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Coupled second-order nonlinear differential equations are of fundamental importance in
dynamics. In this part of our study on the integrability and linearization of nonlinear
ordinary differential equations (ODEs), we focus our attention on the method of deriving
a general solution for two coupled second-order nonlinear ODEs through the extended
Prelle-Singer procedure. We describe a procedure to obtain integrating factors and the
required number of integrals of motion so that the general solution follows
straightforwardly from these integrals. Our method tackles both isotropic and non-
isotropic cases in a systematic way. In addition to the above-mentioned method, we
introduce a new method of transforming coupled second-order nonlinear ODEs into
uncoupled ones. We illustrate the theory with potentially important examples.

Keywords: nonlinear differential equations; coupled second order; integrability;
integrating factors; uncoupling

1. Introduction

In this part of our study on the integrability and linearization of nonlinear
ordinary differential equations (ODEs), we focus our attention on the theoretical
formulation and applications of the modified Prelle-Singer (PS) procedure
(Prelle & Singer 1983; Duarte et al. 2001; Chandrasekar et al. 2005a, 2006) to a
set, of two coupled second-order ODEs. The need for this demonstration is due to
the fact that classifying and studying two-degrees-of-freedom dynamical systems
are highly non-trivial problems in the theory of nonlinear dynamical systems.
Historically, several techniques have been proposed to identify and obtain
general solutions of two coupled second-order ODEs. To cite a few examples, we
mention Painlevé analysis, Lie symmetry analysis, generalized Noether
symmetries technique, direct methods and so on (Ramani et al. 1989;
Lakshmanan & Sahadevan 1993; Bluman & Anco 2002; Lakshmanan &
Rajasekar 2003). Each of these methods has its own advantages and limitations.
For example, among the above-mentioned methods, certain methods fulfil the
necessary conditions alone, whereas the others guarantee only sufficient
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conditions for the complete integrability of the system concerned. This factor
alone is a motivating factor to search for more and more powerful methods for
isolating and classifying integrable and non-integrable dynamical systems. In this
way, by extending the PS procedure and its applications to coupled second-order
ODEs, we argue that the PS method can be used as a stand-alone technique to
solve a wide class of ODEs of any order irrespective of whether it is a single or a
coupled equation.

Here, we mention that the present analysis is not a straightforward extension
of the scalar case. In fact, by prolonging the theoretical formulation to the
coupled second-order ODEs, we deduce the determining equations for the
integrating factors and null forms appropriately such that one can obtain
the aforementioned functions in a more efficient and straightforward way. Thus,
the method of obtaining the integrating factors for the given equation is also
augmented in this procedure in an efficient manner. Furthermore, while studying
the coupled dynamical systems, one may face both isotropic and non-isotropic
cases. Our method covers both of them in a natural way. In addition to the
above, in this paper, we also introduce a new method to transform two coupled
second-order ODEs to two uncoupled second-order ODEs. Thus, the PS
procedure inherits several remarkable features both at the theoretical
foundations and in the range of applications, which we have listed already in
Chandrasekar et al. (2005a). Finally, we have carefully fixed the examples so that
the basic features associated with this method and the results which it leads to
could be explained in an efficient way.

The plan of this paper is as follows. In §2, we describe the PS method
applicable for coupled second-order ODEs and indicate the new features in
finding the integrating factors and integrals of motion. In §3, we establish a
connection between the integrating factors and the form of equations. In §4, the
uncoupled equations are briefly considered. In §5, we elaborately discuss the
method of constructing integrals and general solutions for the coupled nonlinear
ODEs. We support the theory with two non-trivial examples, which are
discussed in the contemporary literature. We also briefly discuss the application
of our procedure for the case of Liouville integrable systems in §5d. We devote §6
to demonstrating yet another method to identify transformation variables from
the first integrals, which can be effectively used to rewrite the system of coupled
ODEs into uncoupled ones so that one can integrate the resultant equation easily
and obtain the general solution. We present our conclusions in §7.

2. The PS method for coupled second-order ODEs

(a) General theory

Let us consider a system of two coupled second-order ODEs of the form

dQI Pl d2y PQ

V2 A “:—:_7 Piu ieCt,xu )i7‘7i:1527 2.1
where P; and (); are analytic functions of the variables ¢, z, y, 2 and y. Let us
suppose that the system (2.1) admits a first integral of the form I(¢, z, y,z,9) = C,
with C' constant on the solutions, so that the total differential gives
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dI = Idt + Ldz + Idy + [;di + I,dg = 0, (2.2)

where the subscript denotes partial differentiation with respect to that variable.
Rewriting (2.1) in the form

Bogi—ai =0, Lar—ag—o (2.3)
@ Qo
and adding null terms s, (¢, z, y, &, y)& dt — s;(t, z, y, &, y)dz and so(t, z, y, T, )y
dt— s(t,x, y,2,y)dy to the first equation in (2.3), and u(t,z, y,2,9)%
dt— uy(t, @, y, &, y)de and us(t,z, y, 2, 9)y dt — us(t, x, y, ¢, y)dy to the second
equation in (2.3), respectively, we obtain that, on the solutions, the 1-forms

P
<al + 5% + 523)) dt— s; dz— spdy—di =0, (2.4a)
1
Py . . .
0 + u T + uyy |dt— uydz — ugdy —dy = 0. (2.40)
2

At this stage, we wish to point out that one can also analyse the coupled second-
order ODEs (2.1) by rewriting them as a set of four coupled first-order ODEs of the
form &=z, 2,=P,/Q\, y=1u, y1=Py/Q, and its equivalent 1-forms. By
introducing four integrating factors, one can deduce the relevant determining
equations by following the procedure given by us in the earlier paper, part III
(Chandrasekar et al. 2009), to the above system of first-order ODEs. However, after
examining several examples, we find that it is more advantageous to solve the
system (2.1) in the second-order form itself rather than introducing more variables.
The procedure is as follows.

Now, on the solutions, the 1-forms (2.2), (2.4a) and (2.4b) must be
proportional. Multiplying (2.4a) by the factor R(t,z, y,%,y) and (2.4b) by the
factor K(t,z, y,,7y), which act as the integrating factors for (2.4a) and (2.4b),
respectively, we have on the solutions that

dI = R(¢, + Si)dt + K(¢o + Uy)dt — RSdz— KUdy— Rdi — Kdyg =0, (2.5)
where ¢,=P;/Q;, i=1,2; S= RSIEKUI; and U=t
(2.5) and (2.2), we have, on the solutions, the relations

. Comparing equations

(2.6)

I, =—KU, Ii=—R, Ij=-K,

The compatibility conditions between equations (2.6), namely I, = I;, I;; = L,

Ity = Iym Itg) = Iy’t7 I:vy = Iyxv L = Iy, Iyy = Iyw Ixy = Iym Iydc = Ia'cy and chy' = Iyxa
provide us the following conditions:
K K
DIS] = —¢1,— E¢2z + Es%i + S + 57, (2.7)
R R
D[U]=_¢2y_?¢ly "‘? U¢1g+U¢2g+U2» (2.8)
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D[R] = —(Ré1; + K¢o; + RS), (2.9)
DIK] = ~(Kgu; + Ry + KU), (2.10)
SRy = —RSy + UK, + KU, R, = SR; + RS;, (2.11)

Here, the total differential operator, D, is defined by D= (d/dt)+ (d/dz)+
y(0/dy) + ¢1(0/02) + ¢po(9/0y). Integrating equations (2.6), we obtain the
integral of motion

d
I:T’1+T’2+T3+T4_J |iK+?(T1+T’2+T’3+T4):|d’y, (214)
Y

where

o= J (R(¢1 + Si) + K(¢y + Uy))dt, ry = —J (RS +%(7’1))d1‘,

d d .
Ty = —J <KU +d—y(7’1 + 7’2)>dy, Ty = _[ (R +5(7’1 +rp+ 7’3)>dz‘

By solving the determining equations, (2.7)—(2.13), consistently, we can obtain
expressions for the functions (S,U,R,K). By substituting them into (2.14) and
evaluating the integrals, we can construct the associated integrals of motion. It is
also clear that equation (2.1) can be considered as a completely integrable system
once we obtain four independent integrals of motion through this procedure.

3. Connection between the integrating factors and the nature
of equations

We note that equations (2.7)—(2.13) constitute an overdetermined system for the
four unknowns, namely S, U, R and K. Among these equations, the first four
equations, (2.7)—(2.10), constitute the evolution equations for the variables S, U,
R and K. Here, we mention that, by combining equations (2.7)-(2.10), one can
obtain the following two identities:

Any solution (S,U,R,K) that satisfies equations (2.7)-(2.10) also satisfies
equation (3.1). Once the functions S, U, R and K are fixed, then the rest of
the problem is to verify whether these functions satisfy the ‘extra determining
equations’; i.e. (2.11)—(2.13), or not. If these functions satisfy the extra
determining equations, then they form a compatible set of solutions and one
can proceed to construct the associated integral of motion from (2.14). On the
other hand, if the functions do not satisfy the extra determining equations, then
one has to look for alternative ways to obtain compatible solutions. In fact, in
practice, one often meets the case in which a certain solution(s) that satisfies
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(satisfy) the evolutionary determining equations (2.7)—(2.10) does (do) not
satisfy the extra determining equations. More specifically, for a class of problems,
one often obtains one or two or even three sets of (S,U,R,K) by solving (2.7)—
(2.10), which does (do) satisfy the rest and another (other) set(s) does (do) not
satisfy the later equations. In this situation, we find an interesting fact that one
can use the integral(s) derived from the set(s), which satisfies (satisfy) equations
(2.7)-(2.13) and deduce the other compatible solution(s) (S, U,R,K) (definition
of R and K follows). For example, let the set (S, Uy, R4,K,) be a solution of the
evolution equations (2.7)—(2.10) and not of the extra determining equations
(2.11)—(2.13). After analysing several examples, we find that one can make the
set (S, Uy, Ry, K;) compatible by modifying the form of R, and K as

R=F(tz, yi,9)R,  K=G(tz yi79kK, (3.2)

where F' and G are functions to be determined. However, after making these
modifications, S; and U, remain the same. A motivation to perform this type of
modification came from our earlier work on the applicability of the PS procedure to
scalar second-order ODEs (Chandrasekar et al. 2005a). However, unlike the scalar
case, here we have to choose two functions, namely F'and G, appropriately, such
that the compatible forms of R and K can be fixed. Since we have to choose two
functions, one might ask the question of whether these two functions are necessarily
different or the same. In the following, we answer this question.
Since R and K should satisfy equations (2.9) and (2.10), we have

D[F|R + FD[R) = —(FR¢; + GK¢y; + FRS), (3.3)
D[GIK + GD[K] = —(FRé,; + GKdo; + GKU). (3.4)

Substituting the expressions for D[R] and D[ K] (see (2.9) and (2.10)) in (3.3) and
(3.4) and simplifying the resultant equations, we find that

DIFIR = (F~G)Kgy,  DIGIK = (G—F)Rgy,. (3.5)

On the other hand, substituting the modified forms (3.2) in the integrability
conditions (3.1), we obtain

DIF|RS = (F — G)K¢,, D[G]KU = (G—F)R¢,,. (3.6)
Combining equations (3.5) and (3.6), we obtain
(F = G)K(S¢a; — b2,) = 0, (G=F)R(Udr; — ¢1,) = 0. (3.7)

From equation (3.7), we can conclude that either F'# G or F'= G. In the first case,
we have uncoupled equations, i.e.

F#G= ¢y = Py = oy = ¢1, =0 (RZFR>K=GK)7 (3.8)
and, in the second case, we have coupled equations, i.e.
F = G=>¢2¢7¢1y;¢2x7¢1y¢0 (R:FR,KzFK). (3.9)

Note that, in the case of F# G, the other possible solution S= ¢y,/ds;,
U= ¢1,/$1;, when used in (2.7) and (2.8), leads to inconsistencies and so this
choice is not considered. Furthermore, the case R=0 and K=0 leads to the
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trivial solution. The above analysis clearly shows that, for the uncoupled
equations, one should choose F and G as different and, for the coupled equations,
one should choose them as the same.

Finally, we mention the important point that the functions F and G are
nothing but functions of integrals of motion. To show this, substituting back the
relations (3.8) and (3.9) in (3.5) and (3.6), respectively, we obtain

DIFIR=0, D[GIK =0 and D[FIRS =0,
D[GIKU =0,  =D[F] =0 = D[G]. (3.10)

Thus, irrespective of whether the given equations are coupled ones or uncoupled
ones, the functions F' and G can always be taken as integrals of motion or
functions of them and the problem now is how to determine them. In the
following, we discuss this in detail.

4. Case 1: F# G (uncoupled equations)

(a) Theory
In this case, we have the following form of equation of motion:
= (:bl(t? Z, .Z'), y = ¢2(t7 Y, y) (41)

As a result, the evolution equations for the functions S, U, R and K (see
equations (2.7)-(2.10)) are simplified to the forms

D[S] = —¢1, + Sy + 52, (4.2)
D[U] =—¢g, + Uy + U, (4.3)
D[R] = —RS—Réy;, (4.4)
DIK] = —KU—K¢,,. (4.5)

By solving equations (4.2) and (4.3), one can obtain explicit forms of S and U. By
substituting the known forms of S and U into equations (4.4) and (4.5) and
integrating the resultant equations, one can fix the forms of R and K. From the
known forms of (S,U,R,K), one can fix the integrals of motion from (2.14). One
can also consider equation (4.1) as two independent second-order ODEs and
solve the equations independently by adopting the procedure given in our
previous paper (Chandrasekar et al. 2005a). To avoid repetition, we do not
discuss the uncoupled case further here.

5. Case 2: FF’= G (coupled equations)

(a) Theory

Now we focus on the case F=G. To obtain the forms (S,U,R,K), one needs to
solve the compatibility conditions (2.7)—(2.10). For this purpose, we rewrite
equations (2.7)—(2.10) in terms of two variables alone, namely R and K, by
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eliminating S and U, and analyse the resulting coupled second-order partial
differential equations (PDEs) and obtain expressions for R and K. From the
latter, we deduce the forms of S and U through the relations (2.9) and (2.10).

To rewrite equations (2.7)—(2.10) in terms of R and K, let us take a total
derivative of equations (2.9) and (2.10). In doing so, we obtain

D[R] = ~D[R¢y; + K¢; + RS],  D?*[K] =—D[K¢o; + Rpy; + KU]. (5.1)

Using the identities (3.1), equation (5.1) can be rewritten in a coupled form for R
and K as

D?[R] + D[R¢y; + Ky;] = Ry, + Ko, (5.2)

D*[K] + D[K ¢y, + Reyy) = Ry, + Kby, (5.3)

One can note that the above determining equations (5.2) and (5.3) form a system
of linear PDEs. To solve equations (5.2) and (5.3), one may assume a specific
ansatz either polynomial or rational in # and ¢ for R and K, and by substituting
the known expressions of ¢; and ¢, and their derivatives into (5.2) and (5.3) and
solving them, one can obtain expressions for the integrating factors R and K.
Once R and K are known, then the functions (S,U) can be fixed through the
relations (2.9) and (2.10). Knowing S, U, R and K, one has to make sure that
this set (S,U,R,K) also satisfies the remaining compatibility conditions (2.11)—
(2.13). The set (S,U,R,K) that satisfies equations (2.7)—(2.13) is then the
acceptable solution and one can then determine the associated integral I using
the relation (2.14). For complete integrability, we require four independent
compatible sets (S5;,U;,R;,K;), i=1,2,3 4.

As discussed in §3, suppose the sets (S;,U;,R;,K;), i=1,2,3, are found to satisfy
equations (2.7)—(2.13) and the fourth set (Sy, Uy, R4, K,) does not satisfy equations
(2.11)~(2.13). In this case to identify the correct form of R, and K, one may
assume that R, = F([, L, )R, and K,= F(I,, L,, I3)K,, where F(I},I,,13) is a
function of the integrals I, I, and I3. To determine the explicit form of
F(I,,5,13), we proceed as follows. Substituting

R4 = F(IDI% —73)347 K4 = F(Ih 127[3)K4 (5'4)

into equations (2.11)—(2.13), we obtain the following set of six relations:

(aiF{+ b Fy + e Fy) r (agF{ + by + e Fy) r
d; ’ dy ’

(agFi + b3 Fy + c3Fy) F (ayFi + byFy + o4 Fy) . (5.5)
ds dy

(as P + b5 Fy + ¢ Fy) _ r (agF7 + boFy + csFy) _ r
ds ’ dg ’
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where
ay = R(I, —SI;), by = R(I, —Shy;),
R(I3, —Sk;), dy = (SR; + RS; —R,), ay = K(I;,— Uly),

by = K(L,— ULy), ¢ =K(L,—UL,), dy,=(UK;+ KU;—K,),
= (RL,— UKL;), b3=(RL,—UKl;), c3=(RL,—UKL;),

(UK; + KU; —R,), ay = (KL,—SRLy), b= (Kl,—SRIy;),
¢y = (Kly, —SRIy;), dy = (SR, + RS, —K,), a5 = (RL,—KI;),
bs = (RIQg) —KL;), ¢ = (Rlsg —KLy;), ds=(K; —Ry),
ag = (SRL,— UKL,), bs=(SRL,— UKL,),
c¢ = (SRl;,— UKly,), ds = (UK, + KU,—SR,—RS,)

are all known functions of ¢, z, y, 2 and y and F=9dF/dI,.

Equation (5.5) represents an overdetermined system of equations for the
unknown F. A simple way to solve this equation is to uncouple it for
F!,(=0F/dI,), i=1,2,3, and solve the resultant equations. For example,
eliminating F3 and Fj from the first three relations in equation (5.5), we obtain
an equation for F| in the form

Fi _ (dica— erdy)(byes — byey) —(dics — erdy) (byoy — bycy) (5.6)
F (a1cy— crag)(bres— byey) —(aye3 — crag)(bicy — byey)

On the other hand, eliminating F| and Fj from equation (5.5) (again from the
first three relations), we arrive at the following equations for Fj in the form:

52/ (dicy— ady)(a1c3 — aze)) = (dics — erdg) (a1 — azey)

= . 5.7
F (brea = erbp)(arc3 — azer) = (brey — erbs)(arcy — azey) (5:)

In the similar way, one obtains the following equation for Fj:
Fy _ (diby— bidy)(arby— agb) —(diby — bids)(ar by — ashy) (5.8)

F (0152— 5102)(%53— 0351) _(0153— 5103)(0152— a2b1)

One can easily check that the combination of other relations in equation (5.5)
along with the forms (5.6)—(5.8) gives rise to relations that are effectively nothing
but the constraint equations (2.11)—(2.13), and hence no new constraint actually
arises. Consequently, equations (5.6)—(5.8) can be written as

oF oF oF

6_11 = gL, b, ) F, 8_12 = go(l1, I, 3)F' and 8—13 = g3(1, b, ) F, (5.9)
where g;’s, i=1,2,3, are functions of [;, I, and 5. Now solving equations (5.9), one
can obtain the explicit form of F(I;,15,15). Once F is known, we can obtain the
complete solution R, and K, from which, along with S; and U,, the fourth
integral I, can be constructed using the expression (2.14).

Finally, we note that, in some cases, one can meet the situation that the sets
(S;,U;,R;,K;), i=1,2, alone are found to satisfy equations (2.7)—(2.13) and the
third set (S3,Us,R3,K3) (as well as the fourth set) does not satisfy equations
(2.11)—(2.13). In this case, F' may be a function of the integrals [; and I, which
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can be derived from the sets (S;,U;,R;,K;), i=1,2. We need to find the explicit
form of F(I;,I5) in order to obtain the compatible solution (S3, Us,R3,K3). To
recover the complete form of R3 and Kj, one may assume that Ry = F(I, )Ry
and K5 = F(I,, I,) K3 and proceed as before and obtain the determining equations
for F. Since F'is a function of I; and I, alone, one essentially obtains the same
form (5.5) but without the factor F4(=dF/dl3). Since ¢;s, i=1, ..., 6, are also
exclusive functions of I3, their derivatives do not appear in the determining
equations. By solving the resultant determining equations, one can fix the form of
F, which, in turn, provides us R3 and K3 from which one can construct the third
integral .73 for the given problem. Now, from the known forms I;, I, and I3, one
can proceed as before to obtain the fourth compatible set (S, Uy, Ry, K 4) and
thereby obtain the fourth integral I also.

Similarly, if the set (S;, U;,Rq,K;) alone is found to satisfy equations (2.7)—(2.13)
and the second set (Sy, Uz, Ro, K5) does not satisfy equations (2.11)—(2.13), then, in
this case, the determining equations for F' take the form (5.5), with Fo=F3=0b,=
¢;=0,i=1, ..., 6. Following the procedure mentioned above, one can first derive the
second integral. From a knowledge of (Ij,), one can again follow the above
procedures and construct I5 and 1. In the following, we illustrate the theory with
specific examples.

(b) Example 2: coupled modified Emden equation

The modified Emden equation (MEE) and its variants arise in different
branches of physics (Erwin et al. 1984; Dixon & Tuszynski 1990), and
considerable attention has recently been paid to explore the mathematical and
geometrical properties of the MEE and its variant equations (e.g. Mahomed &
Leach 1985; Steeb 1993; Chandrasekar et al. 2005b; Euler et al. 2007). The

equation can be written as

i+ 3kzd + kz® + Az = 0, (5.10)

where k and A are arbitrary parameters, which can be completely integrated in
terms of elementary functions (Chandrasekar et al. 2005b). It exhibits some
unusual features such as amplitude-independent frequency, non-standard
Lagrangian and time-independent Hamiltonian forms and transition from
periodic to front-like solutions as the sign of the parameter changes
(Chandrasekar et al. 2005b).

We now consider a coupled two-dimensional version of (5.10) and demonstrate
how it can be integrated by following the theory given in §5a. The coupled
system of equations can be written as

i+%hx+kwm+wh¢+kwmwwmx+kwfx+hx=Q} (5.11)
y+ Q(klx + kQ?J)?) + (kljf + k’z?))y + (k‘ﬂ + kz@/)Q?J + Ay =0,

where k; and 4;, i=1, 2, are arbitrary parameters.
To determine the 1ntegrat1ng factors, we seek a rational form of the ansatz for
R and K in the form (suggested by equation (5.10))
aq + 0/2.’[.) + agg'/ bl + ng + b3y

R= K = 5.12
(ay + a5z + agy)?’ (ay + a5z + agy)”’ ( )
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where ¢ and r are arbitrary numbers (to be fixed) and a;’s, i=1, 2, ..., 6, and b;’s,
i=1, 2, 3, are arbitrary functions of ¢, z and y. Substituting (5.12) into (5.2) and
(5.3) and equating the coefficients of different powers of & and y to zero, we
obtain a set of linear PDEs for the variables a;’s, =1, 2, ..., 6, and b;s, j=1, 2, 3.
By solving the resultant equations, we find the following sets of particular
solutions for R and K:

VG (ko + B3+ D) + kya(kadyy — o))

R1 = . \2 ’
9(z,y, %, 9) (5.13)
| = e VM ky (4 k2”4 2(vV=A + ky)) |
9(z,y. &, §) ’
R, = £V k(i + by’ +y(VT s + k1))
9(z,y, 3, 9)*
(5.14)
K — e VTR (g (kyd + k17 + X)) + kay(Aokyz —21v/=))
2 — ..
9(z,y, 2, 9)°
Ry = %’ K3 =0, (5-15)
9(z, y, T, 9)
R4 = 07 K4 = Y . N2 (516)
9(z, y, 2, 7)

where g(.fC, Y, i, y) = (klkgz' + kgllil./ + ]{3%/\21'2 + k%AlyQ + klkz(xl + AQ).’L'ZI/"‘ /\1/\2).
Now substituting the above forms of R;s and K’s, i=1, 2, 3, 4, into (2.9) and
(2.10), we can obtain the corresponding S;’s and Uj’s, i=1, 2, 3, 4. As a result,
now we have four sets of independent solutions (S;,U;,R;,K;), i=1, 2, 3, 4, for
equations (2.7)-(2.10). Now we check the compatibility of these solutions with
the remaining equations (2.11)—(2.13). We find that only the first two sets
(S;,U;,R;,K;), i=1, 2, satisfy the extra constraints (2.11)—(2.13) and become
compatible solutions. Substituting their forms separately into equation (2.14)
and evaluating the integrals, we obtain

e _’m(:i + (ki + khy)z + /—Ax)

I == .. )
! 9(w,y, ., 9) —
I — VI + (ho + kyy)y + V=)

9(z,y, &,7)

However, the sets (S5;,U;,R;,K;)’s, i=3, 4, do not satisfy the extra constraints
(2.11)—(2.13), which means that the form of Rj3 in the third set and K, in the
fourth set may not be in the ‘complete form’ (since Ky= R3=0) but might only
be a factor of the complete form.
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To deduce the compatible set (S, Us, Ry, K3), let us substitute Ry = F(I;, I,) X
Rj3 into equations (5.6)—(5.8). As a result, we obtain

1 oF
§IlF{+F=O, Fy =0, F; =0, <FZ-=M,Z'=1,2,3>. (5.18)

2

Upon integrating (5.18), we obtain F'=1/I¢ (the integration constants are set to
zero for simplicity), which fixes the form of R3 as

. 62\/—A1tx
Ry =— - (5.19)
(LE + (klx + ka)z + \/_Alﬂf)

Now one can easily check that the set (S35, Us, ]:23, K3) is a compatible solution for
the full set of determining equations (2.7)—(2.13), which, in turn, provides I
through the relation (2.14) as

e? 7“(3’5 + (kyz + kyy)z — /=X z)

I =
3 (Z + (kyz + koy)z + V/—A2)

(5.20)

Finally, in the fourth set, we take K, = F(I, I, ;) K, and substitute it into
equations (5.6)—(5.8) to obtain

1
F| =0, 512F5 +F =0, F; =0. (5.21)

Upon integrating (5.21), we obtain F'=1/I7, which fixes the form of K, as

X 2Vt y 522)
R, =— . 5.92
(5 + (k7 + kay)y + vV—"Tay)*

Now, the set (S, Uy, Ry,K,) is a compatible solution for equations (2.7)-(2.13),
which, in turn, provides I; through the relation (2.14) as

VTR (G + (kyx + koy)y —v—Aay)
(9 + (k1z + kay)y + vV—22y)

Using the explicit forms of the integrals, I, I, I3 and I, the general solution to
equation (5.11) can be deduced directly as

I = (5.23)

.Z‘(t) — \/_—AIA2II(82 ﬂl]t_l?))
(jl + nggklexlt + IQLLICQAIGAQt + Ilk1A282 At —2e _Alt) ( )
5.24
y(t) — \/:7;A1]2(62 _AZt_I4)
(jg + Ilkll.{ze Alt + 11]3k1A2€_A2t + Izk@kleQ \ ot —2e _Azt) )

where 11 = V_Al + \/_/12, 12 = V_Al - \/_AQ, jl = IllgklAQ and j2 = 12[4]{/’211.
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Finally, we note that, for the case 4,>0, i=1, 2, the above general solution
becomes a periodic one, i.e.

A Sin(a)lt + 61)

2(t) = 1—(Aky/wy)cos(wit + 6;) — (Bky/wy)cos(wyt + 65) (5:25)

B sin(wst + 65)

y(t) = 1—(Aky/wi)cos(wit + 6;) — (Bksy/wy)cos(wat + 65) (5.26)

where w;=/4;, j=1,2, A=wwilie™™ B=wywihe ™ L=e7 % and I,=
e %% are arbitrary constants and (Ak;/w;,+ Bky/ws)<1. More details on
the classical dynamics and characteristic features of this system will be
published elsewhere.

(¢) Ezample 3: the coupled Mathews—Lakshmanan oscillator

Let us consider the coupled Mathews—Lakshmanan oscillator discussed by
Carinena et al. (2004a,b, 2007), namely

P A3+ 9% + May—yi))z—o’s p
(1+2r?) b

P o (5.27)
MA@+ 92 + Mag—yi))y—a’y

(14 Ar?) =92

where r=4/2?+ »? and 1 and « are arbitrary parameters. Equation (5.27) is a
two-dimensional generalization of the one-dimensional non-polynomial oscillator

introduced by Mathews & Lakshmanan (1974),
(14 Azh)i—(2i* —a?)z = 0. (5.28)

Now we use the following ansatz for R and K to explore the integrating factors for
equation (5.27) in the form (suggested by the one-dimensional oscillator (5.28)):
R = a, + ayi + ag§ + a,i”° + a5i§ + agy” + a7’ + agi®y + agy’d + a9,
K = by + byd 4 by + byd” + bydg + bey” + by’ + bgd®y + boy’d + by,
(5.29)
where a;’s and b;’s, i=1, 2, ..., 10, are arbitrary functions of ¢, z and y. Substituting
(5.29) into (5.2) and (5.27) and equating the coefficients of different powers of £ and
7y to zero and solving the resultant PDEs as before, one obtains the following non-
trivial solutions for R and K:

Ry =y, K =-z (5.30)
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2A((1 + Ay?) 3 — Azyy) 20((1 + Az%)y — Aay7)

By = 14 Ar? ’ K= 1+ Ar? ’ (5:31)
_ e Ma ) Qayg — (1 + A
Ry=a+79y+ T+ , 5.32)
K= 6+ — Mz + y)Q((l + Az?)y — Azyd)
3 y 1+ Ar? ’
-1 +y)°
R, = 157 [M((:f: + y')2 — %) ((1 + Ay z —Aa:yy)
—(z+ ) + A1 + Ay(z + v)iy —A(1 + Az(z + y)) ] (5.33)
K =_71[tl<(a'c+ ')2—M>((1+Ax AT x)
YT 2 Y Y )i =Azy
—(z 4+ y)(® —2y(1 + Az + y))i® + A(1 + Az(z + y))ig))] : (5.34)

Now substituting the above forms of R;s and K;'s, i=1, 2, 3, 4, into equations
(2.9) and (2.10), we obtain the corresponding forms of S;’s and U;’s, i=1,2,3,4. Asa
result, now we have four sets of independent solutions for equations (2.7)—(2.10).
Out of these, we find that only the first three sets (i=1, 2, 3) satisfy the extra
constraints (2.11)—(2.13) and become compatible solutions. Substituting these forms
separately into equation (2.14) and evaluating the integrals, we arrive at

(& =23 + 9% + Myt —29)?))
14 Ar? ’

L = (yit—x?))a L = (5'35)

(2 + 9)*(o® = (3 + §° + A(yd —25)*))
1+ Ar? '
However, the set (Sy, Uy, R4, K,) does not satisfy the extra constraints (2.11)—(2.13),

which means that the forms of R, and K, are incomplete. So we assume that R,

and K, are in the forms (5.4). As a result, equations (5.6)(5.8) lead us to the
following determining equations for the unknown F':

L=(i+y)"+

(5.36)

OF
Fl=0, 2LF,+F=0 LF,+F=0, <Fi=ﬁ,i=l,2,3>. (5.37)
)

Upon integrating (5.37), we obtain F'=1/(/L13) (the integration constants are
set to zero for simplicity), which fixes the form of R, and K, as
A R, A K,y
Ry = Ky = )
VL VLI

(5.38)
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where I, and I; are given in equations (5.35) and (5.36). Now one can easily check
that the set (Sy, Uy, Ry, K,) is a compatible solution for equations (2.7)—(2.13),
which, in turn, provides I; through the relation (2.14) in the form

[ 22— A2 + 9 + A(yi —z9)?))
4 14+ Ar?

+ tan !

wx +9)° (@2 —A(#* + §° + Alyi —j)’)) (5.39)

(& + 9)%(1 + Ar?)

Note that the above integral is given for the first time in the literature.
Using the explicit forms of the integrals I;, I, I3 and I;, the solution to
equation (5.27) can be deduced directly as

I 2 — I, —22 — A*T?
z(t) = /4—-?7’28111(\/1‘275 +1)+ \/a 2 3 Lsin(v/ It + 6),

2L
L o — L, =221, — °IF

y(t) =, [—=sin(v/Lt + 1) — sin(v/ Lt + 0),
Al VA

4 [(113(412 + AL) + L(7L —a® + 2415))
L(L—a®+ 221+ 2212) '

(5.40)

where 6= 1, —%cos

(d) Example 4: known two-dimensional integrable systems

We have also studied the integrability properties of certain well-known two-
dimensional nonlinear Hamiltonian systems, namely the Hénon-Heiles system
(Ramani et al. 1989; Lakshmanan & Sahadevan 1993; Lakshmanan & Rajasekar
2003) and the generalized van der Waals potential equation (Ganesan &
Lakshmanan 1990; Lakshmanan & Rajasekar 2003) through the modified PS
method. Our analysis shows that these systems do admit only the known
integrable cases. In the following, we present the salient features of our analysis.

(i) The Hénon—-Heiles system

Let us consider the generalized Hénon-Heiles system (Hénon & Heiles 1964)
& =—(Az + 2azy) i = —(By + az’ — By, (5.41)

where A, B, a and § are arbitrary parameters. We obtain the integrating factors
R, =1 and K, =y for arbitrary values of the parameters using the ansatz (5.29).
Substituting the forms R; and K into equations (2.9) and (2.10), we obtain the
corresponding forms of S} and U;. Furthermore, we find that this set also satisfies
the extra constraints (2.11)—(2.13) and becomes a compatible solution. Substituting
these forms into equation (2.14) and evaluating the integrals, we obtain

1
I =§(552 + ¢* + A2® + By?) +ax2y—§y3, (5.42)
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which is nothing but the total energy. Furthermore, we find that only for the
specific parametric choices (i) A= B, a= —g, (ii) A, Barbitrary, = —6«, and (iii)
B=—16A, 8= —06q, one can obtain an additional set of integrating factors, i.e.

(1) R2 :_ya K2 :—j},

4A—B
(i) Ry = 23&3/—952)—( 52 )a’c, Ky = —ux1,
(iii) Ry, = a(zy —6yi)a® —3(i* + Az*)i, K, = aiz’,

respectively.

Finding the corresponding forms of S and U from (2.9) and (2.10) and
substituting the above forms of R and K along with the corresponding S and U
into (2.14) and evaluating the integrals, we obtain the following second integrals
for the above three parametric choices:

1
(i) L =zy+ (Ay+a<y2 +§x2)>m,

(i) L =4(zj— dy)i + (44y + a2’ + day?)a? +@

(i* + Az?),
(iil) L = 9(i* + Az®)? + 1202 3y — zy) — 2072 (647 + 2°) — 120 Az’y,

respectively.

(ii) Generalized van der Waals potential

The generalized van der Waals potential equation in two dimensions is
given by

I= —(27x + %), = —(27623/ + %), r=(z*+ y2)1/2, (5.43)
T T

where v and ( are arbitrary parameters, which can be derived from the
Hamiltonian

1 . . 1
H = B (x2 + y2) + 7(332 + 62y2) - (5.44)

Repeating the above procedure, we find that the system (5.43) admits the
integrating factors

(5.45)
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and the corresponding second integrals of motion are (with v arbitrary)
(i) L= (yi—zp), B =1,

. . R

(i) L=(ty—go)i———2ya'y, § =4 (5.46)
2

T vy’ 1

S22 g=

T 2

The integrals I; and I, ensure the integrability of the above systems for the
respective parametric choices through Liouville’s theorem.

(iil) L = (yz—2y)y—

6. Method of deriving general solution

In the previous sections, we derived the integrals of motion by deducing the
functions S, U, R, from which we are able to derive only two sets of solutions
(S;,U;,R;,K;), i=1, 2, and their associated integrals of motion, and the remaining
two sets of functions are difficult to derive from the determining equations. Under
this situation, one may be able to deduce, in many cases, the remaining two
integrals from the known integrals themselves without worrying further about
the functions (S;,U;,R;,K;), i=3, 4. The underlying idea is the following.

From the known integrals, we deduce a set of coordinate transformations and,
using these transformations, we rewrite the original ODEs as a set of two first-
order ODEs. By integrating the latter, we obtain the remaining two integration
constants. The solution to the original problem can then be obtained just by
inverting the variables. In the following, we first describe the theory and then
illustrate the ideas with an example.

We start the procedure with two known integrals of motion, namely

’[1 = f(t7 :I/., y7 i;? y) and I2 = g(t7 x? y? i? y)' (6'1)

Now we split the functional form of the integrals I; and I, into two terms
such that one involves all the variables (t,z, y, %, y), while the other excludes
Z and 9, i.e.

Il = Fl(tv z, y7$7y) +F2(t7 T, y)a IQ = FS(ta z, ’y,I,y) + F4(t7 T, y) (62)

Let us split the functions F; and Fj5 further in terms of two functions, i.e.

1 d
. =Fr— = : . t
1 1<Gz<t,x,y,a'c,y> ar ’x’y)> + By (Gi(t 2, y)),
(6.3)
L, =F ;EG("’ )| + FL(Gy(t )
2 — 43 G4(t7$7y7;b’y) dt 3\, T, Y 4 s(t, 2, y)).

Now identifying a set of new variables in terms of functions G;, Gs, Gs and G, as
w, = Gy(t,z,y), 2 = fot Gy(t' z,y, , y)dt’,}

t ! B ! (6'4)
Wy = G3(t7 z, y)v 2 = .[0 G4(t7$7 Y, T, y)dt7
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equation (6.3) can be rewritten in the form

d d
I =F; (d—wl> + Fy(wy), L, = F; <ﬂ> + Fy(ws). (6.5)
21 z
In other words,
dw dw
Fy <d—z1> =1, — Fy(w), Fy <—2> =L — Fy(w,). (6.6)
1

By rewriting equation (6.6), one arrives at the decoupled equations

d'wl

d—zl = fi(w),

dup
dZQ

= fo(wy), (6.7)

which can in principle be integrated and two additional integration constants
identified. Now rewriting the solution in terms of the original variables, one obtains
the general solution for the given coupled second-order ODE. Thus, the new variables
wy, Wa, 21 and 25 correspond to transformations that effectively decouple the original
coupled nonlinear second-order ODEs (2.1), provided such transformation variables
can be identified. In the following, we illustrate the procedure with an example.

(a) Ezample 5: force-free coupled Duffing—van der Pol oscillators

Let us consider the force-free coupled Duffing—van der Pol oscillators of
the form

4+ (a+6(z+ y)z)ﬁc—wlx +6,2° + vy + A2ty =0, } (6.8)

i+ (a+ Bz + y)2) i —woy + 039° + vo2’y + Apzy® =0,

where «, 8, w;, 0;, v; and A;, i=1, 2, are arbitrary parameters. Although the
general equation (6.8) has not been discussed in detail in the literature, special
cases of the above coupled Duffing—van der Pol equation have been used to
represent physical and biological systems (Linkens 1974; Datardina & Linkens
1978; Kawahara 1980; Rajasekar & Murali 2004).

We seek a rational form of the ansatz for R and K in the form given by (5.12).
Upon solving equations (5.2) and (5.3) with this ansatz, we find that three non-
trivial solutions exist for the choice

3a? af af
wi=_ﬁ> 57:=Y7:=I and Ai=77

The corresponding forms of R and K turn out to be

i=1,2. (6.9)

‘ 1 (¢ +%x)
Ry, Kp) = (@Dt B/aty (R K,y = | — : 3 |
(Ri, Kp) = ( ) (Ry, Ko) G+50) (5 +29)

(1/4)at L a
(Rs, K;) = ?{e - y(@ + 4952 o(/9at |
(y +Zy) (y +%y)

(6.10)
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Now substituting the form of R;’s and Ki’s, i=1, 2, 3, into equations (2.9) and
(2.10), we obtain the corresponding Si’s and U’s, i=1, 2, 3. As a result, now we
have three sets of independent solutions for equations (2.7)—(2.10), which are all
found to be compatible with (2.11)—(2.13). Substituting the forms (S;,U;,R;,K;)’s,
i=1, 2, 3, separately into equation (2.14) and evaluating the integrals, we obtain

L= (¢+y+4<m+y> §<x+y> > e,
. (6.11)
_ (¢ +§2) (zg —yi) o(1/4)at
Lh=74—7+—+, I; = :
(4 +4v) (i+5v)

To illustrate the theory given in the first part of this section, we consider the
first two integrals I; and I, given by equation (6.11), and rewrite them in the form
(6.2) as

I (3/4)at ﬁ 1/4at\3
I, = z+y+4(m+y)e +3((x+y)e )7,
(i + & z)elt/Dat (6.12)
(y + % y)e(1/4)at :

IQ =
Now splitting the first term in [; and I, further in the form (6.3) as

d g8
_ o(1/2)at (1/4)at (3/4)at
I =e (dt[(:ﬂﬂ/) ]>+3(w+y) :

(6.13)

Y

<i: + %z) e(l/4at w8
— at
I, = __ ¢ (d (xe(1/4)at)>

(, « ) w0+ (@) \d
y+Zy e

we identify the new dependent and independent variables from (6.13) using the
relations (6.4),

7

w = (o + )WVt = Zommat a1/
o
(6.14)
One can easily check that, in the new variables, equations (6.11) become uncoupled as
d2 P dwl d2w2
ot =0, =0. 6.15
d2z1 6 le d2z2 ( )

The integrals of (6.15) can be easily obtained. These are nothing but the integrals I;
and I, given in (6.12), but in terms of the new variables (6.14), they can be written as

. d'wl ﬁ 3 . de

L =—. 1
= (6.16)
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Solving equations (6.16), we obtain (Gradshteyn & Ryzhik 1980)

— g = [llog<M) + ﬁtan‘l<M>],

w; —aw; + a 20— w, (6.17)

wy = lhzy + I,

where a= '/ —%, I3 and 7 are the third and fourth integration constants. Rewriting

w;and z;, =1, 2, in terms of the old variables, one can obtain the explicit solution for
equation (6.8) for the parametric choice (6.9) in the form

1/4)at 2
_2 e, O [11 g( ((z + y)e/Vet 4 q) )

o -3

5 (0}

- (@ + )22 — g(z + y)el/Det o2
_ + (1/4)at 3
+v/3 tan ! (z + ye (12(4);‘ ,
2a—(z +y)e :
Tr = Igy + [367(1/4)0”, /
(6.18)

from which one can obtain implicit relations between z and ¢t and y and ¢,
corresponding to the general solution.

7. Conclusion

In this paper, as a first part of our investigations on the complete integrability
and linearization of two coupled second-order ODEs, we have focused our
attention only on the integrability aspects. In particular, we have introduced a
general method of finding integrable parameters, integrating factors, integrals of
motion and general solution associated with a set of two coupled second-order
ODEs through the extended PS procedure. The procedure can also be extended
straightforwardly to analyse any number of coupled second-order ODEs. The
proposed method is simple, straightforward and very useful to solve a class of
coupled second-order ODEs. We have illustrated the theory with potentially
important examples. We have also introduced a novel idea of transforming
coupled second-order nonlinear ODEs into uncoupled second-order ODEs. We
have deduced the transformations from the first two integrals themselves.

It is also of interest to study the problem of linearization of coupled nonlinear
ODEs by transforming them into linear ODEs as in the case of single second-
order nonlinear ODEs. However, it is a more difficult and challenging problem
than quadratures. The primary reasons are as follows. (i) It is not known, in
general, whether the given equation is linearizable or not since, in the case of
two-degrees-of-freedom systems, there can exist many types of linearizing
transformations and it is not obvious which one will be successful. (ii) The
possible transformations that could exist in the case of two coupled second-order
ODEs are also not known in the literature. (iii) Finally, there is no simple
procedure that gives us the required transformation in a straightforward way.
We would like to address all these questions in the follow-up paper (part V).
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