

As can be seen from equation (3.23), the complete compatible solution R̂3

has €x term which appear inside the square root sign. This form of R̂3 can be
explored only by making a suitable ansatz. Moreover, one may also face
more difficulties in solving the determining equations (2.6)–(2.8). In such
complicated situations, the complete solution R̂ can be obtained by using our
procedure.
(c ) Example 3

Let us consider a Chazy class of equation of the form (Halburd 1999; Mugan &
Jrad 2002; Euler & Euler 2004; Euler et al. 2005/2006)

fflxC4ax€x C3a _x2 C6a2x2 _xCa3x4 Z 0: ð3:26Þ

Substituting fZKð4ax€xC3a _x2C6a2x2 _xCa3x4Þ into (3.1), we get

D3½R�C4a D2½xR�K6a D½ð _xCax2ÞR�C4að€x Ca2x3C3ax _xÞRZ 0: ð3:27Þ

To solve the above equation, we assume the same ansatz (3.5) for the variable R.
However, substituting this ansatz into equation (3.27) and solving the resultant
equation, we obtain only trivial solutions. So we seek a rational form of ansatz for
R in the form

RZ
aðt; x; _xÞCbðt; x; _xÞ€x

ðcðt; x; _xÞCdðt; x; _xÞ€xÞr ; ð3:28Þ

where r is an arbitrary number. Substituting equation (3.28) into equation (3.27)
and solving the resultant PDEs we get

R1 Z
_xCax2

ða2x3 C3ax _xC €xÞ2
; R2 Z

tðK2xCatx2C t _xÞ
ða2x3C3ax _xC €xÞ2

;

R3 Z
tð3K3atxCa2t2x2 Cat2 _xÞ

ða2x3C3ax _xC €xÞ2
:

9>>>>=
>>>>;

ð3:29Þ
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The corresponding forms of Si’s and Ui’s, iZ1, 2, 3, are

U1 Z
2a2x3K€x

ax2 C _x
; S1 Z

aða2x4C3 _x2K2x€xÞ
ax2C _x

;

U2 Z
2xK6atx2C2a2t2x3Kt2€x

tðK2xCatx2 C t _xÞ ;

S2 Z
2ax2K4a2tx3 Ca3t2x4K2 _xC3at2 _x2 C2t€xð1KatxÞ

tðK2xCatx2C t _xÞ ;

U3 ZK
3K12atxC9a2t2x2K2a3t3x3 Cat3€x

tð3K3atxCa2t2x2Cat2 _xÞ ;

S3 Z
ðað12atx2K6a2t2x3 Ca3t3x4 C3tð2 _xCat2 _x2 C t€xÞK2xð3Cat3€xÞÞÞ

tð3K3atxCa2t2x2 Cat2 _xÞ :

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð3:30Þ

Now we proceed to find the integrals of motion. First we note that the
functions (S1, U1, R1) satisfy the constraints (2.9)–(2.11) and hence they are
compatible. Thus, substituting them into (2.13), the first integral I1 is fixed
easily as

I1 ZKtC
ax2C _x

a2x3 C3ax _xC €x
: ð3:31Þ

However, the set (S2, U2, R2) (and so also (S3, U3, R3)) does not satisfy the
extra constraints (2.9)–(2.11), which means the form of R2 may not be the
‘complete form’ but might be a factor of the complete form. As mentioned in
§2, in order to recover the complete form R̂2, one may assume that
R̂2ZFðI1ÞR2. Here F(I1) is a function of the integral I1. Now we have to
determine the form of F(I1) explicitly and for this purpose we proceed as
follows. Substituting the expression

R̂2 ZFðI1ÞR2 Z
tðK2xCatx2 C t _xÞ
ða2x3 C3ax _xC €xÞ2

FðI1Þ; ð3:32Þ

into equation (2.22a), we obtain I1F
0
1C2FZ0, where F 0

1 denotes differentiation
with respect to I1. Upon integrating the latter, we get FZIK2

1 (the integration
constant is set to zero), which fixes the form of R2 as

R̂2 Z
tðK2xCatx2 C t _xÞ

ðax2Ka2tx3 C _xK3atx _xKt€xÞ2
: ð3:33Þ

Now one can easily check that this set ðS2;U2; R̂2Þ is a compatible solution for
equations (2.6)–(2.11), which, in turn, provides I2 through the relation (2.13) as

I2 ZK
K2atx2 Ca2t2x3 Cxð2C3at2 _xÞC tðK2 _xC t€xÞ

ðax2Ka2tx3 C _xK3atx _xKt€xÞ : ð3:34Þ
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As in the previous examples, the set (S3, U3, R3) does not satisfy the
constraints (2.9)–(2.11) and hence one should seek a complete form for R3,
which we denote as R̂3, in the form

R̂3 ZFðI1; I2ÞR3 ZFðI1; I2Þ
tð3K3atxCa2t2x2Cat2 _xÞ

ða2x3 C3ax _xC €xÞ2
: ð3:35Þ

Substituting (3.35) into equations (2.18) and (2.19), we obtain the following
equations for F, i.e. I1F

0
1C2FZ0; F 0

2Z0, where again F 0
1ZvF=vI1 and

F 0
2ZvF=vI2. Upon integrating the equations, we get the explicit form of F as

FZ1=I 21 , which, in turn, fixes the form of R̂3 as

R̂3 Z
tð3K3atxCk2t2x2 Cat2 _xÞ

3aðax2Ka2tx3 C _xK3atx _xKt€xÞ2
: ð3:36Þ

Now the set ðS3;U3; R̂3Þ satisfies all the six equations (2.6)–(2.11) and the
relation (2.13) gives the form of third integral I3 as

I3 Z
ð6C3a2t2x2Ka3t3x3C3at2 _xK3atxð2Cat2 _xÞKat3€xÞ

6aðax2Ka2tx3 C _xK3atx _xKt€xÞ : ð3:37Þ

Thus, we have obtained the explicit forms of the integrals I1, I2 and I3 and
hence the solution to equation (3.3) is obtained directly as

xðtÞZ
at2

2 CI1tCI1I2
a2t3

6 CaI1
t2

2 CaI1I2tCI1I3
: ð3:38Þ

Recently, equation (3.26) has been shown to belong to the Riccati hierarchy of
linearizable ODEs (Euler et al. 2005/2006).

Interestingly, one can also derive the solution (3.38) through an alternate way.
For example, instead of solving the ‘R equation’ with rational ansatz, one can
look for equations in other variables, i.e. either in U or in S. For example, from
equation (2.7) we get

S ZKðD½U �Cf _xKUf€xKU 2Þ: ð3:39Þ

Substituting equation (3.39) into equation (2.6), we get a nonlinear PDE for U:

D2½U �K3U D½U �KU D½f€x �CD½f _x �KfxKf _xf€x Cf2
€xUC2f€xU

2Kf _xUCU 3Z0:

ð3:40Þ

Now one can look for solutions of equation (3.40) with polynomial in €x . Once U is
known one can make use of equations (2.8) and (3.39) to get the forms of
corresponding S and R, respectively. It turns out that for some cases, like the
present example (3.26) (see the actual forms of U in equation (3.30)), solving
equation (3.40) is easier than solving equation (3.1). However, this can be
decided only by actual calculation.
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4. Linearization

In §§2 and 3, we discussed the complete integrability of third-order ODEs by
investigating sufficient number of integrals of motion. However, one can also
establish the complete integrability of the given nonlinear ODE by transforming
it into a linear free particle second-order ODE or into a third-order linear ODE of
the form d3w=dz3Zw 000Z0. Unlike the second-order ODEs, the third-order
nonlinear ODEs can be linearized through a wide class of transformations,
namely, invertible point transformation (Steeb 1993; Ibragimov & Meleshko
2005), contact transformation (Bocharov et al. 1993; Duarte et al. 1994;
Ibragimov & Meleshko 2005), generalized Sundman transformation (Berkovich
& Orlova 2000; Euler et al. 2003; Euler & Euler 2004) and their generalizations.
In the following, we describe a procedure to deduce these transformations from
the first integral itself and illustrate our ideas with relevant examples.
(a ) Transformation from third-order nonlinear ODEs to second-order free
particle equation

Let us suppose that the ODE (2.1) admits a first integral,

I1 ZFðt; x; _x; €xÞ; ð4:1Þ
where F is a function of t; x; _x and €x only. Now extending our earlier proposal for
second-order ODEs (Chandrasekar et al. 2005) to the third-order equations (2.1),
let us split the function F into a product of two functions, such that one involves
a perfect differentiable function ðd=dtÞG1ðt; x; _xÞ and another function
G2ðt; x; _x; €xÞ, i.e.

I1 ZF
1

G2ðt; x; _x; €xÞ
d

dt
G1ðt; x; _xÞ

� �
: ð4:2Þ

Suppose G2 is a total time derivative of another function, say z, i.e.
dz=dtZG2ðt; x; _x; €xÞ, then (4.2) can be further rewritten in the form

I1 ZF
1
dz
dt

dG1

dt

 !
ZF

dG1

dz

� �
: ð4:3Þ

Now identifying the function G1ðt; x; _xÞZw as the new dependent variable,
equation (4.3) can be recast in the form I1ZFðdw=dzÞ. In other words, we obtain

Î 1 Z
dw

dz
; ð4:4Þ

where Î 1 is a constant, from which one can get d2w=dz2Z0. Rewriting w and z in
terms of old variables, namely,

w ZG1ðt; x; _xÞ; z Z

ðt
o
G2ðt 0; x; _x; €xÞdt 0; ð4:5Þ

we can get a linearizing transformation to transform the third-order nonlinear
ODE into the second-order free particle equation. Then to deduce the general
solution, one has to carry out one more integration.
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(b ) Transformation from third-order nonlinear equation (2.1) to third-order
linear ODE w000Z0

Next, we aim to transform equation (2.1) into a third-order linear ODE and so
we try to rewrite the first integral as a perfect second-order derivative. We note
that this can be done when one is able to evaluate the following integral
explicitly:

ŵ Z

ðt
o
G1ðt 0; x; _xÞG2ðt 0; x; _x; €xÞdt 0 ZG3ðt; x; _xÞ; ð4:6Þ

where G1 and G2 are defined as in equation (4.2). Note that in the function G3,
the €x dependence has been integrated out. The reason for making such a specific
decomposition is that in this case equation (4.2) can be rewritten as a simple
second-order ODE for the variable ŵ (see equation (4.8)). We pursued a similar
kind of approach in the integrable force-free Duffing–van der Pol oscillator
equation (Chandrasekar et al. 2004), which has now been generalized in the
present case. Here one can rewrite (4.1) as a perfect second-order derivative as
follows. Differentiating (4.6) with respect to t, we obtain dŵ=dtZG1G2.
Rewriting the left-hand side in the form

dz

dt

dŵ

dz
ZG1G2; ð4:7Þ

and using the identities already used in equation (4.5), namely dz=dtZG2 and
G1Zw, in equation (4.7), the latter becomes

dŵ

dz
Zw: ð4:8Þ

Differentiating (4.8) with respect to z and using the identity dw=dzZ Î 1 (vide
equation (4.4)), one gets d2ŵ=dz2Z Î 1. In other words, we have

d3ŵ

dz3
Z 0; ð4:9Þ

so that ŵ and z are the required transformation variables.

(c ) The nature of transformations

In §4a,b, we demonstrated how to construct linearizing transformations from
the first integral and how they effectively change the given third-order nonlinear
ODE to either second or third-order linear equation. Depending upon the explicit
form of the transformations, we can call them point, contact, generalized Sundman
or GLTs. To demonstrate how different kinds of transformation arise, let us
consider the transformation, ŵZG3, zZ

Ð t
o G2 dt

0 (vide equations (4.5) and (4.6)),
which takes the given nonlinear ODE into a linear equation. Now, in the above
transformation, suppose z is a perfect differentiable function and ŵ and z do not
contain the variable _x and €x , then we call the resultant transformation, namely,
ŵZ f1ðx; tÞ and zZ f2ðx; tÞ, as a point transformation. Further, if the transform-
ation admits the variable _x also explicitly, then it becomes the contact
transformation. In this case, we have wZ f1ðt; x; _xÞ and zZ f2ðt; x; _xÞ. On the
other hand, if ŵZG3ðt; xÞ and zZ

Ð t
o G2ðt 0; xÞdt 0, then the transformation is said
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to be a generalized Sundman transformation. Note that in the latter case, the new
independent variable is in an integral form. Besides the above, as pointed out
earlier, we find that there exists another kind of transformation, namely, GLTs, in
which the new dependent and independent variables take the form ŵZG3ðt; x; _xÞ
and zZ

Ð t
o G2ðt 0; x; _x; €xÞdt 0, respectively.
(d ) Connection between the functions G1, G2 and G3

Finally, we explore the connection between the functions G1, G2 and G3. As we
have seen above, for the given equation to be linearizable, it should be
transformable to the form (4.8). Rewriting the latter in terms of the variables,
G1, G2 and G3, we get

G3t C _xG3x C €xG3 _x ZG1ðt; x; _xÞG2ðt; x; _x; €xÞ: ð4:10Þ

Note that the left-hand side of equation (4.10) contains the variable €x linearly. So
the right-hand side should also be linear in €x . Consequently, we can write

G2ðt; x; _x; €xÞZG21ðt; x; _xÞ€x CG22ðt; x; _xÞ: ð4:11Þ
Using (4.11) we can rewrite equation (4.10) in the form

ðG3t C _xG3xÞ 1C €xG3 _x

G3tC_xG3x

� 	
G22 1C €xG21

G22

� 	 ZG1: ð4:12Þ

Since the right-hand side is independent of €x , we have from (4.12) that

G21ðG3t C _xG3xÞZG22G3 _x and G1 Z
G3 _x

G21

: ð4:13Þ

It may be noted that a similar condition that has been derived by Bocharov et al.
(1993) and Ibragimov & Meleshko (2005) for the case G2 is a perfect differential
function. In other words, our procedure indicates that more generalized
transformations are possible in the case of third-order ODEs. By imposing
the condition (4.11) it becomes clear that whatever the type of linearizing
transformation, the new independent variable should be at the maximum linear
in €x .
(e ) Transformation to fourth and higher-order linear ODEs

In §4a–d, we have concentrated only on transforming a nonlinear third-order
ODE either to a second-order or third-order linear equation only. However, one
could also linearize certain third-order nonlinear ODEs to fourth-order linear
ODEs. For example, equation (3.26) is linearizable to a fourth-order ODE of the
form d4w=dz4Z0, under the non-local transformation xZ _w=aw. This is not an
isolated example and one can linearize a class of equations through this
procedure. Besides the above one, we can also consider linearizing transform-
ations, in which the new dependent variable, ŵ, is a non-local one. This choice
leads us to classify another large class of equations, which we leave for future
work.
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5. Application

In this section, we consider specific examples to demonstrate themethod given in §4.
(a ) Example 1: point transformation

Let us consider a non-trivial example which was discussed by Steeb (1993) in
the context of invertible point transformations, namely,

fflxC
3 _x€x

x
K3€xK

3 _x2

x
C2 _x Z 0: ð5:1Þ

The first integral, which can be obtained using the formulation in §2, can be
written as

I1 Z ð _x2 Cx€xKx _xÞeK2t: ð5:2Þ
Rewriting (5.2) in the form (4.2), we get I1ZeKtðd=dtÞðx _x eKtÞ, so that

w Z x _x eKt; z Z et: ð5:3Þ
As we noted earlier, one could transform (5.1) to the second-order free particle
equation, d2w=dz2Z0, by utilizing the transformation (5.3). Integrating the
equation d2w=dz2Z0, we get wZI1zCI2. Using (5.3) into this expression, the
general solution of equation (5.1) can be obtained (after an integration) as

xðtÞZ ðI1 e2t CI2 e
t CI3Þ1=2; ð5:4Þ

where Ii, iZ1, 2, 3 are the integration constants.
Further, using equation (4.6), we get ŵZ

Ð
x _x dtZx2=2. Then we can directly

check that the point transformation,

ŵ Z
x2

2
; z Z et; ð5:5Þ

transforms equation (5.1) to the form d3ŵ=dz3Z0. As we mentioned earlier,
since ŵ and z involve only x and t, they are just point transformations.
Integrating the linear equation d3ŵ=dz3Z0, we get

ŵ Z
I1
2
z2 CI2zCI3: ð5:6Þ

Rewriting ŵ and z in equation (5.6) in terms of the original variables x and t by
using the transformation (5.5), we get the same solution as equation (5.4).
(b ) Example 2: contact transformation

Let us consider an equation of the form

fflx Z
x€x 3

_x3
: ð5:7Þ

Bocharov et al. (1993) have shown that equation (5.7) can be linearized through
contact transformation. However, the explicit linearizing transformation is yet to
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be reported, which is also a difficult problem. Here we derive the explicit form of
the linearizing transformation through our procedure.

The first integral can be easily deduced using the results of §2 as

I1 Z
_x2Kx€x

_x€x
: ð5:8Þ

Rewriting (5.8) in the form (4.2), we get

I1 Z
_x

€x

d

dt

x

_x

� 	
;

so that we have wZx= _x and zZ log _x. The latter transforms equation (5.7) to
the second-order free particle equation d2w=dz2Z0, so that wZI1zCI2, where
I1 and I2 are integration constants. Rewriting w and z in terms of the old
variables, we get xZðI1 logð _xÞCI2Þ _x. Unlike the earlier example, it is difficult to
integrate this equation further and obtain the general solution. Therefore, one
can look for variables which transform the third-order nonlinear ODE (5.7) to a
third-order linear ODE, so that the non-trivial integration can be avoided. Now
using equation (4.6), we get ŵZ

Ð
ðx€x= _x2ÞdtZ tKðx= _xÞ. The new variables,

ŵ Z
t _xKx

_x
; z Z log _x; ð5:9Þ

transform equation (5.7) to the form (4.9). Unlike the earlier example, ŵ and z
admit the variable _x explicitly and so they become contact transformation for the
given equation.

Integrating the linear third-order equation (4.9), we get ŵZðI1=2Þz2CI2zCI3;
where Ii, iZ1, 2, 3 are integration constants.Nowreplacing ŵ and z in termsof theold
variables and using the previous result xZðI1 logð _xÞCI2Þ _x, one can obtain the
general solution for equation (5.7) in the form

xðtÞZ KI1G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 21 CI 22 K2I1ðI3KtÞ

q� �
exp K

I1 CI2H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 21 CI 22 K2I1ðI3KtÞ

p
I1

 !
:

ð5:10Þ

(c ) Example 3: generalized Sundman transformation

Next we consider the hydrodynamic type equation of the form (Berkovich &
Orlova 2000; Euler & Euler 2004)

fflx Z
€x _x

x
; ð5:11Þ

which admits a first integral in the form I1Z €x=x and the latter can be rewritten
as

I1 Z
1

x

d

dt
_x Z

dw

dz
;

from which we identify wZ _x and dzZx dt. By utilizing the new variables, one
can transform (5.11) to the second-order free particle equation, d2w=dz2Z0.
However, from equation (4.6), we get ŵZ

Ð
x _x dtZx2. Then the Sundman
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transformation,

ŵ Z x2; dz Z x dt; ð5:12Þ
transforms equation (5.11) to the form (4.9), namely d3ŵ=dz3Z0.

To derive the solution, we proceed as follows. Rewriting the first integral I1 in
the integral form, we get

I1 Z
1

x

d

dt
_x0 _x Z I1

ð
x dt:

Now using the identity (5.12) in the latter expression, we get wZI1z. From
equation (4.6) (for the present case G1Zw and G2Zdz=dt) we have

ŵ Z

ð
w dz Z

ð
I1z dz Z

I1
2
z2CI2; ð5:13Þ

where I2 is the integration constant. Using (5.12) in (5.13), we obtain
x2ZðI1=2Þz2CI2, which, in turn, leads to a differential equation which connects
the variables z and t in the form (using the relation dzZx dt)

dz Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1
2
z2CI2

r
dt: ð5:14Þ

Integrating (5.14), we obtain zZ
ffiffiffiffiffiffiffiffiffi
I2=2

p
ðe

ffiffiffi
I1

p
ðtCI3ÞKeK

ffiffiffi
I1

p
ðtCI3ÞÞ, where I3 is the

integration constant. Substituting the latter in the relation x2ZðI1=2Þz2CI2, we
arrive at the general solution for (5.11) in the form

xðtÞZ
ffiffiffiffi
I2

p
cosh

ffiffiffiffi
I1

p
ðtCI3Þ: ð5:15Þ

We note that the solution for equation (5.11) has been already derived in an
alternate way from the Sundman transformation (5.12) by Euler & Euler (2004).
However, the procedure which we described in the above is new and can also be
used for more general linearizing transformations, as we see below.
(d ) Example 4: generalized linearizing transformation

As we noted earlier, some nonlinear ODEs can be linearized only through more
general non-local form of transformations, which we designate here as GLTs. We
illustrate the GLT with the same example discussed as example 2 in §3, which
admits a first integral of the form I1Z _xx=€x (vide equation (3.16)). Rewriting this
first integral in the form (4.2), we get

I1 Z
x

€x

d

dt
ðxÞ;

so that

w Z x; dz Z
€x

x
dt; ð5:16Þ

which can be effectively used to transform the nonlinear ODE (3.16) to the
equation d2w=dz2Z0. Using equation (4.6), we get ŵZ

Ð
€x dtZ _x. Then the GLT

becomes

ŵ Z _x; dz Z
€x

x
dt; ð5:17Þ
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which can be used to transform equation (3.16) to the form ŵ 000Z0. Note that in
the present case, the new independent and dependent variables admit €x and _x
terms, respectively, and that the transformation is non-local. Indeed, no such
linearizing transformations have been reported in the literature at least to our
knowledge. We also now establish a method of finding the general solution for this
case.

Integrating once the equation d2w=dz2Z0, we get wZI1z from which we
obtain

x Z I1z: ð5:18Þ
On the other hand, equation (4.6) provides us with a relation (after using (5.16)
and (5.17))

_x Z
I1
2
z2CI2: ð5:19Þ

Now using (5.18) in (5.19), we obtain

2I1
I1z

2 C2I2

� �
dz Zdt: ð5:20Þ

The variables are now separated out and one can integrate (5.20) and obtain

z Z

ffiffiffiffiffiffiffi
2I2
I1

s
tan

ffiffiffiffiffi
I2
I1

s
ðtCI3Þ: ð5:21Þ

Now substituting (5.21) into (5.18), we get

xðtÞZ
ffiffiffiffiffiffiffiffiffiffi
2I1I2

p
tan

ffiffiffiffiffi
I2
I1

s
ðtCI3Þ; ð5:22Þ

which is effectively the same as (3.25).
Finally, we note that the procedure given above can be profitably utilized for

other examples which are also linearized by GLTs.
(e ) Example 5: an elementary non-trivial system of hydrodynamic type

Finally, to show the importance of the GLT and how this transformation gives
additional information about the linearization of nonlinear third-order ODEs, we
consider the following specific example which was discussed in the literature
(Berkovich 1996; Berkovich & Orlova 2000):

fflx Z
€x _x

x
K4ax2 _x; a : parameter: ð5:23Þ

Equation (5.23) is nothing but the dynamical equation of the Euler–Poinsot case
of a rigid body written in terms of a single variable (Berkovich 1996; Berkovich &
Orlova 2000). For a more general integrable version of this equation, see Euler &
Leach (2003). As we have seen earlier, this equation is linearizable in the case aZ0
through generalized Sundman transformation. However, we wish to show here that
the general equation (5.23) itself is linearizable through the GLT.
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From the first integral I1Zð€x=xÞC2ax2 associated with equation (5.23), one
can identify the GLT

ŵ Z x2; dz Z
2 _xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2Cax4

p dt; ð5:24Þ

which transforms equation (5.23) to the form (4.9). Note that for the choice aZ0,
the independent variable becomes dzZ2x dt and so it becomes the generalized
Sundman transformation, equation (5.12), identified in the literature (Berkovich
& Orlova 2000; Euler & Euler 2004). Now following the steps given in example 4,
one can deduce the general solution for equation (5.23) in terms of Jacobian
elliptic function as

xðtÞZ ðI1ðcKðcKbÞsn2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aI1ðcKaÞ

p
ðtKt 0Þ;mÞCI2Þ1=2; ð5:25Þ

where aCbCcZð2I1K3aI2Þ=ð4aI1Þ, abCacCcbZð3aI 22 K2I1I2Þ=ð4aI 21 Þ, abcZ
KI 32 =4I

3
1 , m

2ZðbKcÞ=ðaKcÞ and I2 and t0 are integration constants.
6. Conclusion

In this paper, we have discussed a method of finding the integrals of motion and
general solution associated with third-order nonlinear ODEs through the
modified PS method by a non-trivial extension of our earlier work on second-
order ODEs (Chandrasekar et al. 2005). We illustrated the validity of the
method with suitable examples. Further, we introduced a technique which can be
utilized to derive linearizing transformations from the first integral. Interest-
ingly, we showed that different types of transformations, namely, point, contact,
Sundman and GLTs can be derived in a unique way from the first integral. We
also indicated a procedure to derive general solution for the third-order ODEs
when GLTs occur. We believe that the GLT introduced in this paper will be
highly useful to tackle new systems, such as equation (5.23). Finally, the
modified PS method can also be extended to higher-order ODEs and coupled
systems of ODEs. As far as the linearization of higher-order ODEs is concerned,
it is still an open and challenging problem. As we pointed out in §1, one can
unearth a wide variety of linearizing transformations for the higher-order ODEs
besides formulating the necessary and sufficient condition for linearizing these
equations in each form of transformation. We hope to address some of these
aspects shortly.

The work of V.K.C. is supported by Council of Scientific and Industrial Research in the form of a
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