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On the complete integrability and
linearization of nonlinear ordinary
differential equations. IV. Coupled

second-order equations

BY V. K. CHANDRASEKAR, M. SENTHILVELAN AND M. LAKSHMANAN*

Centre for Nonlinear Dynamics, Department of Physics,
Bharathidasan University, Tiruchirapalli 620 024, India

Coupled second-order nonlinear differential equations are of fundamental importance in
dynamics. In this part of our study on the integrability and linearization of nonlinear
ordinary differential equations (ODEs), we focus our attention on the method of deriving
a general solution for two coupled second-order nonlinear ODEs through the extended
Prelle–Singer procedure. We describe a procedure to obtain integrating factors and the
required number of integrals of motion so that the general solution follows
straightforwardly from these integrals. Our method tackles both isotropic and non-
isotropic cases in a systematic way. In addition to the above-mentioned method, we
introduce a new method of transforming coupled second-order nonlinear ODEs into
uncoupled ones. We illustrate the theory with potentially important examples.

Keywords: nonlinear differential equations; coupled second order; integrability;
integrating factors; uncoupling
*A

Rec
Acc
1. Introduction

In this part of our study on the integrability and linearization of nonlinear
ordinary differential equations (ODEs), we focus our attention on the theoretical
formulation and applications of the modified Prelle–Singer (PS) procedure
(Prelle & Singer 1983; Duarte et al. 2001; Chandrasekar et al. 2005a, 2006) to a
set of two coupled second-order ODEs. The need for this demonstration is due to
the fact that classifying and studying two-degrees-of-freedom dynamical systems
are highly non-trivial problems in the theory of nonlinear dynamical systems.
Historically, several techniques have been proposed to identify and obtain
general solutions of two coupled second-order ODEs. To cite a few examples, we
mention Painlevé analysis, Lie symmetry analysis, generalized Noether
symmetries technique, direct methods and so on (Ramani et al. 1989;
Lakshmanan & Sahadevan 1993; Bluman & Anco 2002; Lakshmanan &
Rajasekar 2003). Each of these methods has its own advantages and limitations.
For example, among the above-mentioned methods, certain methods fulfil the
necessary conditions alone, whereas the others guarantee only sufficient
Proc. R. Soc. A (2009) 465, 609–629
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conditions for the complete integrability of the system concerned. This factor
alone is a motivating factor to search for more and more powerful methods for
isolating and classifying integrable and non-integrable dynamical systems. In this
way, by extending the PS procedure and its applications to coupled second-order
ODEs, we argue that the PS method can be used as a stand-alone technique to
solve a wide class of ODEs of any order irrespective of whether it is a single or a
coupled equation.

Here, we mention that the present analysis is not a straightforward extension
of the scalar case. In fact, by prolonging the theoretical formulation to the
coupled second-order ODEs, we deduce the determining equations for the
integrating factors and null forms appropriately such that one can obtain
the aforementioned functions in a more efficient and straightforward way. Thus,
the method of obtaining the integrating factors for the given equation is also
augmented in this procedure in an efficient manner. Furthermore, while studying
the coupled dynamical systems, one may face both isotropic and non-isotropic
cases. Our method covers both of them in a natural way. In addition to the
above, in this paper, we also introduce a new method to transform two coupled
second-order ODEs to two uncoupled second-order ODEs. Thus, the PS
procedure inherits several remarkable features both at the theoretical
foundations and in the range of applications, which we have listed already in
Chandrasekar et al. (2005a). Finally, we have carefully fixed the examples so that
the basic features associated with this method and the results which it leads to
could be explained in an efficient way.

The plan of this paper is as follows. In §2, we describe the PS method
applicable for coupled second-order ODEs and indicate the new features in
finding the integrating factors and integrals of motion. In §3, we establish a
connection between the integrating factors and the form of equations. In §4, the
uncoupled equations are briefly considered. In §5, we elaborately discuss the
method of constructing integrals and general solutions for the coupled nonlinear
ODEs. We support the theory with two non-trivial examples, which are
discussed in the contemporary literature. We also briefly discuss the application
of our procedure for the case of Liouville integrable systems in §5d. We devote §6
to demonstrating yet another method to identify transformation variables from
the first integrals, which can be effectively used to rewrite the system of coupled
ODEs into uncoupled ones so that one can integrate the resultant equation easily
and obtain the general solution. We present our conclusions in §7.
2. The PS method for coupled second-order ODEs

(a ) General theory

Let us consider a system of two coupled second-order ODEs of the form

€x Z
d2x

dt2
Z

P1

Q1

; €y Z
d2y

dt2
Z

P2

Q2

; Pi;Qi 2C ½t; x; y; _x ; _y �; i Z 1; 2; ð2:1Þ

where Pi and Qi are analytic functions of the variables t; x; y; _x and _y . Let us
suppose that the system (2.1) admits a first integral of the form I ðt; x; y; _x ; _yÞZC ,
with C constant on the solutions, so that the total differential gives
Proc. R. Soc. A (2009)
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dI Z ItdtCIxdxCIydyCI _xd _x CI _yd _y Z 0; ð2:2Þ

where the subscript denotes partial differentiation with respect to that variable.
Rewriting (2.1) in the form

P1

Q1

dtKd _x Z 0;
P2

Q2

dtKd _y Z 0; ð2:3Þ

and adding null terms s1ðt; x; y; _x ; _yÞ _x dtK s1ðt; x; y; _x ; _yÞdx and s2ðt; x; y; _x ; _yÞ _y
dtK s2ðt; x; y; _x ; _yÞdy to the first equation in (2.3), and u1ðt; x; y; _x ; _yÞ _x
dtK u1ðt; x; y; _x ; _yÞdx and u2ðt; x; y; _x ; _yÞ _y dtK u2ðt; x; y; _x ; _yÞdy to the second
equation in (2.3), respectively, we obtain that, on the solutions, the 1-forms

P1

Q1

Cs1 _x Cs2 _y

� �
dtK s1 dxK s2dyKd _x Z 0; ð2:4aÞ

P2

Q2

Cu1 _x Cu2 _y

� �
dtK u1dxK u2dyKd _y Z 0: ð2:4bÞ

At this stage, we wish to point out that one can also analyse the coupled second-
order ODEs (2.1) by rewriting them as a set of four coupled first-order ODEs of the
form _xZx1; _x 1ZP1=Q1; _yZy1, _y1ZP2=Q2 and its equivalent 1-forms. By
introducing four integrating factors, one can deduce the relevant determining
equations by following the procedure given by us in the earlier paper, part III
(Chandrasekar et al. 2009), to the above system of first-order ODEs. However, after
examining several examples, we find that it is more advantageous to solve the
system (2.1) in the second-order form itself rather than introducing more variables.
The procedure is as follows.

Now, on the solutions, the 1-forms (2.2), (2.4a) and (2.4b) must be
proportional. Multiplying (2.4a) by the factor Rðt; x; y; _x ; _yÞ and (2.4b) by the
factor Kðt; x; y; _x ; _yÞ, which act as the integrating factors for (2.4a) and (2.4b),
respectively, we have on the solutions that

dI ZRðf1 CS _x ÞdtCKðf2 CU _yÞdtKRSdxKKUdyKRd _xKKd _y Z 0; ð2:5Þ
where fihPi/Qi , iZ1,2; SZ

Rs1CKu1

R ; and UZ
Rs2CKu2

K . Comparing equations
(2.5) and (2.2), we have, on the solutions, the relations

It ZRðf1CS _xÞCKðf2 CUxÞ; Ix ZKRS;

Iy ZKKU ; I _x ZKR; I _y ZKK ;

)
ð2:6Þ

The compatibility conditions between equations (2.6), namely ItxZIxt; It _xZI _x t;
ItyZIyt; It _yZI _yt; IxyZIyx ; Ix _xZI _x x ; Iy _yZI _yy; Ix _yZI _yx ; Iy _xZI _x y and I _x _yZI _y _x ,

provide us the following conditions:

D½S�ZKf1xK
K

R
f2x C

K

R
Sf2 _x CSf1 _x CS2; ð2:7Þ

D½U �ZKf2yK
R

K
f1y C

R

K
Uf1 _y CUf2 _y CU 2; ð2:8Þ
Proc. R. Soc. A (2009)
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D½R�ZKðRf1 _x CKf2 _x CRSÞ; ð2:9Þ
D½K �ZKðKf2 _y CRf1 _y CKUÞ; ð2:10Þ

SRy ZKRSy CUKx CKUx ; Rx ZSR _x CRS _x ; ð2:11Þ

Ry ZUK _x CKU _x ; Kx ZSR _y CRS _y ; ð2:12Þ

Ky ZUK _y CKU _y ; R _y ZK _x : ð2:13Þ

Here, the total differential operator, D, is defined by DZðv=vtÞC _x ðv=vxÞC
_yðv=vyÞCf1ðv=v _x ÞCf2ðv=v _yÞ. Integrating equations (2.6), we obtain the
integral of motion

I Z r1 Cr2Cr3 Cr4K

ð
K C

d

d _y
ðr1Cr2 Cr3Cr4Þ

� �
d _y ; ð2:14Þ

where

r1 Z

ð �
Rðf1CS _x ÞCKðf2CU _yÞ

�
dt; r2 ZK

ð
RSC

d

dx
ðr1Þ

� �
dx;

r3 ZK

ð
KU C

d

dy
ðr1 Cr2Þ

� �
dy; r4 ZK

ð
RC

d

d _x
ðr1Cr2 Cr3Þ

� �
d _x :

By solving the determining equations, (2.7)–(2.13), consistently, we can obtain
expressions for the functions (S,U,R,K ). By substituting them into (2.14) and
evaluating the integrals, we can construct the associated integrals of motion. It is
also clear that equation (2.1) can be considered as a completely integrable system
once we obtain four independent integrals of motion through this procedure.
3. Connection between the integrating factors and the nature
of equations

We note that equations (2.7)–(2.13) constitute an overdetermined system for the
four unknowns, namely S, U, R and K. Among these equations, the first four
equations, (2.7)–(2.10), constitute the evolution equations for the variables S, U,
R and K. Here, we mention that, by combining equations (2.7)–(2.10), one can
obtain the following two identities:

D½RS �ZKðRf1x CKf2xÞ; D½KU �ZKðRf1y CKf2yÞ: ð3:1Þ

Any solution (S,U,R,K ) that satisfies equations (2.7)–(2.10) also satisfies
equation (3.1). Once the functions S, U, R and K are fixed, then the rest of
the problem is to verify whether these functions satisfy the ‘extra determining
equations’, i.e. (2.11)–(2.13), or not. If these functions satisfy the extra
determining equations, then they form a compatible set of solutions and one
can proceed to construct the associated integral of motion from (2.14). On the
other hand, if the functions do not satisfy the extra determining equations, then
one has to look for alternative ways to obtain compatible solutions. In fact, in
practice, one often meets the case in which a certain solution(s) that satisfies
Proc. R. Soc. A (2009)
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(satisfy) the evolutionary determining equations (2.7)–(2.10) does (do) not
satisfy the extra determining equations. More specifically, for a class of problems,
one often obtains one or two or even three sets of (S,U,R,K ) by solving (2.7)–
(2.10), which does (do) satisfy the rest and another (other) set(s) does (do) not
satisfy the later equations. In this situation, we find an interesting fact that one
can use the integral(s) derived from the set(s), which satisfies (satisfy) equations
(2.7)–(2.13) and deduce the other compatible solution(s) ðS;U ;R̂;K̂Þ (definition
of R̂ and K̂ follows). For example, let the set (S4,U4,R4,K4) be a solution of the
evolution equations (2.7)–(2.10) and not of the extra determining equations
(2.11)–(2.13). After analysing several examples, we find that one can make the
set ðS4;U4;R4;K4Þ compatible by modifying the form of R4 and K4 as

R̂ZFðt; x; y; _x ; _yÞR; K̂ ZGðt; x; y; _x ; _yÞK ; ð3:2Þ
where F and G are functions to be determined. However, after making these
modifications, S4 and U4 remain the same. A motivation to perform this type of
modification came from our earlier work on the applicability of the PS procedure to
scalar second-order ODEs (Chandrasekar et al. 2005a). However, unlike the scalar
case, here we have to choose two functions, namely F and G, appropriately, such
that the compatible forms of R̂ and K̂ can be fixed. Since we have to choose two
functions, one might ask the question of whether these two functions are necessarily
different or the same. In the following, we answer this question.

Since R̂ and K̂ should satisfy equations (2.9) and (2.10), we have

D½F �RCFD½R�ZKðFRf1 _x CGKf2 _x CFRSÞ; ð3:3Þ

D½G�K CGD½K �ZKðFRf1 _y CGKf2 _y CGKU Þ: ð3:4Þ

Substituting the expressions for D[R] and D[K ] (see (2.9) and (2.10)) in (3.3) and
(3.4) and simplifying the resultant equations, we find that

D½F �RZ ðFKGÞKf2 _x ; D½G �K Z ðGKFÞRf1 _y : ð3:5Þ

On the other hand, substituting the modified forms (3.2) in the integrability
conditions (3.1), we obtain

D½F �RS Z ðFKGÞKf2x ; D½G �KU Z ðGKFÞRf1y: ð3:6Þ

Combining equations (3.5) and (3.6), we obtain

ðFKGÞKðSf2 _xKf2xÞZ 0; ðGKFÞRðUf1 _yKf1yÞZ 0: ð3:7Þ

From equation (3.7), we can conclude that either FsG or FZG. In the first case,
we have uncoupled equations, i.e.

FsG0f2 _x Zf1 _y Zf2x Zf1y Z 0 ðR̂ZFR;K̂ ZGKÞ; ð3:8Þ

and, in the second case, we have coupled equations, i.e.

F ZG0f2 _x ;f1 _y ;f2x ;f1ys0 ðR̂ZFR;K̂ ZFKÞ: ð3:9Þ

Note that, in the case of FsG, the other possible solution SZf2x=f2 _x ,
UZf1y=f1 _y , when used in (2.7) and (2.8), leads to inconsistencies and so this
choice is not considered. Furthermore, the case RZ0 and KZ0 leads to the
Proc. R. Soc. A (2009)
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trivial solution. The above analysis clearly shows that, for the uncoupled
equations, one should choose F and G as different and, for the coupled equations,
one should choose them as the same.

Finally, we mention the important point that the functions F and G are
nothing but functions of integrals of motion. To show this, substituting back the
relations (3.8) and (3.9) in (3.5) and (3.6), respectively, we obtain

D½F �RZ 0; D½G�K Z 0 and D½F �RS Z 0;

D½G�KU Z 0; 0D½F �Z 0ZD½G�: ð3:10Þ

Thus, irrespective of whether the given equations are coupled ones or uncoupled
ones, the functions F and G can always be taken as integrals of motion or
functions of them and the problem now is how to determine them. In the
following, we discuss this in detail.
4. Case 1: FsG (uncoupled equations)

(a ) Theory

In this case, we have the following form of equation of motion:

€x Zf1ðt; x; _x Þ; €y Zf2ðt; y; _yÞ: ð4:1Þ
As a result, the evolution equations for the functions S, U, R and K (see
equations (2.7)–(2.10)) are simplified to the forms

D½S �ZKf1x CSf1 _x CS2; ð4:2Þ

D½U �ZKf2y CUf2 _y CU 2; ð4:3Þ

D½R �ZKRSKRf1 _x ; ð4:4Þ

D½K �ZKKUKKf2 _y : ð4:5Þ

By solving equations (4.2) and (4.3), one can obtain explicit forms of S and U. By
substituting the known forms of S and U into equations (4.4) and (4.5) and
integrating the resultant equations, one can fix the forms of R and K. From the
known forms of (S,U,R,K ), one can fix the integrals of motion from (2.14). One
can also consider equation (4.1) as two independent second-order ODEs and
solve the equations independently by adopting the procedure given in our
previous paper (Chandrasekar et al. 2005a). To avoid repetition, we do not
discuss the uncoupled case further here.
5. Case 2: FZG (coupled equations)

(a ) Theory

Now we focus on the case FZG. To obtain the forms (S,U,R,K ), one needs to
solve the compatibility conditions (2.7)–(2.10). For this purpose, we rewrite
equations (2.7)–(2.10) in terms of two variables alone, namely R and K, by
Proc. R. Soc. A (2009)
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eliminating S and U, and analyse the resulting coupled second-order partial
differential equations (PDEs) and obtain expressions for R and K. From the
latter, we deduce the forms of S and U through the relations (2.9) and (2.10).

To rewrite equations (2.7)–(2.10) in terms of R and K, let us take a total
derivative of equations (2.9) and (2.10). In doing so, we obtain

D 2½R�ZKD½Rf1 _x CKf2 _x CRS�; D 2½K �ZKD½Kf2 _y CRf1 _y CKU �: ð5:1Þ

Using the identities (3.1), equation (5.1) can be rewritten in a coupled form for R
and K as

D 2½R�CD½Rf1 _x CKf2 _x �ZRf1x CKf2x ; ð5:2Þ
D 2½K �CD½Kf2 _y CRf1 _y �ZRf1y CKf2y: ð5:3Þ

One can note that the above determining equations (5.2) and (5.3) form a system
of linear PDEs. To solve equations (5.2) and (5.3), one may assume a specific
ansatz either polynomial or rational in _x and _y for R and K, and by substituting
the known expressions of f1 and f2 and their derivatives into (5.2) and (5.3) and
solving them, one can obtain expressions for the integrating factors R and K.
Once R and K are known, then the functions (S,U ) can be fixed through the
relations (2.9) and (2.10). Knowing S, U, R and K, one has to make sure that
this set (S,U,R,K ) also satisfies the remaining compatibility conditions (2.11)–
(2.13). The set (S,U,R,K ) that satisfies equations (2.7)–(2.13) is then the
acceptable solution and one can then determine the associated integral I using
the relation (2.14). For complete integrability, we require four independent
compatible sets (Si ,Ui ,Ri ,Ki), iZ1,2,3,4.

As discussed in §3, suppose the sets (Si ,Ui ,Ri ,Ki), iZ1,2,3, are found to satisfy
equations (2.7)–(2.13) and the fourth set (S4,U4,R4,K4) does not satisfy equations
(2.11)–(2.13). In this case to identify the correct form of R̂4 and K̂4, one may
assume that R̂4ZFðI1; I2; I3ÞR4 and K̂4ZFðI1; I2; I3ÞK4, where F(I1,I2,I3) is a
function of the integrals I1, I2 and I3. To determine the explicit form of
F(I1,I2,I3), we proceed as follows. Substituting

R̂4 ZFðI1; I2; I3ÞR4; K̂4 ZFðI1; I2; I3ÞK4 ð5:4Þ

into equations (2.11)–(2.13), we obtain the following set of six relations:

ða1F
0
1Cb1F

0
2 Cc1F

0
3Þ

d1
ZF;

ða2F
0
1Cb2F

0
2Cc2F

0
3Þ

d 2

ZF ;

ða3F
0
1Cb3F

0
2 Cc3F

0
3Þ

d 3

ZF;
ða4F

0
1Cb4F

0
2Cc4F

0
3Þ

d 4

ZF ;

ða5F
0
1Cb5F

0
2 Cc5F

0
3Þ

d 5

ZF;
ða6F

0
1Cb6F

0
2Cc6F

0
3Þ

d 6

ZF ;

9>>>>>>>=
>>>>>>>;

ð5:5Þ
Proc. R. Soc. A (2009)
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where

a1 ZRðI1xKSI1 _x Þ; b1 ZRðI2xKSI2 _x Þ;
c1 ZRðI3xKSI3 _x Þ; d1 Z ðSR _x CRS _xKRxÞ; a 2 ZKðI1yKUI1 _y Þ;
b2 ZKðI2yKUI2 _y Þ; c2 ZKðI3yKUI3 _y Þ; d 2 Z ðUK _y CKU _yKKyÞ;
a 3 Z ðRI1yKUKI1 _x Þ; b3 Z ðRI2yKUKI2 _x Þ; c3 Z ðRI3yKUKI3 _x Þ;
d 3 Z ðUK _x CKU _xKRyÞ; a4 Z ðKI1xKSRI1 _y Þ; b4 Z ðKI2xKSRI2 _y Þ;
c4 Z ðKI3xKSRI3 _y Þ; d4 Z ðSR _y CRS _yKKxÞ; a5 Z ðRI1 _yKKI1 _x Þ;
b5 Z ðRI2 _yKKI2 _x Þ; c5 Z ðRI3 _yKKI3 _x Þ; d 5 Z ðK _xKR _y Þ;
a 6 Z ðSRI1yKUKI1xÞ; b6 Z ðSRI2yKUKI2xÞ;
c 6 Z ðSRI3yKUKI3xÞ; d6 Z ðUKx CKUxKSRyKRSyÞ

are all known functions of t; x; y; _x and _y and F 0
iZvF=vIi.

Equation (5.5) represents an overdetermined system of equations for the
unknown F. A simple way to solve this equation is to uncouple it for
F 0
i ; ðZvF=vIiÞ, iZ1,2,3, and solve the resultant equations. For example,

eliminating F 0
2 and F 0

3 from the first three relations in equation (5.5), we obtain
an equation for F 0

1 in the form

F 0
1

F
Z

ðd1c2K c1d 2Þðb1c3K b3c1ÞKðd1c3K c1d3Þðb1c2K b2c1Þ
ða1c 2K c1a2Þðb1c3K b3c1ÞKða1c3K c1a3Þðb1c2K b2c1Þ

: ð5:6Þ

On the other hand, eliminating F 0
1 and F 0

3 from equation (5.5) (again from the
first three relations), we arrive at the following equations for F 0

2 in the form:

F 0
2

F
Z

ðd1c2K c1d2Þða1c3K a3c1ÞKðd1c3K c1d3Þða1c2K a2c1Þ
ðb1c2K c1b2Þða1c3K a3c1ÞKðb1c3K c1b3Þða1c2K a2c1Þ

: ð5:7Þ

In the similar way, one obtains the following equation for F 0
3:

F 0
3

F
Z

ðd1b2K b1d2Þða1b3K a3b1ÞKðd1b3K b1d3Þða1b2K a2b1Þ
ðc1b2K b1c2Þða1b3K a3b1ÞKðc1b3K b1c3Þða1b2K a2b1Þ

: ð5:8Þ

One can easily check that the combination of other relations in equation (5.5)
along with the forms (5.6)–(5.8) gives rise to relations that are effectively nothing
but the constraint equations (2.11)–(2.13), and hence no new constraint actually
arises. Consequently, equations (5.6)–(5.8) can be written as

vF

vI1
Z g1ðI1; I2; I3ÞF ;

vF

vI2
Z g2ðI1; I2; I3ÞF and

vF

vI3
Z g3ðI1; I2; I3ÞF ; ð5:9Þ

where gi’s, iZ1,2,3, are functions of I1, I2 and I3. Now solving equations (5.9), one
can obtain the explicit form of F(I1,I2,I3). Once F is known, we can obtain the
complete solution R̂4 and K̂4 from which, along with S4 and U4, the fourth
integral I4 can be constructed using the expression (2.14).

Finally, we note that, in some cases, one can meet the situation that the sets
(Si ,Ui ,Ri ,Ki), iZ1,2, alone are found to satisfy equations (2.7)–(2.13) and the
third set (S3,U3,R3,K3) (as well as the fourth set) does not satisfy equations
(2.11)–(2.13). In this case, F may be a function of the integrals I1 and I2, which
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can be derived from the sets (Si ,Ui ,Ri ,Ki), iZ1,2. We need to find the explicit
form of F(I1,I2) in order to obtain the compatible solution ðS3;U3;R̂3;K̂3Þ. To
recover the complete form of R̂3 and K̂3, one may assume that R̂3ZFðI1; I2ÞR3

and K̂3ZFðI1; I2ÞK3 and proceed as before and obtain the determining equations
for F. Since F is a function of I1 and I2 alone, one essentially obtains the same
form (5.5) but without the factor F 0

3ðZvF=vI3Þ. Since ci’s, iZ1,., 6, are also
exclusive functions of I3, their derivatives do not appear in the determining
equations. By solving the resultant determining equations, one can fix the form of
F, which, in turn, provides us R̂3 and K̂3 from which one can construct the third
integral I3 for the given problem. Now, from the known forms I1, I2 and I3, one
can proceed as before to obtain the fourth compatible set ðS4;U4;R̂4;K̂4Þ and
thereby obtain the fourth integral I4 also.

Similarly, if the set (S1,U1,R1,K1) alone is found to satisfy equations (2.7)–(2.13)
and the second set (S2,U2,R2,K2) does not satisfy equations (2.11)–(2.13), then, in
this case, the determining equations for F take the form (5.5), with F2ZF3ZbiZ
ciZ0, iZ1,., 6. Following the procedure mentioned above, one can first derive the
second integral. From a knowledge of (I1,I2), one can again follow the above
procedures and construct I3 and I4. In the following, we illustrate the theory with
specific examples.
(b ) Example 2: coupled modified Emden equation

The modified Emden equation (MEE) and its variants arise in different
branches of physics (Erwin et al. 1984; Dixon & Tuszynski 1990), and
considerable attention has recently been paid to explore the mathematical and
geometrical properties of the MEE and its variant equations (e.g. Mahomed &
Leach 1985; Steeb 1993; Chandrasekar et al. 2005b; Euler et al. 2007). The
equation can be written as

€x C3kx _x Ckx3Clx Z 0; ð5:10Þ
where k and l are arbitrary parameters, which can be completely integrated in
terms of elementary functions (Chandrasekar et al. 2005b). It exhibits some
unusual features such as amplitude-independent frequency, non-standard
Lagrangian and time-independent Hamiltonian forms and transition from
periodic to front-like solutions as the sign of the parameter changes
(Chandrasekar et al. 2005b).

We now consider a coupled two-dimensional version of (5.10) and demonstrate
how it can be integrated by following the theory given in §5a. The coupled
system of equations can be written as

€x C2ðk1xCk2yÞ _xCðk1 _xCk2 _yÞxCðk 1xCk2yÞ2xCl1x Z 0;

€yC2ðk1xCk2yÞ _y Cðk1 _xCk2 _yÞyCðk1xCk2yÞ2yCl2y Z 0;

)
ð5:11Þ

where ki and li , iZ1, 2, are arbitrary parameters.
To determine the integrating factors, we seek a rational form of the ansatz for

R and K in the form (suggested by equation (5.10))

RZ
a1 Ca2 _x Ca3 _y

ða4 Ca5 _x Ca6 _yÞq
; K Z

b1 Cb2 _x Cb3 _y

ða4 Ca5 _x Ca6 _yÞr
; ð5:12Þ
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where q and r are arbitrary numbers (to be fixed) and ai’s, iZ1, 2,., 6, and bi’s,
iZ1, 2, 3, are arbitrary functions of t, x and y. Substituting (5.12) into (5.2) and
(5.3) and equating the coefficients of different powers of _x and _y to zero, we
obtain a set of linear PDEs for the variables ai’s, iZ1, 2,., 6, and bj’s, jZ1, 2, 3.
By solving the resultant equations, we find the following sets of particular
solutions for R and K:

R1 ZK
eK

ffiffiffiffiffiffi
Kl1

p
tðl1ðk2 _yCk22y

2Cl2ÞCk1xðk2l1yKl2
ffiffiffiffiffiffiffiffi
Kl1

p
ÞÞ

gðx; y; _x; _yÞ2
;

K1 Z
eK

ffiffiffiffiffiffi
Kl1

p
tl1k2ð _xCk1x

2Cxð
ffiffiffiffiffiffiffiffi
Kl1

p
Ck2yÞÞ

gðx; y; _x; _yÞ2
;

9>>>>>=
>>>>>;

ð5:13Þ

R2 Z
eK

ffiffiffiffiffiffi
Kl2

p
tl2k1ð _yCk2y

2 Cyð
ffiffiffiffiffiffiffiffi
Kl2

p
Ck1xÞÞ

gðx; y; _x; _yÞ2

K2 ZK
eK

ffiffiffiffiffiffi
Kl2

p
tðl2ðk1 _xCk21x

2Cl1ÞCk2yðl2k1xKl1
ffiffiffiffiffiffiffiffi
Kl2

p
ÞÞ

gðx; y; _x; _yÞ2

9>>>>>=
>>>>>;

ð5:14Þ

R3 Z
x

gðx; y; _x ; _yÞ2
; K3 Z 0; ð5:15Þ

R4 Z 0; K4 Z
y

gðx; y; _x ; _yÞ2
; ð5:16Þ

where gðx; y; _x ; _yÞZðk1l2 _xCk2l1 _yCk21l2x
2Ck22l1y

2Ck1k2ðl1Cl2ÞxyCl1l2Þ.
Now substituting the above forms of Ri’s and Ki’s, iZ1, 2, 3, 4, into (2.9) and
(2.10), we can obtain the corresponding Si’s and Ui’s, iZ1, 2, 3, 4. As a result,
now we have four sets of independent solutions (Si ,Ui ,Ri ,Ki), iZ1, 2, 3, 4, for
equations (2.7)–(2.10). Now we check the compatibility of these solutions with
the remaining equations (2.11)–(2.13). We find that only the first two sets
(Si ,Ui ,Ri ,Ki), iZ1, 2, satisfy the extra constraints (2.11)–(2.13) and become
compatible solutions. Substituting their forms separately into equation (2.14)
and evaluating the integrals, we obtain

I1 Z
eK

ffiffiffiffiffiffi
Kl1

p
tð _x Cðk1xCk2yÞxC

ffiffiffiffiffiffiffiffi
Kl1

p
xÞ

gðx; y; _x ; _yÞ ;

I2 Z
eK

ffiffiffiffiffiffi
Kl2

p
tð _y Cðk1xCk2yÞyC

ffiffiffiffiffiffiffiffi
Kl2

p
yÞ

gðx; y; _x; _yÞ :

9>>>>>=
>>>>>;

ð5:17Þ

However, the sets (Si ,Ui ,Ri ,Ki)’s, iZ3, 4, do not satisfy the extra constraints
(2.11)–(2.13), which means that the form of R3 in the third set and K4 in the
fourth set may not be in the ‘complete form’ (since K4ZR3Z0) but might only
be a factor of the complete form.
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To deduce the compatible set ðS3;U3;R̂3;K3Þ, let us substitute R̂3ZFðI1; I2Þ!
R3 into equations (5.6)–(5.8). As a result, we obtain

1

2
I1F

0
1 CF Z 0; F 0

2 Z 0; F 0
3 Z 0; Fi Z

vF

vIi
; i Z 1; 2; 3

� �
: ð5:18Þ

Upon integrating (5.18), we obtain FZ1=I 21 (the integration constants are set to
zero for simplicity), which fixes the form of R3 as

R̂3 Z
e2

ffiffiffiffiffiffi
Kl1

p
tx

ð _x Cðk1xCk2yÞxC
ffiffiffiffiffiffiffiffi
Kl1

p
xÞ2

: ð5:19Þ

Now one can easily check that the set ðS3;U3;R̂3;K3Þ is a compatible solution for
the full set of determining equations (2.7)–(2.13), which, in turn, provides I3
through the relation (2.14) as

I3 Z
e2

ffiffiffiffiffiffi
Kl1

p
tð _x Cðk1xCk2yÞxK

ffiffiffiffiffiffiffiffi
Kl1

p
xÞ

ð _x Cðk1xCk2yÞxC
ffiffiffiffiffiffiffiffi
Kl1

p
xÞ

: ð5:20Þ

Finally, in the fourth set, we take K̂4ZFðI1; I2; I3ÞK4 and substitute it into
equations (5.6)–(5.8) to obtain

F 0
1 Z 0;

1

2
I2F

0
2 CF Z 0; F 0

3 Z 0: ð5:21Þ

Upon integrating (5.21), we obtain FZ1=I 22 , which fixes the form of K̂4 as

K̂4 Z
e2

ffiffiffiffiffiffi
Kl2

p
ty

ð _y Cðk1xCk2yÞyC
ffiffiffiffiffiffiffiffi
Kl2

p
yÞ2

: ð5:22Þ

Now, the set ðS4;U4;R4;K̂4Þ is a compatible solution for equations (2.7)–(2.13),
which, in turn, provides I4 through the relation (2.14) as

I4 Z
e2

ffiffiffiffiffiffi
Kl2

p
tð _y Cðk1xCk2yÞyK

ffiffiffiffiffiffiffiffi
Kl2

p
yÞ

ð _y Cðk1xCk2yÞyC
ffiffiffiffiffiffiffiffi
Kl2

p
yÞ

: ð5:23Þ

Using the explicit forms of the integrals, I1, I2, I3 and I4, the general solution to
equation (5.11) can be deduced directly as

xðtÞZ
ffiffiffiffiffiffiffiffi
Kl1

p
l2I1ðe2

ffiffiffiffiffiffi
Kl1

p
tKI3Þ

ðÎ 1 CI2k2l1e
l̂1t CI2I4k2l1e

l̂2t CI1k1l2e
2
ffiffiffiffiffiffi
Kl1

p
tK2e

ffiffiffiffiffiffi
Kl1

p
tÞ
;

yðtÞZ
ffiffiffiffiffiffiffiffi
Kl2

p
l1I2ðe2

ffiffiffiffiffiffi
Kl2

p
tKI4Þ

ðÎ 2 CI1k1l2e
l̂1t CI1I3k1l2e

Kl̂2t CI2k2l1e
2
ffiffiffiffiffiffi
Kl2

p
tK2e

ffiffiffiffiffiffi
Kl2

p
tÞ
;

9>>>>>>=
>>>>>>;

ð5:24Þ

where l̂1Z
ffiffiffiffiffiffiffiffi
Kl1

p
C

ffiffiffiffiffiffiffiffi
Kl2

p
; l̂2Z

ffiffiffiffiffiffiffiffi
Kl1

p
K

ffiffiffiffiffiffiffiffi
Kl2

p
; Î 1ZI1I3k1l2 and Î 2ZI2I4k2l1.
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Finally, we note that, for the case liO0, iZ1, 2, the above general solution
becomes a periodic one, i.e.

xðtÞZ A sinðu1tCd1Þ
1KðAk1=u1Þcosðu1tCd1ÞKðBk2=u2Þcosðu2tCd2Þ

; ð5:25Þ
yðtÞZ B sinðu2tCd2Þ
1KðAk1=u1Þcosðu1tCd1ÞKðBk2=u2Þcosðu2tCd2Þ

; ð5:26Þ

where ujZ
ffiffiffiffi
lj

p
; jZ1; 2; AZu1u

2
2I1e

Kid1 ; BZu2u
2
1I2e

Kid2 ; I3ZeK2id1 and I4Z
eK2id2 are arbitrary constants and (Ak1/u1CBk2/u2)!1. More details on

the classical dynamics and characteristic features of this system will be

published elsewhere.
(c ) Example 3: the coupled Mathews–Lakshmanan oscillator

Let us consider the coupled Mathews–Lakshmanan oscillator discussed by
Cariñena et al. (2004a,b, 2007), namely

€x Z
lð _x2C _y2Clðx _yKy _xÞ2ÞxKa2x

ð1Clr2Þ Zf1;

€y Z
lð _x2C _y2Clðx _yKy _xÞ2ÞyKa2y

ð1Clr2Þ Zf2;

9>>>>=
>>>>;

ð5:27Þ

where rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Cy2

p
and l and a are arbitrary parameters. Equation (5.27) is a

two-dimensional generalization of the one-dimensional non-polynomial oscillator
introduced by Mathews & Lakshmanan (1974),

ð1Clx2Þ€xKðl _x 2Ka2Þx Z 0: ð5:28Þ

Nowwe use the following ansatz forR andK to explore the integrating factors for
equation (5.27) in the form (suggested by the one-dimensional oscillator (5.28)):

RZ a1Ca2 _x Ca3 _y Ca4 _x
2 Ca5 _x _y Ca6 _y

2Ca7 _x
3 Ca8 _x

2 _y Ca9 _y
2 _x Ca10 _y

3;

K Z b1Cb2 _x Cb3 _y Cb4 _x
2 Cb5 _x _y Cb6 _y

2 Cb7 _x
3Cb8 _x

2 _y Cb9 _y
2 _x Cb10 _y

3;

)

ð5:29Þ

where ai’s and bi’s, iZ1, 2,., 10, are arbitrary functions of t, x and y. Substituting
(5.29) into (5.2) and (5.27) and equating the coefficients of different powers of _x and
_y to zero and solving the resultant PDEs as before, one obtains the following non-
trivial solutions for R and K:

R1 Z y; K1 ZKx; ð5:30Þ
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


621Integrability and linearization

 on October 22, 2010rspa.royalsocietypublishing.orgDownloaded from 
R2 Z
2lðð1Cly2Þ _xKlxy _yÞ

1Clr2
; K2 Z

2lðð1Clx2Þ _yKlxy _x Þ
1Clr2

; ð5:31Þ

R3 Z _x C _y C
lðxCyÞ2ðlxy _yKð1Cly2Þ _x Þ

1Clr2
;

K3 Z _x C _yK
lðxCyÞ2ðð1Clx2Þ _yKlxy _x Þ

1Clr2
;

9>>=
>>; ð5:32Þ

R4 Z
K1

1Clr2
tl ð _x C _yÞ2K ðxCyÞ2f1

x

� ��
ð1Cly2Þ _xKlxy _y

��

KðxCyÞða2Clð1ClyðxCyÞÞ _x _yKlð1ClxðxCyÞÞ _y2Þ
�
; ð5:33Þ

K4 Z
K1

1Clr2
tl ð _x C _yÞ2K ðxCyÞ2f2

y

� ��
ð1Clx2Þ _yKlxy _x

��

KðxCyÞða2Klyð1ClðxCyÞÞ _x 2 Clð1ClxðxCyÞÞ _x _yÞ
�
: ð5:34Þ

Now substituting the above forms of Ri’s and Ki’s, iZ1, 2, 3, 4, into equations
(2.9) and (2.10), we obtain the corresponding forms of Si’s andUi’s, iZ1, 2, 3, 4. As a
result, now we have four sets of independent solutions for equations (2.7)–(2.10).
Out of these, we find that only the first three sets (iZ1, 2, 3) satisfy the extra
constraints (2.11)–(2.13) and become compatible solutions. Substituting these forms
separately into equation (2.14) and evaluating the integrals, we arrive at

I1 Z ðy _xKx _yÞ; I2 Z
ða2Klð _x 2 C _y2 Clðy _xKx _yÞ2ÞÞ

1Clr2
; ð5:35Þ

I3 Z ð _x C _yÞ2 C ðxCyÞ2ða2Klð _x 2 C _y2 Clðy _xKx _yÞ2ÞÞ
1Clr2

: ð5:36Þ

However, the set (S4,U4,R4,K4) doesnot satisfy the extra constraints (2.11)–(2.13),

which means that the forms of R4 and K4 are incomplete. So we assume that R̂4

and K̂4 are in the forms (5.4). As a result, equations (5.6)–(5.8) lead us to the
following determining equations for the unknown F :

F 0
1 Z 0; 2I2F

0
2 CF Z 0; I3F

0
3 CF Z 0; Fi Z

vF

vIi
; i Z 1; 2; 3

� �
: ð5:37Þ

Upon integrating (5.37), we obtain FZ1=ð
ffiffiffiffi
I2

p
I3Þ (the integration constants are

set to zero for simplicity), which fixes the form of R̂4 and K̂4 as

R̂4 Z
R4ffiffiffiffi
I2

p
I3

K̂4 Z
K4ffiffiffiffi
I2

p
I3
; ð5:38Þ
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where I2 and I3 are given in equations (5.35) and (5.36). Now one can easily check
that the set ðS4;U4;R̂4;K̂4Þ is a compatible solution for equations (2.7)–(2.13),
which, in turn, provides I4 through the relation (2.14) in the form

I4 ZK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ða2Klð _x 2C _y2Clðy _xKx _yÞ2ÞÞ

1Clr2

s

CtanK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxCyÞ2ða2Klð _x 2 C _y2 Clðy _xKx _yÞ2ÞÞ

ð _x C _yÞ2ð1Clr2Þ

s" #
: ð5:39Þ

Note that the above integral is given for the first time in the literature.
Using the explicit forms of the integrals I1, I2, I3 and I4, the solution to

equation (5.27) can be deduced directly as

xðtÞZ
ffiffiffiffiffiffiffi
I3
4I2

s
sin

ffiffiffiffi
I2

p
tCI4ð ÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2KI2K2lI3Kl2I 21

2lI2

s
sin

ffiffiffiffi
I2

p
tCdð Þ;

yðtÞZ
ffiffiffiffiffiffiffi
I3
4I2

s
sin

ffiffiffiffi
I2

p
tCI4ð ÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2KI2K2lI3Kl2I 21

2lI2

s
sin

ffiffiffiffi
I2

p
tCdð Þ;

9>>>>>=
>>>>>;

ð5:40Þ

where dZI4K
1
2 cos

K1 ðlI 21 ð4I2ClI3ÞCI3ð7I2Ka2C2lI3ÞÞ
I3ðI2Ka2C2lI3Cl2I 21 Þ

� �
.

(d ) Example 4: known two-dimensional integrable systems

We have also studied the integrability properties of certain well-known two-
dimensional nonlinear Hamiltonian systems, namely the Hénon–Heiles system
(Ramani et al. 1989; Lakshmanan & Sahadevan 1993; Lakshmanan & Rajasekar
2003) and the generalized van der Waals potential equation (Ganesan &
Lakshmanan 1990; Lakshmanan & Rajasekar 2003) through the modified PS
method. Our analysis shows that these systems do admit only the known
integrable cases. In the following, we present the salient features of our analysis.
(i) The Hénon–Heiles system

Let us consider the generalized Hénon–Heiles system (Hénon & Heiles 1964)

€x ZKðAxC2axyÞ €y ZKðByCax2Kby2Þ; ð5:41Þ

where A, B, a and b are arbitrary parameters. We obtain the integrating factors
R1Z _x and K1Z _y for arbitrary values of the parameters using the ansatz (5.29).
Substituting the forms R1 and K1 into equations (2.9) and (2.10), we obtain the
corresponding forms of S1 and U1. Furthermore, we find that this set also satisfies
the extra constraints (2.11)–(2.13) and becomes a compatible solution. Substituting
these forms into equation (2.14) and evaluating the integrals, we obtain

I1 Z
1

2
ð _x 2C _y2CAx2 CBy2ÞCax2yK

b

3
y3; ð5:42Þ
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which is nothing but the total energy. Furthermore, we find that only for the
specific parametric choices (i) AZB, aZKb, (ii) A, B arbitrary, bZK6a, and (iii)
BZK16A, bZK6a, one can obtain an additional set of integrating factors, i.e.

ðiÞ R2 ZK _y ; K2 ZK _x ;

ðiiÞ R2 Z 2 _xyKx _yK
4AKB

2a

� �
_x ; K2 ZKx _x ;

ðiiiÞ R2 Zaðx _yK6y _x Þx2K3ð _x 2 CAx2Þ _x ; K2 Za _xx3;

respectively.
Finding the corresponding forms of S and U from (2.9) and (2.10) and

substituting the above forms of R and K along with the corresponding S and U
into (2.14) and evaluating the integrals, we obtain the following second integrals
for the above three parametric choices:

ðiÞ I2 Z _x _y C AyCa y2C
1

3
x2

� �� �
x;

ðiiÞ I2 Z 4ðx _yK _xyÞ _x Cð4AyCax2 C4ay2Þx2 C ð4AKBÞ
a

ð _x 2 CAx2Þ;

ðiiiÞ I2 Z 9ð _x 2 CAx2Þ2 C12a _xx2ð3y _xKx _yÞK2a2x4ð6y2 Cx2ÞK12aAx4y;

respectively.
(ii) Generalized van der Waals potential

The generalized van der Waals potential equation in two dimensions is
given by

€x ZK 2gxC
x

r3

� �
; €y ZK 2gb2yC

y

r3

� �
; r Z ðx2Cy2Þ1=2; ð5:43Þ

where g and b are arbitrary parameters, which can be derived from the
Hamiltonian

H Z
1

2
ð _x 2 C _y2ÞCgðx2Cb2y2ÞK 1

r
: ð5:44Þ

Repeating the above procedure, we find that the system (5.43) admits the
integrating factors

ðiÞ R2 ZKy; K2 Z x; b2 Z 1;

ðiiÞ R2 Z x _yK2y _x; K2 Z x _x; b2 Z 4;

ðiiiÞ R2 Z y _y; K2 Z y _xK2x _y; b2 Z
1

4
;

9>>>>>>>=
>>>>>>>;

ð5:45Þ
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and the corresponding second integrals of motion are (with g arbitrary)

ðiÞ I2 Z ðy _xKx _yÞ; b2 Z 1;

ðiiÞ I2 Z ð _xyK _yxÞ _xK y

r
K2gx2y; b2 Z 4;

ðiiiÞ I2 Z ð _yxK _xyÞ _yK x

r
K

gy2x

2
; b2 Z

1

4
:

9>>>>=
>>>>;

ð5:46Þ

The integrals I1 and I2 ensure the integrability of the above systems for the
respective parametric choices through Liouville’s theorem.
6. Method of deriving general solution

In the previous sections, we derived the integrals of motion by deducing the
functions S, U, R, from which we are able to derive only two sets of solutions
(Si ,Ui ,Ri ,Ki), iZ1, 2, and their associated integrals of motion, and the remaining
two sets of functions are difficult to derive from the determining equations. Under
this situation, one may be able to deduce, in many cases, the remaining two
integrals from the known integrals themselves without worrying further about
the functions (Si ,Ui ,Ri ,Ki), iZ3, 4. The underlying idea is the following.

From the known integrals, we deduce a set of coordinate transformations and,
using these transformations, we rewrite the original ODEs as a set of two first-
order ODEs. By integrating the latter, we obtain the remaining two integration
constants. The solution to the original problem can then be obtained just by
inverting the variables. In the following, we first describe the theory and then
illustrate the ideas with an example.

We start the procedure with two known integrals of motion, namely

I1 ZFðt; x; y; _x ; _yÞ and I2 ZGðt; x; y; _x ; _yÞ: ð6:1Þ

Now we split the functional form of the integrals I1 and I2 into two terms
such that one involves all the variables ðt; x; y; _x ; _yÞ, while the other excludes
_x and _y , i.e.

I1 ZF1ðt; x; y; _x ; _yÞCF2ðt; x; yÞ; I2 ZF3ðt; x; y; _x ; _yÞCF4ðt; x; yÞ: ð6:2Þ

Let us split the functions F1 and F3 further in terms of two functions, i.e.

I1 ZF1

1

G2ðt; x; y; _x; _yÞ
d

dt
G1ðt; x; yÞ

 !
CF2ðG1ðt; x; yÞÞ;

I2 ZF3

1

G4ðt; x; y; _x; _yÞ
d

dt
G3ðt; x; yÞ

 !
CF4ðG3ðt; x; yÞÞ:

9>>>>>=
>>>>>;

ð6:3Þ

Now identifying a set of new variables in terms of functions G1, G2, G3 and G4 as

w1 ZG1ðt; x; yÞ; z1 Z
Ð t
0 G2ðt 0; x; y; _x; _yÞdt 0;

w2 ZG3ðt; x; yÞ; z2 Z
Ð t
0 G4ðt 0; x; y; _x; _yÞdt 0;

)
ð6:4Þ
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equation (6.3) can be rewritten in the form

I1 ZF1

dw1

dz 1

� �
CF2ðw1Þ; I2 ZF3

dw2

dz2

� �
CF4ðw 2Þ: ð6:5Þ

In other words,

F1

dw1

dz1

� �
Z I1KF2ðw1Þ; F1

dw2

dz2

� �
Z I2KF2ðw 2Þ: ð6:6Þ

By rewriting equation (6.6), one arrives at the decoupled equations

dw1

dz1
Z f1ðw1Þ;

dw2

dz2
Z f2ðw2Þ; ð6:7Þ

which can in principle be integrated and two additional integration constants
identified. Now rewriting the solution in terms of the original variables, one obtains
thegeneral solution for the given coupled second-orderODE.Thus, the newvariables
w1,w2, z1 and z2 correspond to transformations that effectively decouple the original
coupled nonlinear second-order ODEs (2.1), provided such transformation variables
can be identified. In the following, we illustrate the procedure with an example.
(a ) Example 5: force-free coupled Duffing–van der Pol oscillators

Let us consider the force-free coupled Duffing–van der Pol oscillators of
the form

€x CðaCbðxCyÞ2Þ _xKu1xCd1x
3 Cg1xy

2 Cl1x
2y Z 0;

€yCðaCbðxCyÞ2Þ _yKu2yCd2y
3 Cg2x

2yCl2xy
2 Z 0;

)
ð6:8Þ

where a, b, ui , di , gi and li , iZ1, 2, are arbitrary parameters. Although the
general equation (6.8) has not been discussed in detail in the literature, special
cases of the above coupled Duffing–van der Pol equation have been used to
represent physical and biological systems (Linkens 1974; Datardina & Linkens
1978; Kawahara 1980; Rajasekar & Murali 2004).

We seek a rational form of the ansatz for R and K in the form given by (5.12).
Upon solving equations (5.2) and (5.3) with this ansatz, we find that three non-
trivial solutions exist for the choice

ui ZK
3a2

16
; di Zgi Z

ab

4
and li Z

ab

2
; i Z 1; 2: ð6:9Þ

The corresponding forms of R and K turn out to be

ðR1;K1ÞZ ðeð3=4Þat; eð3=4ÞatÞ; ðR2;K2ÞZ K
1

_y C a
4 y

� 	 ; _x C a
4 x

� 	
_y C a

4 y
� 	2

 !
;

ðR3;K3ÞZ
yeð1=4Þat

_y C a
4 y

� 	 ;K y _x C a
4 x

� 	
_y C a

4 y
� 	2 eð1=4Þat

 !
:

9>>>>>=
>>>>>;

ð6:10Þ
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Now substituting the form of Ri’s and Ki’s, iZ1, 2, 3, into equations (2.9) and
(2.10), we obtain the corresponding Si’s and Ui’s, iZ1, 2, 3. As a result, now we
have three sets of independent solutions for equations (2.7)–(2.10), which are all
found to be compatible with (2.11)–(2.13). Substituting the forms (Si,Ui,Ri,Ki)’s,
iZ1, 2, 3, separately into equation (2.14) and evaluating the integrals, we obtain

I1 Z _x C _y C
a

4
ðxCyÞCb

3
ðxCyÞ3

� �
eð3=4Þat;

I2 Z
_x C a

4 x
� 	
_y C a

4 y
� 	 ; I3 Z

ðx _yKy _x Þ
_y C a

4 y
� 	

 !
eð1=4Þat:

9>>>>=
>>>>;

ð6:11Þ

To illustrate the theory given in the first part of this section, we consider the
first two integrals I1 and I2 given by equation (6.11), and rewrite them in the form
(6.2) as

I1 Z _x C _y C
a

4
ðxCyÞ

� �
eð3=4Þat C

b

3
ððxCyÞe1=4atÞ3;

I2 Z
_x C a

4 x
� 	

eð1=4Þat

_y C a
4 y

� 	
eð1=4Þat

:

9>>>=
>>>;

ð6:12Þ

Now splitting the first term in I1 and I2 further in the form (6.3) as

I1 Z eð1=2Þat
d

dt
½ðxCyÞeð1=4Þat�

 !
C

b

3
ðxCyÞ3eð3=4Þat;

I2 Z

_xC
a

4
x

 !
eð1=4Þat

_yC
a

4
y

 !
eð1=4Þat

Z
eKð1=4Þat

_yCða=4Þyð Þ
d

dt
ðxeð1=4ÞatÞ

 !
;

9>>>>>>>>>>=
>>>>>>>>>>;

ð6:13Þ

we identify the new dependent and independent variables from (6.13) using the
relations (6.4),

w1 Z ðxCyÞeð1=4Þat; z1 ZK
2

a
eKð1=2Þat; w2 Z xeð1=4Þat; z2 Z yeð1=4Þat:

ð6:14Þ
Onecaneasily check that, in thenewvariables, equations (6.11) becomeuncoupledas

d2w1

d2z1
Cbw2

1

dw1

dz1
Z 0;

d2w2

d2z2
Z 0: ð6:15Þ

The integrals of (6.15) canbe easily obtained.Thesearenothingbut the integrals I1
and I2 given in (6.12), but in terms of the new variables (6.14), they can be written as

I1 Z
dw1

dz1
C

b

3
w3
1 ; I2 Z

dw2

dz2
: ð6:16Þ
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Solving equations (6.16), we obtain (Gradshteyn & Ryzhik 1980)

z1K z0 Z
a

3I1

1

2
log

ðw1CaÞ2

w2
1Kaw1 Ca2

� �
C

ffiffiffi
3

p
tanK1 w1

ffiffiffi
3

p

2aKw1

� �� �
;

w2 Z I2z2CI3;

9>=
>; ð6:17Þ

where aZ
ffiffiffiffiffiffiffiffiffi
K3I1

b

3

q
, I3 and z0 are the third and fourth integration constants. Rewriting

wi and zi, iZ1, 2, in terms of the old variables, one can obtain the explicit solution for
equation (6.8) for the parametric choice (6.9) in the form

K
2

a
eKð1=2ÞatK z 0 Z

a

3I1

1

2
log

ððxCyÞeð1=4Þat CaÞ2

ðxCyÞ2eð1=2ÞatKaðxCyÞeð1=4Þat Ca2

 !"

C
ffiffiffi
3

p
tanK1 ðxCyÞeð1=4Þat

ffiffiffi
3

p

2aKðxCyÞeð1=4Þat

 !#
;

x Z I2yCI3e
Kð1=4Þat;

9>>>>>>>=
>>>>>>>;

ð6:18Þ
from which one can obtain implicit relations between x and t and y and t,
corresponding to the general solution.
7. Conclusion

In this paper, as a first part of our investigations on the complete integrability
and linearization of two coupled second-order ODEs, we have focused our
attention only on the integrability aspects. In particular, we have introduced a
general method of finding integrable parameters, integrating factors, integrals of
motion and general solution associated with a set of two coupled second-order
ODEs through the extended PS procedure. The procedure can also be extended
straightforwardly to analyse any number of coupled second-order ODEs. The
proposed method is simple, straightforward and very useful to solve a class of
coupled second-order ODEs. We have illustrated the theory with potentially
important examples. We have also introduced a novel idea of transforming
coupled second-order nonlinear ODEs into uncoupled second-order ODEs. We
have deduced the transformations from the first two integrals themselves.

It is also of interest to study the problem of linearization of coupled nonlinear
ODEs by transforming them into linear ODEs as in the case of single second-
order nonlinear ODEs. However, it is a more difficult and challenging problem
than quadratures. The primary reasons are as follows. (i) It is not known, in
general, whether the given equation is linearizable or not since, in the case of
two-degrees-of-freedom systems, there can exist many types of linearizing
transformations and it is not obvious which one will be successful. (ii) The
possible transformations that could exist in the case of two coupled second-order
ODEs are also not known in the literature. (iii) Finally, there is no simple
procedure that gives us the required transformation in a straightforward way.
We would like to address all these questions in the follow-up paper (part V).
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