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On the complete integrability and linearization
of nonlinear ordinary differential equations. V.
Linearization of coupled second-order equations

BY V. K. CHANDRASEKAR, M. SENTHILVELAN AND M. LAKSHMANAN*

Department of Physics, Centre for Nonlinear Dynamics, Bharathidasan
University, Tiruchirappalli 620024, India

Linearization of coupled second-order nonlinear ordinary differential equations
(SNODEs) is one of the open and challenging problems in the theory of differential
equations. In this paper, we describe a simple and straightforward method to derive
linearizing transformations for a class of two coupled SNODEs. Our procedure gives
several new types of linearizing transformations of both invertible and non-invertible
kinds. In both cases, we provide algorithms to derive the general solution of the given
SNODE. We illustrate the theory with potentially important examples.

Keywords: nonlinear differential equations; coupled second-order ordinary differential
equations; integrability; linearization

1. Introduction

Continuing our study on the integrability and linearization of coupled second-
order nonlinear ordinary differential equations (SNODEs), in this paper, we focus
our attention on the linearization of two coupled SNODEs. This study arises not
only for the completeness of part IV (Chandrasekar et al. 2009), but also to show
the importance of unfinished tasks that exist in the theory of linearization of two
coupled SNODEs. As far as the first point is concerned, we show that one can
also solve a class of coupled SNODEs by transforming them into two second-order
free particle equations and, from the solutions of the latter, one can construct the
solution of the former, even though this is a non-trivial problem in many situations
(one can also transform coupled nonlinear ODEs into uncoupled nonlinear ones,
which has already been pointed out by us in the previous paper, i.e. part IV).
Regarding the second point, we wish to stress the fact that linearization of coupled
nonlinear ODEs is a vast area of research that is still in its early stage. In this
paper, we show that, in spite of the difficulties which exist in this topic, one can
make useful progress on certain issues, namely: (i) developing a method to deduce
all linearizing transformations wherein the new dependent variables are functions
of only the old dependent and independent variables and not derivatives of the
dependent variables and (ii) developing a method of constructing solutions of
nonlinear ODEs from the linear ones in the case of non-point transformations.
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Even though the modern theory of linearization of nonlinear ODEs had
originated and developed with the works of Lie, Tresse and Cartan (Mahomed
& Leach 1989; Steeb 1993; Olver 1995; Ibragimov 1999; Chandrasekar et al.
2005), the entire subject was lying dormant for more than a century. Only
recently, during the past two decades or so, has notable progress been made to
linearize nonlinear ODEs through non-point (Duarte et al. 1994) or generalized
transformations (Chandrasekar et al. 2006). For example, focussing our attention
on single second-order ODEs, generalized Sundmann (Euler et al. 2003; Euler &
Euler 2004) and generalized linearizing transformations (Chandrasekar et al.
2006) have been introduced to linearize a class of equations that cannot be
linearized by invertible point transformations. As far as two coupled SNODEs are
concerned, to our knowledge, most of the studies were focussed only on invertible
point transformations, irrespective of whether it is an analytical approach or a
geometrical formulation. For a survey on this topic, one may refer to the recent
papers of Merker (2006) and Mahomed & Qadir (2007) and, for the earlier works
in this direction, we cite Crampin et al. (1996), Fels (1995), Grossman (2000),
Soh & Mahomed (2001) and Qadir (2007). More recently, Sookmee & Meleshko
(2008) proposed a new algorithm to linearize the coupled second-order ODEs by
sequentially reducing the order of the equation.

In this work, we aim to give a new dimension to the theoretical development
of linearization of nonlinear dynamical systems having two degrees of freedom by
proving that one can unearth a wide class of linearizing transformations besides
invertible point transformations. Of course, the latter ones form a subclass of the
new ones that we construct in this paper. In this study, we not only derive several
new types of linearizing transformations, but also propose systematic procedures
to derive the general solution in all these cases. We also wish to emphasize
here that we derive all these transformations from the first two integrals alone,
and thereby establish a potentially simple, straightforward and powerful approach
in the theory of differential equations.

The plan of the paper is as follows. In §2a, we briefly describe the method of
deriving linearizing transformations for a system of two coupled second-order
ODEs. We show that one can have two classes of linearizing transformations,
depending on the nature of the independent variables. If the new independent
variables are the same (z1 = z2), we put them in class A category, and if they are
different (z1 �= z2), then we put them in class B category. In §2b(i), we consider
class A category and identify three types of linearizing transformations. In §2b(ii),
we consider class B category and identify six types of linearizing transformations.
In §3, we consider one specific example for each of the nine types of linearizing
transformations we have identified and obtain general solutions to each one of
them to demonstrate our procedure. Finally, we present our conclusions in §4.

2. Linearizing transformations

(a) Method of deriving linearizing transformations

To begin with, let us consider a system of two coupled SNODEs, R{t, x} (eqn (2.1)
in part IV (Chandrasekar et al. 2009)),

ẍ = φ1(t, x , y, ẋ , ẏ) and ÿ = φ2(t, x , y, ẋ , ẏ). (2.1)
Proc. R. Soc. A (2009)
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Any transformation of the form T {t, x}, defined by

w1 = f1(t, x , y), z1 =
∫

f3(t, x , y, ẋ , ẏ) dt

and

w2 = f2(t, x , y), z2 =
∫

f4(t, x , y, ẋ , ẏ) dt,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

which transforms the given set of nonlinear ODEs (2.1) to the free particle
equations

d2w1

dz2
1

= 0 and
d2w2

dz2
2

= 0 (2.3)

is called a linearizing transformation in the present work.
Let

I1 = F (t, x , y, ẋ , ẏ) and I2 = G(t, x , y, ẋ , ẏ) (2.4)

be the first two integrals of motion of the coupled system (2.1) and that they can
be explicitly found, if they exist, e.g. by using the generalized modified Prelle–
Singer (PS) method formulated in part IV (Chandrasekar et al. 2009). Then,
the following theorem ensures that the transformation can be deduced from Ii ,
i = 1, 2.

Theorem 2.1. Suppose a given nonlinear system R{t, x} of ODEs (2.1) is
linearizable to a system of two uncoupled free particle equations through the
linearizing transformation T {t, x} of the form (2.2), then the latter can be deduced
from the first integrals Ii(t, x , y, ẋ , ẏ), i = 1, 2.

Proof. Let us re-express each of the functions F and G in equation (2.4) as a
product of two new functions, i.e.

I1 = 1
f3(t, x , y, ẋ , ẏ)

d
dt

f1(t, x , y)

and

I2 = 1
f4(t, x , y, ẋ , ẏ)

d
dt

f2(t, x , y).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

Again, rewriting f3 and f4 as total time derivatives of another set of functions,
say z1 and z2, respectively, i.e. dz1/dt = f3(t, x , y, ẋ , ẏ) and dz2/dt = f4(t, x , y, ẋ , ẏ),
equation (2.5) can be further recast as

I1 = 1
dz1/dt

df1
dt

= df1
dz1

and I2 = 1
dz2/dt

df2
dt

= df2
dz2

. (2.6)

Now identifying the functions f1(t, x , y) = w1 and f2(t, x , y) = w2 as the new
dependent variables, equation (2.6) can be further recast in the form

dw1

dz1
= Î1 and

dw2

dz2
= Î2, (2.7)

where Î1 and Î2 are the redefined constants. Obviously, equation (2.3) follows
straightforwardly from equation (2.7). Consequently, the new variables, zi and wi ,
i = 1, 2, defined by equation (2.2) help us to transform the given set of coupled
Proc. R. Soc. A (2009)
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SNODEs into two linear second-order ODEs that, in turn, lead to the solution
by trivial integration. The variables wi and zi , i = 1, 2, then define the linearizing
transformations for the given equation (2.1). �

It may be noted that, in general, the new dependent variables, w1 and w2,
may also involve ẋ and ẏ, i.e. w1 = G1(t, x , y, ẋ , ẏ) and w2 = G3(t, x , y, ẋ , ẏ), and
this possibility may lead us to identify more generalized transformations such as
point-contact and generalized-contact transformations. However, in this paper,
we will confine ourselves only to the forms of w1 and w2 given by equation (2.2).

(b) The nature of transformations

An important question that we will focus upon in this paper is what are the
possible forms of linearizing transformations one can unearth through the above
procedure. We recall here that, in the case of scalar SNODEs, one has point
generalized Sundman and generalized linearizing transformations (Chandrasekar
et al. 2005, 2006). As far as the coupled SNODEs (2.1) are concerned, as there
are two independent variables z1 and z2 as given in equation (2.2), one can choose
them to be either the same, z1 = z2 (class A), or different, z1 �= z2 (class B). In
the case of class A transformations, one can construct three different types of
linearizing transformations, whereas for class B, one can formulate six different
types of linearizing transformations, as we point out below. However, we also note
that even further types of local transformations involving the variables ẋ and ẏ
are possible, but these are not included in the present study.

(i) Class A linearizing transformations (z1 = z2 = z)

In the case of class A transformations, we have w1 = f1(t, x , y), w2 = f2(t, x , y),
z1 = z2 = z = ∫

f3(t, x , y, ẋ , ẏ) dt = ∫
f4(t, x , y, ẋ , ẏ) dt. Now appropriately restricting

the form of f3 (= f4), one can identify three different types of linearizing
transformations.

(i) Suppose z1 = z2 = z is a perfect differential function and wi , i = 1, 2, and
z do not contain the variables ẋ and ẏ, then we call the resultant
transformation, namely w1 = f1(t, x , y), w2 = f2(t, x , y) and z = f3(t, x , y),
a point transformation of type I.

(ii) On the other hand, if z is not a perfect differential function, and wi ,
i = 1, 2, and z do not contain the variables ẋ and ẏ, then we call
the resultant transformation, namely w1 = f1(t, x , y), w2 = f2(t, x , y) and
z = ∫

f3(t, x , y) dt, a generalized Sundman transformation of type I.
(iii) As a more general case, if we consider the independent variable z

to contain the derivative terms also, i.e. w1 = f1(t, x , y), w2 = f2(t, x , y)
and z = ∫

f3(t, x , y, ẋ , ẏ) dt, then we call the resultant transformation a
generalized linearizing transformation of type I.

In our analysis, we do not consider the possibility w1 = f1(t, x , y), w2 = f2(t, x , y)
and z = f3(t, x , y, ẋ , ẏ) because the procedure to handle it is different from the
presently discussed linearizing transformations. This possibility will be studied
separately.
Proc. R. Soc. A (2009)
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(ii) Class B linearizing transformations (z1 �= z2)

In the class B type of linearizing transformations, we have w1 = f1(t, x , y),
w2 = f2(t, x , y), z1 = ∫

f3(t, x , y, ẋ , ẏ) dt and z2 = ∫
f4(t, x , y, ẋ , ẏ) dt, z1 �= z2. Now

appropriately restricting the forms of f3 and f4, one can obtain six different types
of linearizing transformations.

(i) If z1 and z2 are perfect differential functions and wi and zi , i = 1, 2, do not
contain the variables ẋ and ẏ, then we call the resultant transformation,
namely w1 = f1(t, x , y), w2 = f2(t, x , y), z1 = f3(t, x , y) and z2 = f4(t, x , y),
a point transformation of type II.

(ii) Suppose z1 is a perfect differential function and z2 is not a perfect
differential function or vice versa, and if z1 and z2 do not contain the
variables ẋ and ẏ, then we call the resultant transformation, namely
w1 = f1(t, x , y), w2 = f2(t, x , y), z1 = f3(t, x , y) and z2 = ∫

f4(t, x , y) dt or
z1 = ∫

f3(t, x , y) dt and z2 = f4(t, x , y), a mixed point-generalized Sundman
transformation.

(iii) On the other hand, if any one of the independent variables contains
the variables ẋ and ẏ, then we call the resultant transformation, namely
w1 = f1(t, x , y), w2 = f2(t, x , y), z1 = f3(t, x , y) and z2 = ∫

f4(t, x , y, ẋ , ẏ) dt or
z1 = ∫

f3(t, x , y, ẋ , ẏ) dt and z2 = f4(t, x , y), a mixed point-generalized
linearizing transformation.

(iv) Suppose the independent variables are not perfect differential functions
and are also not functions of ẋ and ẏ, i.e. w1 = f1(t, x , y),
w2 = f2(t, x , y), z1 = ∫

f3(t, x , y) dt and z2 = ∫
f4(t, x , y) dt, then we call the

resultant transformation a generalized Sundman transformation of type II
(GST II).

(v) Further, if one of the independent variables, say z1, does not contain the
derivative terms, whereas the other independent variable z2 does contain
the derivative terms or vice versa, i.e. w1 = f1(t, x , y), w2 = f2(t, x , y),
z1 = ∫

f3(t, x , y) dt and z2 = ∫
f4(t, x , y, ẋ , ẏ) dt or z1 = ∫

f3(t, x , y, ẋ , ẏ) dt
and z2 = ∫

f4(t, x , y) dt, then we call the resultant transformation a mixed
generalized Sundman-generalized linearizing transformation.

(vi) As a general case, if we allow both the independent variables z1 and z2
to be non-perfect differential functions and also to contain derivative
terms, i.e. w1 = f1(t, x , y), w2 = f2(t, x , y), z1 = ∫

f3(t, x , y, ẋ , ẏ) dt and
z2 = ∫

f4(t, x , y, ẋ , ẏ) dt, then the resultant transformation will be termed a
generalized linearizing transformation of type II.

Finally, the possibility that w1 = f1(t, x , y), w2 = f2(t, x , y), z1 = f3(t, x , y, ẋ , ẏ) and
z2 = f4(t, x , y, ẋ , ẏ) is not considered in this study and will be pursued separately.

3. Applications

In this section, we consider specific examples and illustrate each one of the
linearizing transformations identified in the previous section so as to make clear
the applicability of them under different situations.
Proc. R. Soc. A (2009)
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(a) Class-A linearizing transformations (z1 = z2)

(i) Example 1: point transformation of type I

Let us consider the system of SNODEs

ẍ + (ẋy − ẏx)2

2xy(x − y)
+ ω2x = 0 and ÿ − (ẋy − ẏx)2

2xy(x − y)
+ ω2y = 0, (3.1)

where ω is an arbitrary constant. The first two integrals associated with
equation (3.1), which can be obtained using the formulation given in §2 of part IV
(Chandrasekar et al. 2009), can be written as

I1 = (ẋ + ẏ) sin(ωt) − ω(x + y) cos(ωt)
and

I2 = 1
2
√

xy
((ẋy + xẏ) sin(ωt) − 2ωxy cos(ωt)).

⎫⎪⎬
⎪⎭ (3.2)

Rewriting equation (3.2) in the form of equations (2.5) and (2.6), we obtain

I1 = sin2(ωt)
d
dt

((x + y) cosec(ωt)) = dt
dz1

dw1

dt
= dw1

dz1
and

I2 = sin2(ωt)
d
dt

(
√

xy cosec(ωt)) = dt
dz2

dw1

dt
= dw2

dz2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

so that we can identify point transformation of type I as

w1 = (x + y) cosec(ωt), w2 = √
xy cosec(ωt) and z1 = z2 = z = − 1

ω
cot(ωt).

(3.4)

Using the transformation (3.4), one can transform equation (3.1) to a set of free
particle equations, namely d2w1/dz2 = 0 and d2w2/dz2 = 0, so that w1 = I1z + I3
and w2 = I2z + I4, where I3 and I4 are the integration constants. Substituting the
expressions for wi , i = 1, 2, and z in the free particle solutions and rewriting the
resultant expressions in terms of the old variables x and y, one obtains the general
solution for equation (3.1) in the form

x(t) = −1
2
(A ∓

√
A2 − 4B2) and y(t) = 1

2
(A ±

√
A2 − 4B2), (3.5)

where A = I1 cos(ωt) + I3 sin(ωt) and B = I2 cos(ωt) + I4 sin(ωt). Here, we point
out that the nonlinear system (3.1) admits amplitude-independent frequency of
oscillations.

In the above example, we have considered the new dependent variables w1 and
w2 and independent variable z to be functions of only x , y and t. We will now
consider examples that admit more general transformations.
Proc. R. Soc. A (2009)
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(ii) Example 2: generalized Sundman transformation of type I

Let us focus our attention on the two-dimensional Mathews–Lakshmanan
oscillator system of the form (Cariñena et al. 2004; Chandrasekar et al. 2009)

ẍ = λ(ẋ2 + ẏ2 + λ(xẏ − yẋ)2)x − α2x
(1 + λr2)

and

ÿ = λ(ẋ2 + ẏ2 + λ(xẏ − yẋ)2)y − α2y
(1 + λr2)

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.6)

where r = √
x2 + y2 and λ and α are arbitrary parameters. For α = 0,

equation (3.6) admits the following two integrals of motion:

Î1 = (1 + λy2)ẋ − λxyẏ√
1 + λr2

and Î2 = (1 + λx2)ẏ − λxyẋ√
1 + λr2

. (3.7)

We note that the integrals I2 and I3 (eqns (5.35) and (5.36) in part IV;
Chandrasekar et al. 2009) can be derived from equation (3.7) by using the
relations I2 = −λ(Î 2

1 + Î 2
2 + λI 2

1 ) and I3 = (Î1 + Î2)
2 − 2λI 2

1 , where I1 is given in
eqn (5.35) of part IV. The general case (α �= 0) can be linearized through
mixed generalized Sundman-generalized linearized transformation (example 8).
To demonstrate the linearization through generalized Sundman transformation
of type I, we here consider equation (3.6) with α = 0.

For the case α = 0, one may note that, on making a substitution y(t) = y(x(t))
into equation (3.6), one can obtain a non-autonomous second-order ODE
in y(x). Although this equation satisfies the linearization condition for
point transformation (Sookmee & Meleshko 2008), finding the linearizing
transformation and the general solution for the transformed ODE turns out to
be non-trivial. On the other hand, we provide a straightforward procedure of
linearization.

The above two integrals (3.7) can be rewritten as

Î1 = (1 + λr2)
d
dt

(
x√

1 + λr2

)
= dt

dz1

dw1

dt
= dw1

dz1
(3.8)

and

Î2 = (1 + λr2)
d
dt

(
y√

1 + λr2

)
= dt

dz2

dw2

dt
= dw2

dz2
. (3.9)

From the above equations, we identify the new dependent and independent
variables as

w1 = x√
1 + λr2

, w2 = y√
1 + λr2

and z1 = z2 = z =
∫

dt
(1 + λr2)

. (3.10)

One may observe that the independent variables z1 and z2 are not perfect
differentials, even though they turn out to be identical. By using the above
new variables, one can transform equation (3.6), with α = 0, to the free particle
equations, i.e. d2w1/dz2 = 0 and d2w2/dz2 = 0.

Unlike the earlier example, one cannot unambiguously integrate these two
linear equations in terms of the original variables because of the non-local nature
Proc. R. Soc. A (2009)
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of the independent variable. To overcome this problem, one should express
(1 + λr2) in terms of either z1 or z2 so that the resultant expression dz1 = dz2 =
dt/(1 + λr2) can be integrated. In the following, we describe a procedure to obtain
an expression for the new independent variable.

Now integrating equation (3.8) and using the first relation in equation (3.10),
we obtain

x√
1 + λr2

= Î1z1, (3.11)

where we have fixed the integration constant to be zero (without loss of
generality). On the other hand, from expressions (3.8) and (3.9), we obtain
dw1/dw2 = Î1/Î2, from which one obtains

w1 = Î1

Î2
w2 + Î3 ⇒ x√

1 + λr2
= Î1

Î2

y√
1 + λr2

+ Î3, (3.12)

where Î3 is the integration constant. Equation (3.12) provides us with an identity

y√
1 + λr2

= Î2z1 − Î2Î3

Î1
. (3.13)

Now squaring and adding equations (3.11) and (3.13), we obtain

λr2

1 + λr2
= λ

(
(Î 2

1 + Î 2
2 )z2

1 − 2
Î 2
2 Î3

Î1
z1 + Î 2

2 Î 2
3

Î 2
1

)
. (3.14)

From equation (3.14), one can express (1 + λr2) in terms of z1 as

1 + λr2 = 1

1 − λ
(
(Î 2

1 + Î 2
2 )z2

1 − (2Î 2
2 Î3/Î1)z1 + (Î 2

2 Î 2
3 /Î 2

1 )
) . (3.15)

Substituting equation (3.15) in the last relation given in equation (3.10), we arrive
at the following integral relationship between z1 and t, namely

dz1 =
(

1 − λ

(
(Î 2

1 + Î 2
2 )z2

1 − 2Î 2
2 Î3

Î1
z1 + Î 2

2 Î 2
3

Î 2
1

))
dt. (3.16)

As the variables are separated now, one can integrate this equation and
obtain an expression that connects the new independent variable with the old
independent variable through the relation

z1 =
√

λÎ 2
2 Î3 − Î1ω tan[ω(t − t0)]√

λÎ1(Î 2
1 + Î 2

2 )
, (Î 2

2 (λÎ 2
3 − 1) − Î 2

1 ) > 0, (3.17)
Proc. R. Soc. A (2009)
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where ω = √
λ

√
Î 2
2 (λÎ 2

3 − 1) − Î 2
1 and t0 is the fourth integration constant. From

equations (3.11)–(3.13) and (3.15), we obtain

x(t) = Î1z1

[
1 − λ

(
(Î 2

1 + Î 2
2 )z2

1 − 2Î 2
2 Î3

Î1
z1 + Î 2

2 Î 2
3

Î 2
1

)]−1/2

and

y(t) =
(

Î2z1 − Î2Î3

Î1

) [
1 − λ

(
(Î 2

1 + Î 2
2 )z2

1 − 2Î 2
2 Î3

Î1
z1 + Î 2

2 Î 2
3

Î 2
1

)]−1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

Substituting expression (3.17) in equation (3.18) and simplifying the resultant
expressions, we arrive at the following general solution for equation (3.6), with
α = 0, in the form:

x(t) = A
(
λÎ 2

2 Î3 cos[ω(t − t0)] − ωÎ1 sin[ω(t − t0)]
)

and

y(t) = −Î2A
(
λÎ1Î3 cos[ω(t − t0)] + ω sin[ω(t − t0)]

)
,

⎫⎪⎪⎬
⎪⎪⎭ (3.19)

where A = (1/λ(Î 2
1 +Î 2

2 ))

√
(Î 2

1 +Î 2
2 )/(Î 2

1 +Î 2
2 (1−λÎ 2

3 )) and ω = √
λ

√
Î 2
2 (λÎ 2

3 −1)−Î 2
1 .

(iii) Example 3: generalized linearizing transformation of type I

In the previous example, we restricted the new independent variable to be a
non-local one and a function of only t, x and y. Now we relax the latter condition
and also allow the independent variables z1 and z2 to contain derivative terms,
namely ẋ and ẏ. To illustrate this case, let us consider the two coupled second-
order equations of the form

ẍ = 2ẋ ẏ(xẋ + x3) − 2yẋ3

x3y
and

ÿ = 2ẋ ẏ(x2y − yẋ + xẏ) + x(x2ẏ2 − y2ẋ2)

x3y
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.20)

One can easily identify two integrals for equation (3.20) of the form

I1 = y2
(

1
x2

+ 1
ẋ

)
and I2 = y

(
y
x

− ẏ
ẋ

)
. (3.21)

Rewriting the above integrals as

I1 = y2

ẋ
d
dt

(
t − 1

x

)
= dw1

dz1
and I2 = y2

ẋ
d
dt

(
log

[
x
y

])
= dw2

dz2
, (3.22)

we identify the following set of linearizing transformations for equation (3.20), i.e.

w1 = t − 1
x

, w2 = log
[
x
y

]
and z1 = z2 = z =

∫
ẋ
y2

dt. (3.23)
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One may note that the independent variables are not only non-local, but also
involve derivative terms. It is easy to check that equation (3.23) transforms
equation (3.20) to the linearized form (2.3).

Again, as in the previous example, one cannot directly obtain the solution for
equation (3.20) by direct integration of the linear ODEs because of the non-local
nature of the independent variables. This can be overcome by expressing the term
ẋ/y2 in terms of either z1 or z2 so that the resultant equation can be integrated
to obtain an explicit form for the new independent variable in terms of the old
variables, as we discuss below.

From equation (3.21), we have

ẋ
y2

= 1
(I1 − (y2/x2))

. (3.24)

Since dw1/dz1 = I1 (from equation (3.22)), we have w1 = I1z1, so that

t − 1
x

= I1z1, (3.25)

where, without loss of generality, we have fixed the integration constant to be
zero. On the other hand, from equation (3.22), we have dw1/dw2 = I1/I2, which,
in turn, gives

w1 = I1

I2
w2 + I3. (3.26)

In terms of old variables, equation (3.26) can be rewritten as

t − 1
x

= I1

I2
log

[
x
y

]
+ I3. (3.27)

From the identites (3.25) and (3.27), we can express y/x in terms of z1 in the
form

y
x

= exp
[
−I2

I1
(I1z1 − I3)

]
. (3.28)

Now substituting equation (3.28) into equation (3.24), we can express (ẋ/y2)
in terms of z1 and, plugging the latter relation into the third relation in
equation (3.23), we arrive at

dt =
(

I1 − exp
[
−2

I2

I1
(I1z1 − I3)

])
dz1. (3.29)

Integrating the above equation, we obtain

t + t0 = I1z1 + e−(2I2/I1)(I1z1−I3)

2I2
, (3.30)

where t0 is the fourth integration constant. Substituting the expression
z1 = (t − 1/x)/I1 (equation (3.25)) into equations (3.28) and (3.30), we obtain
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the general solution of equation (3.20) in the implicit form

x(t) = − 1
t0

+ x(t) e−(2I2/I1)(t−(1/x(t))−I3)

2I2t0
and

y(t) = x(t) exp
[
−I2

I1

(
t − 1

x(t)
− I3

)]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.31)

(b) Class B linearizing transformations (z1 �= z2)

In the class A category, in all the three examples, we considered that the new
independent variables z1 and z2 are identical. However, this need not always be
the case in the theory of linearizing transformations, as discussed in §2. We now
present specific examples to illustrate more general transformations.

(i) Example 4: point transformation of type II

Let us consider a quasi-periodic oscillator governed by a set of two coupled
SNODEs of the form

ẍ + (ẋy − ẏx)2 + 2x2y(ω2
1(x + y) − 2ω2

2y)

2xy(x − y)
= 0

and

ÿ − (ẋy − ẏx)2 + 2xy2(ω2
1(x + y) − 2ω2

2x)

2xy(x − y)
= 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.32)

To explore the linearizing transformation for equation (3.32), we consider the
two associated integrals

I1 = (ẋ + ẏ) cos ω1t + ω1(x + y) sin ω1t
and

I2 = 1
2
√

xy
((ẋy + ẏx) sin ω2t − 2ω2xy cos ω2t).

⎫⎪⎪⎬
⎪⎪⎭ (3.33)

Rewriting equation (3.33) in the form

I1 = cos2(ω1t)
d
dt

((x + y) sec(ω1t)) = dw1

dz1
(3.34)

and

I2 = sin2(ω2t)
d
dt

(
√

xy cosec(ω2t)) = dw2

dz2
, (3.35)

one can identify the new dependent and independent variables as

w1 = (x + y) sec(ω1t), z1 = 1
ω1

tan(ω1t),

and

w2 = √
xycosec(ω2t), z2 = − 1

ω1
cot(ω2t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.36)

One may note that now the independent variables z1 and z2 are not the same.
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The new variables transform equation (3.32) to the free particle equations
d2w1/dz2

1 = 0 and d2w2/dz2
2 = 0. From the general solutions w1 = I1z1 + I3 and

w2 = I2z2 + I4, where Ii , i = 1, 2, 3, 4, are the integration constants, and using the
expressions for wi and zi , i = 1, 2, given in equation (3.36), we arrive at the general
solution for equation (3.32) in the form

x(t) = −1
2
(A ∓

√
A2 − 4B2) and y(t) = 1

2
(A ±

√
A2 − 4B2), (3.37)

where A = I1 sin(ω1t) + I3 cos(ω1t) and B = I2 cos(ω2t) + I4 sin(ω2t).

(ii) Example 5: mixed point-generalized Sundman transformation

Let us consider the two-dimensional force-free coupled Duffing–van der Pol
(DVP) oscillator equation of the form

ẍ + 4(α + β(k1x + k2y)2)ẋ + α(3α + 4β(k1x + k2y)2)x = 0
and

ÿ + 4(α + β(k1x + k2y)2)ẏ + α(3α + 4β(k1x + k2y)2)y = 0.

⎫⎪⎬
⎪⎭ (3.38)

One may note that the point transformations X = k1x + k2y and Y = k1x − k2y
help one to rewrite equation (3.38) in a separable form

Ẍ + 4(α + βX 2)Ẋ + α(3α + 4βX 2)X = 0 (3.39a)

and
Ÿ + 4(α + βX 2)Ẏ + α(3α + 4βX 2)Y = 0. (3.39b)

The solution to equation (3.39a) can only be obtained in implicit form
(Chandrasekar et al. 2005). Consequently, equation (3.39b) cannot be solved
explicitly in this way. Further, the linearization of the scalar DVP oscillator
(3.39a) itself has not yet been reported. In the following, we use our procedure
to find the linearizing transformation and general solution to equation (3.38)
straightforwardly.

The first two integrals for equation (3.38) can easily be identified using the
procedure given in Chandrasekar et al. (2009) in the form

I1 =
(

xẏ − yẋ
ẏ + αy

)
eαt

and

I2 = (k1ẋ + k2ẏ + α(k1x + k2y) + 4β

3
(k1x + k2y)3) e3αt .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.40)

The above integrals can be rewritten as

I1 = − y2 eαt

(ẏ + αy)

d
dt

(
x
y

)
= dw1

dz1

and

I2 = −((k1x + k2y) e5/3αt)3 d
dt

[(
1
2
(k1x + k2y)−2 + 2β

3α

)
e−2αt

]
= dw2

dz2
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.41)
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from which we can obtain the following linearizing transformations:

w1 = x
y
, w2 =

(
1
2
(k1x + k2y)−2 + 2β

3α

)
e−2αt

and

z1 = e−αt

y
, z2 = −

∫
((k1x + k2y) e(5/3)αt)−3 dt.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.42)

One may note that, in the present problem, one of the new independent variables,
i.e. z2, is in a non-local form. In terms of the above new variables, equation (3.38)
assumes the forms d2w1/dz2

1 = 0 and d2w2/dz2
2 = 0.

Now we seek the general solution of equation (3.38) from the linearized
equations. Integrating d2w1/dz2

1 = 0, we obtain

w1 = I1z1 + I3, (3.43)

where I3 is the integration constant. Rewriting equation (3.43) in terms of the
old variables, we obtain

x = I1 e−αt + I3y. (3.44)

However, the second linear equation, d2w2/dz2
2 = 0, cannot be integrated

straightforwardly (in terms of the original variables) because of the non-local
nature of the second independent variable. To obtain an explicit form for z2, we
rewrite I2 in the integral form (equation (3.41)) to obtain(

1
2
(k1x + k2y)−2 + 2β

3α

)
e−2αt = −I2

∫
[(k1x + k2y) e(5/3)αt]−3 dt = I2z2. (3.45)

Equation (3.45) provides

(k1x + k2y)−1 =
√

2I2z2 e2αt − 4β

3α
. (3.46)

Now substituting relation (3.46) into the non-local variable z2 (equation (3.42)),
one obtains

dz2

dt
= −I2

(
2I2z2 − 4β

3α
e−2αt

)3/2

e−2αt . (3.47)

Solving the above equation, we obtain

t0 − 1
2α

e2αt = a
3I2

[√
3 tan−1

( √
3

2a(2I2z2 − (4β/3α) e−2αt)1/2 − 1

)

+ 1
2

log
(

(1 + a(2I2z2 − (4β/3α) e−2αt)1/2)2

1−a(2I2z2 − (4β/3α) e−2αt)1/2 +a2(2I2z2 e2αt − (4β/3α) e−2αt)

)]
,

(3.48)

where a = 3
√−3I2/4β and t0 is the fourth integration constant. From expression

(3.48) and equations (3.44) and (3.46), one can deduce the general solution for
equation (3.38) in implicit form. The resultant expression coincides exactly with
eqn (6.18) given in Chandrasekar et al. (2009).
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In the present example, we considered one of the independent variables to be
in a non-local form. As we have two independent variables, one can also have
the possibility of having both the independent variables to be of non-local form.
Indeed, this is the case in our next example.

(iii) Example 6: generalized Sundman transformation of type II

To illustrate the GST II, we consider the equation of the form

ẍ − 2
(x2 + y2)

((ẋ2 − ẏ2)x + 2yẋ ẏ) + 2
t2

x = 0

and

ÿ − 2
(x2 + y2)

(2xẋ ẏ − (ẋ2 − ẏ2)y) + 2
t2

y = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.49)

The first two integrals for equation (3.49) can be evaluated as

I1 = (2(tẏ − y)xy) + (x2 − y2)(tẋ − x)

t2(x2 + y2)2

and

I2 = (2xy(tẋ − x) + (x2 − y2)(tẏ − y))

t2(x2 + y2)2
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.50)

Rewriting these two integrals as

I1 = x2

(x2 + y2)2

d
dt

(
x
t

+ y2

tx

)
= dw1

dz1
and

I2 = y2

(x2 + y2)2

d
dt

(
y
t

+ x2

ty

)
= dw2

dz2
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.51)

we identify the linearizing transformations in a more general form

w1 = x
t

+ y2

tx
, w2 = y

t
+ x2

ty
, z1 =

∫
(x2 + y2)2

x2
dt and z2 =

∫
(x2 + y2)2

y2
dt.

(3.52)

The GST II equation (3.52) takes equation (3.38) to the free particle equations,
d2w1/dz2

1 = 0 and d2w2/dz2
2 = 0. To obtain the solution in terms of the original

variables, we have to replace both
∫
((x2 + y2)2/x2) dt and

∫
((x2 + y2)2/y2) dt by

the variables z1 and t, and z2 and t, respectively, and integrate the resultant
equations.

To do so, first we rewrite the first integrals I1 and I2 given by equation (3.51)
in integral forms, which in turn lead us to w1 = I1z1 and w2 = I2z2. As w1 and
w2 do not contain non-local variables, we can replace them by the old variables
(equation (3.52)), i.e.

x
t

+ y2

tx
= I1z1 and

y
t

+ x2

ty
= I2z2, (3.53)

where we have fixed the integration constants to be zero (without loss of
generality).
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We observe that, to integrate the last two expressions in equation (3.52),
one should further replace z1 and z2 in terms of t. So, we substitute the above
expressions for x and y in terms of z1 and z2, respectively, in the last two relations
in equation (3.52), and obtain

dz1 = I 2
1 z2

1 t2 dt and dz2 = I 2
2 z2

2 t2 dt. (3.54)

Now integrating both the equations, we obtain

z1 =
(

I 2
1

(
I3 − t3

3

))−1

and z2 =
(

I 2
2

(
I4 − t3

3

))−1

, (3.55)

where I3 and I4 are the third and forth integration constants, respectively.
Plugging equation (3.55) into equation (3.53), we arrive at the following general
solution for equation (3.49):

x(t) = 3t(I1(3Î3 − (I 2
1 − I 2

2 )t3) − I2(3Î4 + 2I1I2t3)

(3Î3 − (I 2
1 − I 2

2 )t3)2 + (3Î4 + 2I1I2t3)2

and

y(t) = 3t(I2(I 2
1 − I 2

2 )t3 − 3Î3) − I1(3Î4 + 2I1I2t3)

(3Î3 − (I 2
1 − I 2

2 )t3)2 + (3Î4 + 2I1I2t3)2
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.56)

where Î3 = (I1I3 − I2I4)/(I 3
1 + I1I 2

2 ) and Î4 = (I2I3 + I1I4)/(I 3
2 − I 2

1 I2).
In the previous two examples, we focussed our attention on the case in which

the new independent variable(s) is (are) non-local and does (do) not admit
velocity-dependent terms. Now we relax this condition and allow either one
or both the independent variables to admit velocity-dependent terms but in
non-local form.

(iv) Example 7: mixed point-generalized linearizing transformation

To demonstrate this, we consider a variant of the two-dimensional Mathews
and Lakshmanan equation (3.6) of the form

ẍ = λ(ẋ2 + ẏ2 + 2λ(ẏ − ẋ)2) − α2

(1 + 2λ(x + y))
and ÿ = λ(ẋ2 + ẏ2 + 2λ(ẏ − ẋ)2) − α2

(1 + 2λ(x + y))
.

(3.57)
Equation (3.57) admits the following two integrals of motion:

I1 = ẋ − ẏ and I2 = α2 − λ((1 + 2λ)(ẏ − ẋ)2 + 2ẋ ẏ)

(1 + 2λ(x + y))
. (3.58)

Rewriting equation (3.58) in the form

I1 = d
dt

(x − y) (3.59)

and

I2 = α2 − λ((1 + 2λ)(ẏ − ẋ)2 + 2ẋ ẏ)

2λ(ẋ + ẏ)

d
dt

[log[1 + 2λ(x + y)]] , (3.60)
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one can easily identify the linearizing transformations for equation (3.57) as

w1 = (x − y), w2 = log[1 + 2λ(x + y)]
and

z1 = t, z2 =
∫

2λ(ẋ + ẏ)

α2 − λ((1 + 2λ)(ẏ − ẋ)2 + 2ẋ ẏ)
dt.

⎫⎪⎪⎬
⎪⎪⎭ (3.61)

In terms of the above new variables, equation (3.57) gets transformed to the free
particle equations (2.3). One may note that one of the new independent variables
is not only in non-local form, but also contains derivative terms that, in turn,
complicate the situation to obtain the general solution.

As both w1 and z1 are of point transformation types, one can integrate
the first free particle equation, namely d2w1/dz2

1 = 0 and obtain w1 = I1z1 + I3,
where I3 is an integration constant. Replacing the latter in terms of the
old variables, one obtains the relation (x − y) = I1t + I3. On the other hand,
from the solution of the second linear equation d2w2/dz2

2 = 0, we can write
w2 = I2z2 ⇒ log[1 + 2λ(x + y)] = I2z2 (again we assume the integration constant
to be zero without loss of generality).

To evaluate z2, let us first substitute equation (3.58) into equation (3.61) and
rewrite the latter in the form

dz2 = 2λ(ẋ + ẏ)

I2(1 + 2λ(x + y))
dt = 2λ(I1 + 2ẏ)

I2(1 + 2λ(x + y))
dt. (3.62)

Now substituting the form of ẏ (equation (3.58)), i.e.

ẏ = 1
2λ

(
−λI1 ±

√
2λα2 − λ2(1 + 4λ)I 2

1 − 2λI2(1 + 2λ(x + y))

)
, (3.63)

into equation (3.62) and using the relation (1 + 2λ(x + y)) = eI2z2 , we obtain

dz2 =
2
√

λ

√
2α2 − λ(1 + 4λ)I 2

1 − 2I2eI2z2

I2eI2z2
dt. (3.64)

Integrating equation (3.64), we obtain

z2 = 1
I2

log
(

2α2 − λ(1 + 4λ)I 2
1 − 4I 2

2 λ(t − t0)2

2I2

)
, (3.65)

where t0 is an integration constant. Substituting expression (3.65) into the relation
2λ(x + y) = eI2z2 − 1, we obtain

x + y = 2α2 − λ(1 + 4λ)I 2
1 − 4I 2

2 λ(t − t0)2 − 2I2

4λI2
. (3.66)
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From equation (3.66) and the relation (x − y) = I1t + I3, we obtain the general
solution for equation (3.57) in the form

x(t) = 2α2 − λ(1 + 4λ)I 2
1 − 4I 2

2 λ(t − t0)2 − I2(2 − 4λ(I1t + I3))

8λI2

and

y(t) = 2α2 − λ(1 + 4λ)I 2
1 − 4I 2

2 λ(t − t0)2 − I2(2 + 4λ(I1t + I3))

8λI2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.67)

In this example, we considered the case in which only one of the independent
variables is in non-local form. Now we consider the case in which both the
independent variables are in non-local forms.

(v) Example 8: mixed generalized Sundman-generalized linearizing
transformation

To illustrate this type of linearizing transformation, let us again consider
equation (3.6), but now with α �= 0. Equation (3.6) admits the following two
integrals of motion:

I1 = (yẋ − xẏ) and I2 = (α2 − λ(ẋ2 + ẏ2 + λ(yẋ − xẏ)2))

1 + λr2
. (3.68)

Rewriting these two integrals in the form

Î1 = y2 d
dt

(
x
y

)
= dw1

dz1
(3.69)

and

Î2 = (α2 − λ(ẋ2 + ẏ2 + λ(yẋ − xẏ)2)

2λ(xẋ + yẏ)

d
dt

(
log(1 + λr2)

) = dw2

dz2
, (3.70)

and identifying the linearizing transformations, we obtain

w1 = x
y
, w2 = log(1 + λr2)

and

z1 =
∫

dt
y2

, z2 =
∫

2λ(xẋ + yẏ)

(α2 − λ(ẋ2 + ẏ2 + λ(yẋ − xẏ)2)
dt.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.71)

One can check that equation (3.71) transforms equation (3.6) to the form of
equation (2.3).

Rewriting the first integrals I1 and I2 in the integral form and identifying them
in terms of the new variables, we have w1 = I1z1 and w2 = I2z2 that, in turn, also
give us a relationship between x and y with z1 and z2, respectively (after fixing
Proc. R. Soc. A (2009)
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the integration constants to be zero without loss of generality), i.e.

x = I1z1y and 1 + λr2 = eI2z2 . (3.72)

Expressing ẋ and ẏ in terms of I1, I2, x and y (by using equation (3.68)) and
substituting them in the expression for dz2, we obtain

dz2 = 2
(λα2r2 − λ(1 + λr2)(λI 2

1 + I2r2)1/2

I2(1 + λr2)
dt. (3.73)

Now, from the expression for 1 + λr2 (equation (3.72)), we obtain

dz2 = 2
I2

[
(α2 − λ2I 2

1 + I2)e−I2z2 − I2 − α2e−2I2z2
]1/2

dt. (3.74)

Integrating the above equation, we obtain

I3 − t = 1
2
√

I2
tan−1

[ −2I2 + (α2 − λ2I 2
1 + I2)e−I2z2

2
√

I2((α2 − λ2I 2
1 + I2)e−I2z2 − I2 − α2e−2I2z2)1/2

]
, (3.75)

where I3 is an integration constant that is nothing but the third integral of motion.
In order to find the fourth integral, using dz1 = dt/y2 and equation (3.74), we
eliminate dt to obtain

dz1 = I2

2

[
dz2

y2((α2 − λ2I 2
1 + I2)e−I2z2 − I2 − α2e−2I2z2)1/2

]
. (3.76)

From equation (3.72), we obtain y2 = (eI2z2 − 1)/(λ(I 2
1 z2

1 + 1)), which on
substitution into equation (3.76) leads to

dz1

(I 2
1 z2

1 + 1)
= λI2

2

[
(eI2z2 − 1)−1dz2

y2((α2 − λ2I 2
1 + I2)e−I2z2 − I2 − α2e−2I2z2)1/2

]
, (3.77)

Now integrating equation (3.77), we obtain

I4 = tan−1 [I1z1] − 1
2

tan−1
[

(I2 − α2 − λ2I 2
1 ) + (α2 − λ2I 2

1 − I2)eI2z2

2λI1((α2 − λ2I 2
1 + I2)eI2z2 − I2e2I2z2 − α2)1/2

]
, (3.78)

where I4 is the fourth integration constant. Now making use of these four integrals
of motion, namely equations (3.68), (3.75) and (3.78), the general solution to
equation (3.6) can be straightforwardly constructed. The resultant solution also
agrees with eqn (5.40) of Chandrasekar et al. (2009), obtained through the
modified PS approach, after a redefinition of integration constants.

(vi) Example 9: generalized linearizing transformation of type II

To understand the generalized linearizing transformation, let us start with the
following system of coupled second-order ODEs:

ẍ + k(xẋ − yẏ) + k2x
(x2 − y2)

+ λx = 0 and ÿ + k(xẏ − yẋ) − k2y
(x2 − y2)

+ λy = 0. (3.79)
Proc. R. Soc. A (2009)
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The associated first integrals are

I1 =
(

k + √−λ(x + y) + ẋ + ẏ
k − √−λ(x + y) + ẋ + ẏ

)
e−2

√−λt

and

I2 =
(

k + √−λ(x − y) + ẋ − ẏ
k − √−λ(x − y) + ẋ − ẏ

)
e−2

√−λt .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.80)

Rewriting equation (3.80) in the form

I1 = k e−3
√−λt

(k − √−λ(x + y) + ẋ + ẏ)

d
dt

[(
1√−λ

+ x + y
k

)
e
√−λt

]
and

I2 = k e−3
√−λt

(k − √−λ4(x − y) + ẋ − ẏ)

d
dt

[(
1√−λ

+ x − y
k

)
e
√−λt

]
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.81)

and identifying the new variables, we obtain the linearizing transformation

w1 =
(

1√−λ
+ x + y

k

)
e
√−λt , z1 =

∫
(1 − (

√−λ/k)(x + y) + ((ẋ + ẏ)/k))

e3
√−λt

dt

and

w2 =
(

1√−λ
+ x − y

k

)
e
√−λt , z2 =

∫
(1 − (

√−λ/k)(x − y) + ((ẋ − ẏ)/k))

e3
√−λt

dt.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.82)

From the first integrals, we have (after assuming the integration constants to
be zero without loss of generality)

w1 = I1z1 and w2 = I2z2. (3.83)

Using equation (3.82) in equation (3.83), we obtain

x(t) = k
2
(I1z1 + I2z2)e−√−λt − k√−λ

and y(t) = k
2
(I1z1 − I2z2)e−√−λt . (3.84)

Substituting the expressions of x and y into equation (3.80) and solving the
resultant equation for ẋ and ẏ, we obtain

ẋ = −k − √−λ

[
k
2
(I1z1 + I2z2)e−√−λt − k√−λ

](
1 + e−√−λt

1 − e−√−λt

)

and

ẏ = −√−λ

[
k
2
(I1z1 − I2z2)e−√−λt

] (
1 + e−√−λt

1 − e−√−λt

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.85)
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Substituting equations (3.84) and (3.85) into the expressions (3.82) for dz1 and
dz2 and integrating the resultant equation, we obtain

z1 = 1
I1

(
e
√−λt

√−λ
+

(
(e2

√−λt − I1)

(
I3 + tanh−1

[
e
√−λt

√
I1

])))

and

z2 = 1
I2

(
e
√−λt

√−λ
+

(
(e2

√−λt − I2)

(
I4 + tanh−1

[
e
√−λt

√
I2

])))
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.86)

where I3 and I4 are the third and fourth integration constants, respectively. From
equations (3.84) and (3.86), we can obtain the general solution for equation (3.79)
straightforwardly.

4. Conclusions

In this paper, we have studied the linearization of two coupled SNODEs.
In particular, we have introduced a new method of deriving linearizing
transformations from the first integrals for the given equation. The procedure
is simple and straightforward. From our analysis, we have demonstrated that one
can have two wider classes of linearizing transformations, namely class A and class
B, depending on the nature of the independent variables. In class A category, the
independent variables are the same, and we identified three types of linearizing
transformations in which two of them are new to the literature. On the other
hand, in the class B category (the independent variables are different), we found
six new types of linearizing transformations. We have explicitly demonstrated the
method of deducing the linearizing transformations and the general solution for
all of these cases with specific examples. However, in this paper, we have restricted
our attention to two aspects: (i) dependent variables are functions of only (t, x , y)
and (ii) independent variables are not of the local form zi = fi(t, x , y, ẋ , ẏ), where
i = 1, 2. Linearization under these two types requires separate treatment and will
be studied subsequently. The method proposed here can naturally be extended
to any number of coupled second-order ODEs and indeed one can derive a very
wide class of linearizing transformations in these cases.

The work of M.S. forms part of a research project sponsored by the National Board for Higher
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and Technology, Government of India, sponsored research project and was supported by a DST
Ramanna Fellowship.
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