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Abstract

It is shown that a class of important integrable nonlinear evolution equa-
tions in (2+1) dimensions can be associated with the motion of space curves
endowed with an extra spatial variable or equivalently, moving surfaces. Ge-
ometrical invariants then define topological conserved quantities. Underlying
evolution equations are shown to be associated with a triad of linear equations.
Our examples include Ishimori equation and Myrzakulov equations which are
shown to be geometrically equivalent to Davey-Stewartson and Zakharov -

Strachan (241) dimensional nonlinear Schrodinger equations respectively.
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The motion of curves in E? and the defining equations of surfaces have drawn wide
interest in the past, especially since they give nice geometric interpretations of nonlinear
evolution equations in (141) dimensions [1-6]. There are many physical situations where
they play a natural role. Particularly they have important connections with soliton equa-
tions solvable by Ablowitz, Kaup, Newell and Segur (AKNS) formalism [1-6]. For a recent
renaissance of interest, see for example [7] and References therein. Other examples include
dynamics of interfaces, surfaces and fronts, vortex filaments, supercoiled DNAs, magnetic
fluxes, deformation of membranes, dynamics of proteins, propagation of flame fronts, and
so on [8,9]. Of special interest among these systems is the dynamics of isotropic Heisen-
berg ferromagnetic spin chains where an interesting equivalence with nonlinear Schrodinger
family of equations arise in a natural and physical way [10].

The question then arises as to whether nonlinear evolution equations in (2+1) dimen-
sions of importance, especially spin equations, can be given a similar geometrical setting
associated with motion of curves endowed with an additional coordinate or equivalently
motion of surfaces. In this letter, we develop a general theory of obtaining nonlinear evo-
lution equations in (2+1) dimensions as the compatibility requirements of the geometric
equations defining the motion of curves and surfaces, incidentlly equivalent to a triad of
linear equations. Our analysis also brings out certain natural topological integral invari-
ants associated with the resultant systems. We then consider a class of (2+1) dimensional
spin systems including (241) dimensional generalized Heisenberg ferromagnatic spin sys-
tems and deduce their equivalent nonlinear Schrodinger family including Davey-Stewartson,
Zakharov-Strachan and other equations. In this context, we also wish to add that in recent
times a general approach (mainly due to Konopelchenko) has appeared in the literature[11,
12] concerning the interpretation of hierarchies of integrable (2+1) dimensional systems as
special motions of surfaces in £ by inducing the surfaces in it via the solutions to two dimen-
sional linear problems (2D LPs). But in the present paper, we are interested in extending
the theory of moving space curve formalism in (1+1) dimensions to (241) dimensions.

We consider the space curve in E® as in Fig. 1, defined by the Serret-Frenet equations



€o=DNE, D=1 +re;, j=123 (1)

where €7, e, and €3 are the unit tangent, normal and binormal vectors respectively to the
curve. Here x is the arclength parametrising the curve. The curvature and torsion of the

curve are defined respectively as
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The unit tangent vector € is given by €1 = - = /5 90 where g is the metric g = 5535 on

0

the curve such that x(0,t) = [ /g(0',t)d0’. Here 0 defines a smooth curve and 7(6,t) is the
0

position vector of a point on the curve at time ¢t. Considering the motion of such a twisted

curve, the time evolution of the orthogonal trihedral can be easily seen [3] to be

€jt = Q/\€j,

Q = w1 @ + ws + wsds, j=1,2,3 (3)

where w;, 7 = 1,2, 3 are some functions of x and 7 and their derivatives. Then the compati-

bility of Egs. (1) and (3) gives the evolution equations for £ and 7 [3] as

Kt = W3y + Twa,
Ty = Wiz — KWo,

Way = TW3 — KW]. (4)

Now let us pass on to the subject of this letter namely to the theory of curves in (2+1)
dimensions by endowing them with an additional spatial variable y. Alternately this could
represent a surface specified by the trihedral €j(x,y,t) which is set in motion. A starting
point of our approach is the observation that the y-evolution of the trihedral €; is determined

by the following system of linear equations [14] (see also Refs. [15,16]);



€jy :F/\Ej,

[' = v1€1 + 72€2 + 73€5. (5)

Here ~,’s are functions to be determined. Using the fact that €;’s, ¢ = 1,2,3 form an
orthogonal trihedral and using (1) and (5) in the compatibility condition €j,, = €., We

obtain
Y1 =0, (1) + KY2), a3 =0, (Kky — TY2), (6a)

and 7y5(x,y,t) is a solution of the following equation

O (ky — — Yo
— Ky =Ty — 70, (#y /:'72) 2 ’ (6h)

T

where 9, = [?_ dx. We also note that Eqgs. (1) and (5) may be identified with the Gauss-
Weingarten equations of surface theory written in terms of orthogonal coordinates and so
Egs. (6) with the Codazzi-Mainardi equations. On the other hand, the condition €}, = €,

gives rise to the set of equations

Y1t = Wiy + W3Y2 — wWas,

Vot = Way + W17Y3 — W31,
V3t = W3y + Way1 — wiYe. (7)
Choosing 71, 72, 73 consistently so that Eqs. (4) and (7) are compatible, one can obtain
(241) dimensional evolution equations for x and 7. Further one can easily show that the

defining equations for the motion of the trihedral, namely (1), (3) and (5) are equivalent to

a set of three Riccati equations

le:—i’TZl—l—g {1-‘-2[2} s (8&)
, 1 , 1 :
Zly =~z + 2 [v3 + i72] Zl2 + B} (V3 — @72, (8b)
and
. , 5 1 :
Zip = —wwrz + 5 [ws + dws] 27 + 2 [ws — two] (8¢)



where z;, [ = 1,2,3 is a scalar variable obtained through an orthogonal rotation of the
trihedral, z; = (ey + ie3)/(1 — ey), €%, + €3 + €2, = 1. Introducing the transformation

21 = v9/v1, we obtain the triad of equivalent linear equations:

T K

Vg = 5”1 - §U2>
K 1T

Vog = §U1 — 5“27 (9a)
7 1 )

Uiy = %Ul 3 (73 4 i72) V2,
1 . 1

Uy = 2 (’Y3 - Z’Y2) v — %02, (9b)
w 1 )

Vit = 71’01 — 5 ((Ug -+ Z(Ug) Vo,
1 ) w

Voy = 5 (wg —dwq) v — 711)2. (9¢)

The compatibility of these linear equations again gives rise to Egs. (4), (6) and (7). Thus

any nonlinear evolution equation obtained through the space curve formulation in (2+1)

dimensions is equivalent to a triad of linear equations. Specific examples are given below.
The above formulation then leads us in a natural way to certain topological invariants

as given in the following theorem:

Theorem. The above constructed evolution equations in (241) dimensions possess the

following integrals of motion [14]

1
K, = —///ﬂ%d:cdy,
4

1
K, = E//Tvgdxdy. (10a)

Proof: The proof is straightforward and follows from the various relations discussed
above. For example, from (6a) we get (—k¥2): = (7¢)y — (V1t)z, OF (—K Y2)t = (Wiz — Kwa)y —
(w1y +wsy2 —way3),. Hence follows the first statement of the theorem. Similarly the second
one may also be proved. In terms of the unit vector €; these integrals of motion take the

form

1 — — —
K1 = E// €1 (€1m N €1y)dl’dy,



and

—

7I

So the above quantities K; are the conserved integrals - invariants of the (2+1) dimen-

sional evolution equations and they play an important role in the theory. In particular,
curves can be classified by the value of the topological invariants K; but we will not pursue
this aspect further. We now present a few applications of the above presented formalism
in finding the geometrically equivalent counterparts of some known (2+1) dimensional spin
systems. To this end, firstly, following the Ref. [10] we identify the tangent vector €; with the
unit spin vector €; = S (x,y,t). Secondly, we introduce the following complex transformation

which is a generalization of the one given in Ref. [10],

q(z,y,t) = a(z,y,t) expib(z,y,t), (11)

where a(x,y,t) and b(z,y,t) are functions of x and 7, to be determined, and obtain the
equation for the complex function ¢(x,y,t) which turns out to be an interesting integrable
(24+1) dimensional nonlinear evolution equation. We want to demonstrate our approach in
the following examples of the (241) dimensional spin systems.

A) The Myrzakulov I (M-I) equation

This equation reads as [14,15]

_»lt = (_’1 A gly + ugl)mv €1 = g(l‘,y,t), (12&)

Uy = —81 . (glx VAN gly)- (12b)

In this case, we obtain

Uy

T2 =), (138“)
K

Q = (wla w2, w3)7

(F2 = 7077, =k, —h0;'T,). (13b)

For the functions a(z,y,t) and b(z,y,t) in the transformation (11), we take the form
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a= W’ b= —0,'7(z,y,t). (14)

Then the function ¢ satisfies the following evolution equation,

i (2, y,t) = @uy + Vg, Via=2(q|%y, (15)

an equation which belongs to the class of equations originally discovered by Calogero [17]
and then discussed by Zakharov [18] and recently rederived by Strachan [19]. Many of its
properties have received considerable attention recently [20].

B) The Myrzakulov III (M-III) equation

This equation which is a generalization of Eq. (12) has the form [14]

glt = (51 A gly + Uéi)x + 2f(Cf + d)51y — 4CU€1$7 (16&)

. 1
Uy = —€1 - (€1a N €1y), Vp = m(%m)ya (16b)

where f, c and d are constants. In this case, using the same form for ~;’s and w;’s as in Eq.

(13) and with the following choice for the functions a(z,y,t) and b(z,y,t),

a(x,y,t) = %, b(z,y,t) = 2f(cf +d)x — 0, ', (17)

we obtain the evolution equation
QG (2, Y, 1) = Qoy — 4ic(VQ)a + 242V, Vo= (q "), (18)

This equation as well as the M-IIT equation (16) are integrable, that is they have the Lax
representations [14] and some properties of both equations were investigated in [14-16,21,22].
Note that Egs. (16) and (18) admit integrable reductions: when ¢ = 0 they pass on to the
M-I and Zakharov equations Eqgs. (12) and (15) respectively. If we consider the case d = 0,
then they reduce to the M-II and Strachan equations respectively [23].

C) The Ishimori equation

This equation has the form [24]

_,1t = 51 A (glxx + U2€yy) + uxf?ly + uyf?lx, (19&)
Upy — 02uyy = —20%¢) - (€1 A €1y), (19Db)
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where 02 = £1. For the case 02 = —1, we obtain

Ny = Ugz + Uy
g = ——=
—2k
TWs — Wag
w1 = )
K

W = UzY2 — Kz + Y3y T V172,

w3 = —KT + KUy + UzY3 — Yoy + 7173-

If we choose a(x,y,t) and b(z,y,t) in the form

N

1
a=§kl+%+J@—2wm,

h= a—l T— @ Y2Y3z — V3V2x — K73z
: 2 RHB+E 260/

then the function ¢ satisfies the following equation

i%(% Y, t) + Gz — Quy — QQ¢ = 07

Pua + Pyy + (| ¢ |2)m —(lq |2)yy =0,

(20a)
(20Db)

(20c)

(21a)

(21D)

(22a)

(22b)

where ¢ is a function of z, y and ¢, which is nothing but the Davey-Stewartson equation II [6].

Note that Egs. (19) and (22) are known to be gauge equivalent to each other [25]. Here their

geometrical equivalence has been estabilished. Similarly equivalence can be estabilished for

o?=1.

D) The (2+1) dimensional isotropic Heisenberg ferromagnet model

This equation has the form [26]

— —

€1t = €1 VAN (glxx + glyy)-

In this case, we get

TWs — Wy

w1 = 7& y W2 = —Rg — Y3y — Y172,

W3 = Yoy — KT — 7173.

(24)

However one finds that 7;’s can not be uniquely found due to lack of an equation of the

form (12b) or (16b) or (19b). So Eq. (6b) does not appear to be solvable, indicating that
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no straightforward linearization is available for the (2+1) dimensional isotropic Heisenberg
spin equation without introducing constraints.

In conclusion, we have shown that a geometrical formulation can be developed for a class
of (2+1) dimensional nonlinear evolution equations through moving space curve formalism.
The formulation shows how a class of evolution equations can be associated with a triad
of linear equations. Whether such a connection alone is sufficient to prove the integrability
of the underlying (2+1) dimensional systems is a further intricate question. Even in (1+1)
dimensions, there are some equations which though linearizable are not integrable; for ex-
ample, the spherically symmetric Heisenberg ferromagnetic spin chain equation is equivalent
to a nonlocal nonlinear Schrodinger equation which is of non- Painlevé type and so noninte-
grable [27]. So also is the (141) dimensional isotropic Landau-Lifshitz equation with Gilbert
damping [28] and so on. However the three examples considered in this paper are integrable
namely the M-I, M-IIT and Ishimori equations and their geometrical equivalents namely the
Zakharov, Strachan and Davey-Stewartson equations respectively are also integrable. Their
linearization can be performed through the set of equations (9) and the associated linear
eigenvalue problems can be constructed. On the other hand the pure isotropic Heisen-
berg spin chain equation in (2+1) dimensions (example D above) seems not to be even
linearizable by the space curve formalism without constraints, indicating the neceesity of
additional scalar fields or nonlocal terms for its linearization. It is hoped that other (2+1)
dimensional equations of interest like the (2+1) dimensional Korteweg-de Vries, Nizhnik-
Novikov-Veselov, breaking soliton etc. equations and so on may have similar geometrical
interpretations in terms of moving space curves or surfaces, for example with restrictions on
the value of the curvature x or torsion 7. These possibilities are being explored at present.

Finally it is of interest to consider the connection between our approach and to that
of Konopelchenko who uses the (2+1) dimensional nonlinear PDEs to induce integrable
dynamics (deformations) of the induced surfaces[11]. In our approach, we consider the
compatibility of three linear problems namely equations (1), (3) and (5). Two of them (egs.

(1) and (5)) can be considered as equivalent to general surfaces in orthogonal coordinates. In
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the approach of Konopelchenko, for a given 2D LP, the variable coordinates X (i = 1,2, 3)
of a surface in E? are defined as some integrals over certain bilinear combinations of solutions
1 of the 2D LP and solutions ©* of the adjoint 2D LP and thus surfaces are induced via
the solutions of 2D LPs. Then the compatibilty of 2D LPs with time evolution leads to
hierarchies of (2+1) dimensional nonlinear evolution equations both for the coefficients of
the 2D LP and for the wave function . This nonlinear evolution equation induces the
corresponding evolution of the induced surface. In this sense, we believe that the two
approaches differ from each other and give complementary approaches to integrable (2+1)
dimensional evolution equations.

This work of M.L. forms part of a Department of Science and Technology, Government
of India sponsored research project. R.M. wishes to thank Bharathidasan University for
hospitality during his visits to Tiruchirapalli. S.V. acknowledges the receipt of the award

Junior Research Fellowship from the Council of Scientific and Industrial Research, India.
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FIGURE CAPTIONS

Fig. 1 : Motion of a space curve in £? with the orthogonal trihedral &, €, and &3
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