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Abstract

It is shown that a class of important integrable nonlinear evolution equa-

tions in (2+1) dimensions can be associated with the motion of space curves

endowed with an extra spatial variable or equivalently, moving surfaces. Ge-

ometrical invariants then define topological conserved quantities. Underlying

evolution equations are shown to be associated with a triad of linear equations.

Our examples include Ishimori equation and Myrzakulov equations which are

shown to be geometrically equivalent to Davey-Stewartson and Zakharov -

Strachan (2+1) dimensional nonlinear Schrödinger equations respectively.
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The motion of curves in E3 and the defining equations of surfaces have drawn wide

interest in the past, especially since they give nice geometric interpretations of nonlinear

evolution equations in (1+1) dimensions [1-6]. There are many physical situations where

they play a natural role. Particularly they have important connections with soliton equa-

tions solvable by Ablowitz, Kaup, Newell and Segur (AKNS) formalism [1-6]. For a recent

renaissance of interest, see for example [7] and References therein. Other examples include

dynamics of interfaces, surfaces and fronts, vortex filaments, supercoiled DNAs, magnetic

fluxes, deformation of membranes, dynamics of proteins, propagation of flame fronts, and

so on [8,9]. Of special interest among these systems is the dynamics of isotropic Heisen-

berg ferromagnetic spin chains where an interesting equivalence with nonlinear Schrödinger

family of equations arise in a natural and physical way [10].

The question then arises as to whether nonlinear evolution equations in (2+1) dimen-

sions of importance, especially spin equations, can be given a similar geometrical setting

associated with motion of curves endowed with an additional coordinate or equivalently

motion of surfaces. In this letter, we develop a general theory of obtaining nonlinear evo-

lution equations in (2+1) dimensions as the compatibility requirements of the geometric

equations defining the motion of curves and surfaces, incidentlly equivalent to a triad of

linear equations. Our analysis also brings out certain natural topological integral invari-

ants associated with the resultant systems. We then consider a class of (2+1) dimensional

spin systems including (2+1) dimensional generalized Heisenberg ferromagnatic spin sys-

tems and deduce their equivalent nonlinear Schrödinger family including Davey-Stewartson,

Zakharov-Strachan and other equations. In this context, we also wish to add that in recent

times a general approach (mainly due to Konopelchenko) has appeared in the literature[11,

12] concerning the interpretation of hierarchies of integrable (2+1) dimensional systems as

special motions of surfaces in E3 by inducing the surfaces in it via the solutions to two dimen-

sional linear problems (2D LPs). But in the present paper, we are interested in extending

the theory of moving space curve formalism in (1+1) dimensions to (2+1) dimensions.

We consider the space curve in E3 as in Fig. 1, defined by the Serret-Frenet equations
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[13]

~ejx = ~D ∧ ~ej , ~D = τ~e1 + κ~e3, j = 1, 2, 3 (1)

where ~e1, ~e2 and ~e3 are the unit tangent, normal and binormal vectors respectively to the

curve. Here x is the arclength parametrising the curve. The curvature and torsion of the

curve are defined respectively as

κ = (~e1x · ~e1x)
1

2 ,

τ = κ−2~e1 · (~e1x ∧ ~e1xx). (2)

The unit tangent vector ~e1 is given by ~e1 = ∂~r
∂x

= 1√
g

∂~r
∂θ

where g is the metric g = ∂~r
∂θ

∂~r
∂θ

on

the curve such that x(θ, t) =
θ
∫

0

√

g(θ′, t)dθ′. Here θ defines a smooth curve and ~r(θ, t) is the

position vector of a point on the curve at time t. Considering the motion of such a twisted

curve, the time evolution of the orthogonal trihedral can be easily seen [3] to be

~ejt = ~Ω ∧ ~ej ,

~Ω = ω1~e1 + ω2~e2 + ω3~e3, j = 1, 2, 3 (3)

where ωi, i = 1, 2, 3 are some functions of κ and τ and their derivatives. Then the compati-

bility of Eqs. (1) and (3) gives the evolution equations for κ and τ [3] as

κt = ω3x + τω2,

τt = ω1x − κω2,

ω2x = τω3 − κω1. (4)

Now let us pass on to the subject of this letter namely to the theory of curves in (2+1)

dimensions by endowing them with an additional spatial variable y. Alternately this could

represent a surface specified by the trihedral ~ej(x, y, t) which is set in motion. A starting

point of our approach is the observation that the y-evolution of the trihedral ~ej is determined

by the following system of linear equations [14] (see also Refs. [15,16]);
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~ejy = ~Γ ∧ ~ej,

~Γ = γ1~e1 + γ2~e2 + γ3~e3. (5)

Here γj ’s are functions to be determined. Using the fact that ~ei’s, i = 1, 2, 3 form an

orthogonal trihedral and using (1) and (5) in the compatibility condition ~ejxy = ~ejyx, we

obtain

γ1 = ∂−1

x (τy + κγ2), γ3 = ∂−1

x (κy − τγ2), (6a)

and γ2(x, y, t) is a solution of the following equation

− κγ2 = τy −

[

τ∂−1

x (κy − τγ2) − γ2x

κ

]

x

, (6b)

where ∂−1

x ≡
∫ x
−∞ dx. We also note that Eqs. (1) and (5) may be identified with the Gauss-

Weingarten equations of surface theory written in terms of orthogonal coordinates and so

Eqs. (6) with the Codazzi-Mainardi equations. On the other hand, the condition ~ejty = ~ejyt

gives rise to the set of equations

γ1t = ω1y + ω3γ2 − ω2γ3,

γ2t = ω2y + ω1γ3 − ω3γ1,

γ3t = ω3y + ω2γ1 − ω1γ2. (7)

Choosing γ1, γ2, γ3 consistently so that Eqs. (4) and (7) are compatible, one can obtain

(2+1) dimensional evolution equations for κ and τ . Further one can easily show that the

defining equations for the motion of the trihedral, namely (1), (3) and (5) are equivalent to

a set of three Riccati equations

zlx = −iτzl +
κ

2

[

1 + z2

l

]

, (8a)

zly = −iγ1zl +
1

2
[γ3 + iγ2] z

2

l +
1

2
[γ3 − iγ2] , (8b)

and

zlt = −iω1zl +
1

2
[ω3 + iω2] z

2

l +
1

2
[ω3 − iω2] , (8c)
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where zl, l = 1, 2, 3 is a scalar variable obtained through an orthogonal rotation of the

trihedral, zl = (e2l + ie3l)/(1 − e1l), e
2

1l + e2
2l + e2

3l = 1. Introducing the transformation

zl = v2/v1, we obtain the triad of equivalent linear equations:

v1x =
iτ

2
v1 −

κ

2
v2,

v2x =
κ

2
v1 −

iτ

2
v2, (9a)

v1y =
iγ1

2
v1 −

1

2
(γ3 + iγ2) v2,

v2y =
1

2
(γ3 − iγ2) v1 −

iγ1

2
v2, (9b)

v1t =
iω1

2
v1 −

1

2
(ω3 + iω2) v2,

v2t =
1

2
(ω3 − iω2) v1 −

iω1

2
v2. (9c)

The compatibility of these linear equations again gives rise to Eqs. (4), (6) and (7). Thus

any nonlinear evolution equation obtained through the space curve formulation in (2+1)

dimensions is equivalent to a triad of linear equations. Specific examples are given below.

The above formulation then leads us in a natural way to certain topological invariants

as given in the following theorem:

Theorem. The above constructed evolution equations in (2+1) dimensions possess the

following integrals of motion [14]

K1 =
1

4π

∫ ∫

κ γ2dxdy,

K2 =
1

4π

∫ ∫

τ γ2dxdy. (10a)

Proof: The proof is straightforward and follows from the various relations discussed

above. For example, from (6a) we get (−κ γ2)t = (τt)y − (γ1t)x, or (−κ γ2)t = (ω1x −κω2)y −

(ω1y +ω3γ2 −ω2γ3)x. Hence follows the first statement of the theorem. Similarly the second

one may also be proved. In terms of the unit vector ~e1 these integrals of motion take the

form

K1 =
1

4π

∫ ∫

~e1 · (~e1x ∧ ~e1y)dxdy,
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and

K2 =
1

4π

∫ ∫

[~e1 · (~e1x ∧ ~e1y)][~e1 · (~e1x ∧ ~e1xx)]

(
~e2

1x)
3

2dxdy. (10b)

So the above quantities Kj are the conserved integrals - invariants of the (2+1) dimen-

sional evolution equations and they play an important role in the theory. In particular,

curves can be classified by the value of the topological invariants Kj but we will not pursue

this aspect further. We now present a few applications of the above presented formalism

in finding the geometrically equivalent counterparts of some known (2+1) dimensional spin

systems. To this end, firstly, following the Ref. [10] we identify the tangent vector ~e1 with the

unit spin vector ~e1 ≡ ~S(x, y, t). Secondly, we introduce the following complex transformation

which is a generalization of the one given in Ref. [10],

q(x, y, t) = a(x, y, t) exp ib(x, y, t), (11)

where a(x, y, t) and b(x, y, t) are functions of κ and τ , to be determined, and obtain the

equation for the complex function q(x, y, t) which turns out to be an interesting integrable

(2+1) dimensional nonlinear evolution equation. We want to demonstrate our approach in

the following examples of the (2+1) dimensional spin systems.

A) The Myrzakulov I (M-I) equation

This equation reads as [14,15]

~e1t = (~e1 ∧ ~e1y + u~e1)x, ~e1 = ~S(x, y, t), (12a)

ux = −~e1 · (~e1x ∧ ~e1y). (12b)

In this case, we obtain

γ2 =
ux

κ
, (13a)

~Ω = (ω1, ω2, ω3),

= (
κxy

κ
− τ∂−1

x τy, −κy, −κ∂
−1

x τy). (13b)

For the functions a(x, y, t) and b(x, y, t) in the transformation (11), we take the form

6



a =
κ(x, y, t)

2
, b = −∂−1

x τ(x, y, t). (14)

Then the function q satisfies the following evolution equation,

iqt(x, y, t) = qxy + V q, Vx = 2 (| q |2)y, (15)

an equation which belongs to the class of equations originally discovered by Calogero [17]

and then discussed by Zakharov [18] and recently rederived by Strachan [19]. Many of its

properties have received considerable attention recently [20].

B) The Myrzakulov III (M-III) equation

This equation which is a generalization of Eq. (12) has the form [14]

~e1t = (~e1 ∧ ~e1y + u~e1)x + 2f(cf + d)~e1y − 4cv~e1x, (16a)

ux = −~e1 · (~e1x ∧ ~e1y), vx =
1

4(2fc+ d)2
(~e2

1x)y, (16b)

where f , c and d are constants. In this case, using the same form for γi’s and ωi’s as in Eq.

(13) and with the following choice for the functions a(x, y, t) and b(x, y, t),

a(x, y, t) =
κ(x, y, t)

2(2cf + d)
, b(x, y, t) = 2f(cf + d)x− ∂−1

x τ, (17)

we obtain the evolution equation

iqt(x, y, t) = qxy − 4ic(V q)x + 2d2V q, Vx = (| q |2)y (18)

This equation as well as the M-III equation (16) are integrable, that is they have the Lax

representations [14] and some properties of both equations were investigated in [14-16,21,22].

Note that Eqs. (16) and (18) admit integrable reductions: when c = 0 they pass on to the

M-I and Zakharov equations Eqs. (12) and (15) respectively. If we consider the case d = 0,

then they reduce to the M-II and Strachan equations respectively [23].

C) The Ishimori equation

This equation has the form [24]

~e1t = ~e1 ∧ (~e1xx + σ2~eyy) + ux~e1y + uy~e1x, (19a)

uxx − σ2uyy = −2σ2~e1 · (~e1x ∧ ~e1y), (19b)
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where σ2 = ±1. For the case σ2 = −1, we obtain

γ2 =
uxx + uyy

−2κ
,

ω1 =
τω3 − ω2x

κ
, (20a)

ω2 = uxγ2 − κx + γ3y + γ1γ2, (20b)

ω3 = −κτ + κuy + uxγ3 − γ2y + γ1γ3. (20c)

If we choose a(x, y, t) and b(x, y, t) in the form

a =
1

2
[κ2 + γ2

2
+ γ2

3
− 2κγ2]

1

2 , (21a)

b = ∂−1

x

(

τ −
uy

2
+
γ2γ3x − γ3γ2x − κγ3x

κ2 + γ2
2 + γ2

3 − 2κγ2

)

, (21b)

then the function q satisfies the following equation

iqt(x, y, t) + qxx − qyy − 2qφ = 0, (22a)

φxx + φyy + (| q |2)xx − (| q |2)yy = 0, (22b)

where φ is a function of x, y and t, which is nothing but the Davey-Stewartson equation II [6].

Note that Eqs. (19) and (22) are known to be gauge equivalent to each other [25]. Here their

geometrical equivalence has been estabilished. Similarly equivalence can be estabilished for

σ2 = 1.

D) The (2+1) dimensional isotropic Heisenberg ferromagnet model

This equation has the form [26]

~e1t = ~e1 ∧ (~e1xx + ~e1yy). (23)

In this case, we get

ω1 =
τω3 − ω2x

κ
, ω2 = −κx − γ3y − γ1γ2,

ω3 = γ2y − κτ − γ1γ3. (24)

However one finds that γi’s can not be uniquely found due to lack of an equation of the

form (12b) or (16b) or (19b). So Eq. (6b) does not appear to be solvable, indicating that
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no straightforward linearization is available for the (2+1) dimensional isotropic Heisenberg

spin equation without introducing constraints.

In conclusion, we have shown that a geometrical formulation can be developed for a class

of (2+1) dimensional nonlinear evolution equations through moving space curve formalism.

The formulation shows how a class of evolution equations can be associated with a triad

of linear equations. Whether such a connection alone is sufficient to prove the integrability

of the underlying (2+1) dimensional systems is a further intricate question. Even in (1+1)

dimensions, there are some equations which though linearizable are not integrable; for ex-

ample, the spherically symmetric Heisenberg ferromagnetic spin chain equation is equivalent

to a nonlocal nonlinear Schrödinger equation which is of non- Painlevé type and so noninte-

grable [27]. So also is the (1+1) dimensional isotropic Landau-Lifshitz equation with Gilbert

damping [28] and so on. However the three examples considered in this paper are integrable

namely the M-I, M-III and Ishimori equations and their geometrical equivalents namely the

Zakharov, Strachan and Davey-Stewartson equations respectively are also integrable. Their

linearization can be performed through the set of equations (9) and the associated linear

eigenvalue problems can be constructed. On the other hand the pure isotropic Heisen-

berg spin chain equation in (2+1) dimensions (example D above) seems not to be even

linearizable by the space curve formalism without constraints, indicating the neceesity of

additional scalar fields or nonlocal terms for its linearization. It is hoped that other (2+1)

dimensional equations of interest like the (2+1) dimensional Korteweg-de Vries, Nizhnik-

Novikov-Veselov, breaking soliton etc. equations and so on may have similar geometrical

interpretations in terms of moving space curves or surfaces, for example with restrictions on

the value of the curvature κ or torsion τ . These possibilities are being explored at present.

Finally it is of interest to consider the connection between our approach and to that

of Konopelchenko who uses the (2+1) dimensional nonlinear PDEs to induce integrable

dynamics (deformations) of the induced surfaces[11]. In our approach, we consider the

compatibility of three linear problems namely equations (1), (3) and (5). Two of them (eqs.

(1) and (5)) can be considered as equivalent to general surfaces in orthogonal coordinates. In
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the approach of Konopelchenko, for a given 2D LP, the variable coordinates X i (i = 1, 2, 3)

of a surface in E3 are defined as some integrals over certain bilinear combinations of solutions

ψ of the 2D LP and solutions ψ∗ of the adjoint 2D LP and thus surfaces are induced via

the solutions of 2D LPs. Then the compatibilty of 2D LPs with time evolution leads to

hierarchies of (2+1) dimensional nonlinear evolution equations both for the coefficients of

the 2D LP and for the wave function ψ. This nonlinear evolution equation induces the

corresponding evolution of the induced surface. In this sense, we believe that the two

approaches differ from each other and give complementary approaches to integrable (2+1)

dimensional evolution equations.
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FIGURE CAPTIONS

Fig. 1 : Motion of a space curve in E3 with the orthogonal trihedral ~e1, ~e2 and ~e3
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