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Takada et al. have reported superconductivity in layered Na,C00O2.yH20 (T. ~ 5 K) and more

recently Wen et al.

in A;C0o0245 (A = Na,K)(T. ~

31 K). We model a reference neutral

CoOs layer as an orbitally non-degenerate spin-% antiferromagnetic Mott insulator on a triangular
lattice and Na,C0O2.yH20 and AzCoO24s as electron doped Mott insulators described by a t-
J model. It is suggested that at optimal doping chiral spin fluctuations enhanced by the dopant
dynamics leads to a d-wave superconducting state. A chiral RVB metal, a PT violating state with
condensed RVB gauge fields, with a possible weak ferromagnetism and low temperature p-wave
superconductivity are also suggested at higher dopings.

Recent discovery of  superconductivity in
Na,CoO2.yH50 (T, ~ 5K) by Takada and collabo-
rators [1] marks a milestone in the search for new lay-
ered transition metal oxide superconductors. Following
heels Wen et al. [2] have reported superconductivity in
A;C00s45 (A= Na, K) with a high T, ~ 31 K. In the
same family of planar CoOs based metals weak ferro-
magnetism [3] and high temperature curie susceptibility
have been observed. Nag5C002 has been shown [4] to
be a very good metal with anomalously large thermo-
electric power. It is becoming clear that strong electron
correlation is at work, resulting in anomalous behavior
and possible new electronic phases.

In this letter we model a reference CoOy layer as
an orbitally non degenerate spin—% antiferromagnetic
Mott insulator on a triangular lattice. Consequently
Na,CoO5.yH>50 is described as an electron doped Mott
insulator by a t-J model. We have performed an RVB
mean field analysis of this model. As there is a rich va-
riety of possible phases, we do not go to the details of
the mean field theory but provide qualitative arguments
(that go beyond mean field theory) for i) a reference chi-
ral RVB state, ii) a chiral RVB metallic (spin gap) state,
iii) a weak ferromagnetic state at higher doping and iv)
PT violating d and p-wave superconductivity at low tem-
peratures.

Na;CoOs.yH20 (x = 0.35 and y &~ 1.3) consists [1] of
two dimensional CoOy layers separated by thick insulat-
ing layers of Na?t ions and H;0 molecules. CoO; has
the structure of layers inC'dlz. It is a triangular net of
edge sharing oxygen octahedra(figure 1); Co atoms are
at the center of the octahedra forming a 2D triangular
lattice. Oxygen octahedra have a trigonal distortion - a
stretch along a body diagonal direction of the embedding
cube. For convenience we choose the corresponding body
diagonal direction as Z-axis. The trigonal stretch makes
the O —Co—0O angle ~ 98°. A simple way to understand
this structure is to imagine a triangular lattice on the XY
plane with sub lattices A, B and C. Fill A and C sublat-

tices with oxygen atoms and B sub lattice with Co atoms.
Displace sublattice A and C layers on opposite directions
along Z-axis by a same amount 5. When 2o > %a we
get the desired structure with every Co atom surrounded
by an octahedron with trigonal stretching; Here a is the
distance between neighboring Co atoms in the triangular
lattice.

O oxygen

@ cobalt
FIG. 1. Structure of CoO3 layer. A triangular network of
edge sharing oxygen octahedra. Co atoms are at the center
of the oxygen octahedra.

Strong electron affinity of oxygen should lead to a
complete electron transfer from Na atoms of Na,.yH2O
layers in Na,CoOs.yH20O and Na or K layers in
A,;C0o0O4945 , resulting in electron doped CoOs layers.

Experimentally Nag5Co0O5 is a strongly anisotropic
[5] metal. The ab-plane resistivity is rather low with
p ~ 10pS) at low temperatures and p ~ 200u£2 at 300K.
C-axis resistivity is high indicating some kind of con-
finement of charges, similar to the planar cuprates, at
temperatures above ~ 200K. It is also interesting that
such a good metal exhibits [5] Curie-Weiss x ~ =55,
rather than Pauli susceptibility at high temperatures;
and © =~ —118K. For Nay 75C002 weak ferromagnetism
has been observed [3] below about 22K. In another
Co0Oy layered compound called misfit layer compound,
weak ferromagnetism has been reported [3] below 3.5K.
As mentioned earlier, two groups have reported [1,2] su-
perconductivity.

In a neutral reference CoO5 layer the nominal valence
of Co atom is Co**t; i.e. a 3d® ion. In an octahedral en-
vironment the 3d levels are split (figure 2); The trigonal
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distortion of the oxygen octahedra causes further split-
ting of the 3d levels. The lower three fold degenerate
ta4 levels are split into a non-degenerate d,» state with a
doublet below, denoted as e4(t24) in figure 2. The ground
state configuration is an orbitally non-degenerate spin—% ,
low spin state. In our coordinate system we choose the
direction of trigonal distortion to be the z-axis; so the
top non-degenerate split orbital of the to, manifold is a
3d,> orbital. Thus in the nominal charge state Co**,
we have an unpaired electron in the d,» orbital, mak-
ing Co*t ground state an orbitally non-degenerate spin-
% state. In the same way for C'o3* we have two electrons
filling the d.2 level making the ground state an orbitally
non-degenerate spin singlet. Our simple quantum chemi-
cal picture is supported by various experiments including
Co NMR study [5] in Nag5C00s . It is interesting to
note that our C'oOs layer with strong trigonal distortion
has escaped some important effects which should work
against superconductivity, namely Jahn Teller distortion,
Hund coupling and possible high spin ground states of C'o
ions.

trigonal
stretch

FIG. 2. Crystal field split 3d levels of cobalt.

As in other transition metal oxides, hybridization of
d,2 with symmetry adapted oxygen orbitals and the
strong Hubbard repulsion in the d,2 should lead to the
usual super exchange interaction between neighboring
magnetic Co*tions. As the super exchange paths are
not 180° paths, the antiferromagnetic coupling will be
reduced in strength. We make an estimate of the super
exchange constant and parameters for our tight binding
model using the electronic structure calculation of Singh
[6] for Nag5C00y . Singh finds an electron like Fermi
surface, shown in figure 3. The states close to the Fermi
level arise predominantly from the cobalt 3d,2 orbitals;
our quantum chemical arguments are in agreement with
Singh’s result. The bilayer type splitting found by Singh
for Nay.5C00O; is not important for us as our CoOs lay-
ers are well insulated by the Na,.yH>0 layers. As a first
approximation we ignore the small electron like pockets
found by Singh. It is likely that electron correlation will
push these minority bands away from the Fermi level.

Nag 5C00 contains equal number of Co3T and Co**
ions giving an average occupancy of 1.5 electrons in the
valence d,2 orbital. Thus the d,» based single band is
% filled. In a simple tight binding model keeping only
the nearest neighbor hopping we get the following band
dispersion:

ky 3
€, = —2t (cos ks + 2 cos 5 cos \/;%) (1)

We can estimate the value of the hopping parameter ¢
by fitting to Singh’s result. We get a value of ¢t =~ —0.1,
corresponding to a band width of ~ 1.0 eV. It is impor-
tant to note that it is the negative sign of the hopping
parameter that makes the Fermi surface electron like for
our % filled band. If ¢ were negative we would have got
hole like Fermi surfaces. In view of the strong particle
hole asymmetry in a triangular lattice the sign of ¢ is
important.

FIG. 3. Fermi surface of electron doped CoOx layer, as cal-
culated by Singh for Nao.5sC0oOs , ignoring small Fermi surface
pockets.

Since coulomb interaction in the effective 3d,2 orbital
is ~ 5 to 7 eV, the net super exchange interaction be-
tween two neighboring Co*t ions is J = % ~ 6
to 8 meV. Using the paramagnetic curie temperature
O =~ —118 K obtained from susceptibility measurements
in Nag5C002 we independently estimate J ~ 7 meV,
assuming an average of 3 nearest neighbor Co** ion for
a given Co** ion. These considerations lead us to a t-J
model for the electron doped CoOs layer:

Hy=—ty CLCj, +he+T) (S;-S; - i”mj)
(i5) (i7)
with the local constraint ni; + n; # 0.

Existence of superconductivity in 2D t-J model in a
square lattice is no more doubted, thanks to RVB theory
[7-11] and related recent [12] variational and numerical
efforts. The singlet proliferation tendency arising from
the super exchange, contained in the J term seems to be
sufficient to induce a robust spin singlet superconducting
state [13]. We believe the same is true for the triangular
lattice. However, the enhanced frustration could modify
the symmetry of the superconducting state or introduce
novel quantum states such as chiral RVB metal with weak
ferromagnetism. Further, possibility of superconductiv-
ity in a repulsive Hubbard model on a triangular lattice
at and close to half filling has been studied by various au-
thors [14,15] invoking spin fluctuation mediated pairing,
mainly in the context of organic superconductors. We
take an RVB approach, as it is a natural way to study a
system in its strong correlation limit and dominated by
spin singlet correlation and chiral fluctuation. We study
the undoped case first and discuss a simple RVB mean



field theory for chiral RVB state. The doped Chiral
RVB state is discussed next. As in the case of cuprates
the RVB mean field solutions are guidelines to pick out
the important phases and to map a phase diagram. It be-
comes quantitative and accurate when used in conjunc-
tion with Gutzwiller projection on the RVB mean field
states.

Spin—% Heisenberg Antiferromagnet on a triangular
lattice has been a guiding model for Anderson’s RVB the-
ory [16], which took new meaning and new forms in the
context of cuprates superconductors in the hands of An-
derson, collaborators and others. Kalmayer and Laugh-
lin [17] proposed a novel short range RVB wave function,
called a chiral spin liquid state, that violated P & T sym-
metry; it has non-zero expectation value of spin chirality:
(Si - (S; x Sg)) # 0. This state has certain deep connec-
tion to fractional quantum Hall states. The energy of
this state per spin is higher by about 9%, compared to
better ground state energy estimates. Though not better
in energy, this above work established the possibility of
a chiral RVB state with a spin gap that also has a man-
ifest quantum number fractionization through the exis-
tence of a well defined spinon excitation, that are anyons.
Consequently, when such a state is doped with holes
for example, the holes undergo spin charge decoupling
and the holons become anyons. This prompted Laughlin
[18,20] to argue for a powerful pairing correlation between
holons arising from the novel exchange statistics. Later
the anyon statistics was understood to have arisen from
the attachment of appropriate RVB gauge field fluxes to
particles.

We start with the slave boson representation for our
t-J mode:

HtJ——tst ;o + H.c. —JZSW Si0 ]a,sw, (2)

with the local constraint, dd; + EU ioSic = 1. Here s,
are fermion operators for spm—% singly occupied states
and d; are the bosonic operators for the doubly occupied
spin singlet states.

We first consider the undoped case, the Spin—% Heisen-
berg model on a triangular lattice. Lee and Fang [19]
have performed RVB mean field analysis for this case. We
briefly review their results. The mean field Hamiltonian

Hup = —J 335 Xij$ JU $;, + .. is obtained by the factor-

ization 7;;7j; — XijTji etc., where 7;; =) swsw The

RVB order parameter x;; = |xole?" with 6,; = fjA -dl
Here A is the spatial component of the RVB gauge field
[9]. In the Lee-Feng mean field solution § A -dl = +% in
every elementary triangle.

The single spinon dispersion acquires a gap at the fermi
level and has the form:

ky 3
er = £Ja <c052 k. + 2 cos? £l cos? \/;ky> (3)

(SIS

where o ~ 0.603v/3. The Chiral spin character of Lee-
Feng solution is obtained through the Wen-Wilczek-Zee
identity [20]

Si . (Sj X Sk) ~ i(TijTjkai — TikajTji) ~ 6i§A.dl (4)

which connects the spatial component of the U(1) RVB
gauge field with three spin chirality. Thus the two de-
generate solutions corresponding to uniform fluxes +3
through every elementary triangle give us the two degen-
erate PT violating chiral RVB states. Lee and Feng also
found numerically that the energy of the above mean field
chiral RVB state, on Gutzwiller projection becomes very
close to Kalmayer-Laughlin state. We have also found a
good overlap between Kalmayer-Laughlin wave function
and Gutzwiller projected Lee-Feng RVB wave function
using a procedure of Zou and Laughlin [21].

The 120° 3-sublattice AFM order with a two fold pla-
nar chirality degeneracy is to be viewed as obtained by
condensing spinon pairs in spin triplet state at the appro-
priate wave vector. As in cuprates, even a small amount
of doping, in view of the large dopant kinetic energy re-
moves the long range 3-sublattice order. We also find
that from our RVB mean field analysis of the t-J model
a locally stable chiral RVB state for a range of doping.
This means we can use the 3 flur RVB state as a refer-
ence state for a range of doping in the metallic state.

The situation is similar to cuprates, where Affleck-
Marston’s 7 flux RVB state [11], a state that respects PT
symmetry, is useful to understand the spin gap phase.
Absence of a sharp phase transition into the spin gap
phase in the x — T plane for cuprates seems to indicate
that in the metallic spin gap phase the RVB flux is pinned
to the PT symmetric value w. In our case, as our refer-
ence chiral RVB state has a flux of 7, a strongly PT
violating value, we believe that our spln gap phase will
be a chiral RVB metallic state. It will be important to
look for PT violation signals in experiments.

Experiments have shown weak ferromagnetism at high
electron doping. This may be explained as follows. An-
derson has recently argued [22] that the effect of dopant
dynamics in cuprates is to produce local spin chirality
and induced ferromagnetic interaction. We apply similar
arguments for our case (figure 4) remembering that our

Effect of Dopant Dynamics

AFM coupling Ferromagnetic coupling

enhanced & spin chirality induced
FIG. 4. Effective spin-spin coupling induced by Dopant dy-
namics



hopping integral has negative sign and our dopants
are electrons. Here a single extra electron performing a
‘closed loop hopping’ in a triangle induces an extra anti-
ferromagnetic coupling; this is because the above process
permutes an even number of spins.

Thus we expect singlet stabilization for a range of small
doping. However, as the doping increases a carrier per-
forming a closed loop hopping in a four spin cluster (fig-
ure 4) becomes important. As this process involves per-
mutation of an odd number of spins, a ferromagnetic cou-
pling is induced. Following Anderson we estimate this to
be Jeg ~ J + xt, for large z (¢ is -ve). In addition to
the ferromagnetic coupling chirality is also favored by
the above process. Thus we believe that the weak fer-
romagnetism observed at high temperatures is a chiral
RVB metal with weak ferromagnetic moments induced
in a novel chiral metal, where chiral fluctuations and fer-
romagnetism tendencies compete. Putting in the values
of J and ¢ it is easy to explain the range of ferromagnetic
T. ~ 3.5K to 22K seen in experiments.

Now let us discuss superconductivity. In the RVB
mean field theory we write, following ref.8, the super
exchange term as a BCS interaction, J >, (Si - S; —
inmj) = —Jzij bjjbij and perform the Bogoliubov-
Hartree Fock factorization of the pairing term: bl—ijij —
b;fjAZ—j + H.c. etc., where b;; = %(SiT‘SJ’L — 8;18;1) and
A;j = (b;;). For cuprates, Kotliar [11] found the d2 2
wave state to have a lower energy.

+j 2T +idll

+e 3 te?d
FIG. 5. Superconducting order parameter (|Aj;| # 0 on
dark bonds) and relative phases in PT violating di +id2 states.

Triangular lattice the symmetry leads to two degen-
erate d-states dy and dg, in the RVB mean field theory.
For small doping PT vilating combinations d; & ¢da have
lower energies. The order parameter pattern for the PT
violating d-wave states are shown in figure 5. Since the
situation is more complex compared to cuprates, relative
energetics of the extended-s, di, ds or the di + ids, or
the staggered or uniform character of the spontaneously
condensed RVB flux can be determined accurately only
after studying the Gutzwiller projected mean field wave
functions.

Triplet superconductivity is also a distinct possibility
as there is latent ferromagnetic tendency, arising from the
dynamics of the dopant charges. We will not go into the
details of this. All the above possibilities are summarized
in a schematic phase diagram in figure 6.

" chiral
RVB metal
(spin gap phase)

FIG. 6. The schematic x — T phase diagram.

As far as the scale of superconducting T, is concerned,
because of the small value of J, in our estimates we do
not get T ’s far exceeding 30K. We hope to present
our quantitative analysis for the various phases discussed
above in a future publication.

We conclude by stating that C'oOs based metals seems
to be a new class of strongly correlated systems that sta-
bilizes novel resonating valence bond states, that was not
realized in cuprates.
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