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We find an expression for the fractional fermion number of a soliton at finite fermion
chemical potential u and finite temperature T in the (1+1)-dimensional chiral field theory.
We discuss the physical origin of the depletion of the soliton charge by finite u and the
relevance to lower-dimensional charge-density—wave systems and to topological solitons in

higher-dimensional field theories.
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The fractional fermion number' has recently

been studied by several authors?~* at finite tempera-
tures. Midorikawa? and Niemi and Semenoff®
studied this for a (1+1)-dimensional quantum field
theory,’ while Barisi¢ and Batistic* studied this for a
model of quasi-one-dimensional conductors. In
Refs. 2 and 3 the background soliton field was as-
sumed to be classical and temperature independent.
In Ref. 4 the finite-temperature self-consistent
modification of the lattice distortion was taken into
account. In this Letter we address ourselves to the
question of the change of the fractional fermion
number in the presence of finite density of particles
or antiparticles (finite chemical potential u) at fin-
ite temperature 7T in the chiral model in (1+1)
dimensions.®” This chiral model is known to be a
continuum model for some conjugated polymer sys-
tems.”® We get an exact expression for the
screened fractional charge from first principles in a
simple way without the use of trace identities® or
Golstone-Wilczek perturbation expansion.>® For
zero w and finite 7, our result agrees with the result
of Niemi and Semenoff’ and disagrees with the
result of Midorikawa.? We find that the fermionic
charge on the soliton is depleted for nonzero u, go-
ing to zero for u — *oo. We also point out the in-
teresting possibility that while the finite-7 and
zero-u result for the charge Q depends only on the
asymptotic properties of the soliton profile, the
finite-u result could depend on some local details of
the soliton profile as well. We discuss the physics
of w and T dependence of Q and the relevance of
the present result to depletion of fractional charges
in real charge-density—wave systems as well as topo-
logical solitons in higher-dimensional quantum field
theory at the end of this Letter.

We now consider the (1+1)-dimensional
quantum-field theory model studied by Goldstone
and Wilczek® and Jackiw and Semenoff.” The Ham-
iltonian of the model is

H= [ ax

where \I'T, V¥ are the two-component Dirac field
operators, ¢ is the real scalar soliton field, and € is
the charge-conjugation symmetry-breaking parame-
ter and o’s are the Pauli spin matrices. In the first
quantized form, the Hamiltonian is the one-
dimensional Dirac operator in the external fields ¢
and e:

al 0'2—11,—% +olp+oe

\p], 1)

1:1(¢,e)=02—1,—i+o'1¢+0'3e. )

i dx
This Hamiltonian has the following positive- and
negative-energy continuum solutions and a bound-
state solution (assuming a soliton profile which has

only one bound state)’:

[(aE +€)/2aE) 2y,
Yka=| 4 DaE(aE+€)]~Y2(8, + ) u)’ @
exp[—fxdx'¢(x')]
=N, 0 , (4)

where Ny is a normalization factor, = +1 distin-
guishes the positive- and negative-energy solutions,
and u(x) is the normalized eigenfunction of the
Schrédinger-like equation

(—92+¢2—8,0) u = (E2— €D uy,
(5

E=(K2+¢3+ eV, ¢(+o0)= +e,.
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The fermion density associated with an occupied number coming from the occupied soliton bound

state ¥, is given by state when € < 0. For example, for T=0 and
p;(X)=llliT(X)lllf(X)- 6) uw=0, the'sum is over the entire negative-f:nergy
states. This case has been analyzed by Jackiw and

The soliton charge Q is defined as the total change
in fermion number ‘‘around’’ the soliton when the
soliton vacuum is created adiabatically from the to-
pologically trivial vacuum.® Thus in the ground

Semenoff.’
The generalization of Eq. (7) to finite u and T'is
straightforward since we have a noninteracting sea

state the soliton charge is defined as of fermions:
% , T
0= [ xS 1pi0 —pP()], m WD
T i€occ -
where pf(x) and p?(x) are the fermion number =f_mdx2,[9i’()<)—P?(X)]”(Gi-lb)» (8
density at a point x in the presence and absence of
the soliton, due to an occupied state i. The sum is Where
over the occupied states of the Dirac spectrum. n(e—p)=lexp[Ble—w)]+1)-!
Notice that in this definition of the soliton charge w)=lexplg(e -1+ 17",
O, the soliton charge also includes the unit fermion is the Fermi distribution function. Substitution for
I the p’s in Eq. (8) yields
0=J" ax 3, [T K utl— 1wl n(ak —p) ©)
® gmz1" T
ok | Oxlugl?+2|ul?p) izt
ax E—p)+ —u).
+a-t1f'°°2" 4o E(aE +€) nlaf—p)+nle—p)

With use of the method described in Ref. 6, the square bracket in the second term of the above expression
can be simplified further using

(Ol g2+ 2lu 2 F 2 =2. (10)

For T=0 and u =0, the first term in Eq. (9) is easily evaluated using the completeness properties of the
w’s.” But, for finite 7and u we do not find any general argument to evaluate the above first term for a gen-
eral soliton profile. So we choose a standard soliton profile

¢ (x) =potanh(dgx),
for which the eigenfunctions uf(x) are known exactly® to be

tanhgox — (ik/bg)
1+ Cik/dg)

u(x)=— exp(ik.x)[

Substitution for the «’s in Eq. (9) yields

© gk n(aE— ° dk E—
Q(p,,T)=—2¢02f_wﬁ%W’L))+2¢O§f_w5;i—g?—a—i%+n(e—u). (11

This is the desired expression for the soliton charge for finite w and T.
In particular, the integrals can be evaluated exactly for zero temperature and finite u to get

Q(u,0)=—sgn(u)Qy(e) —0 ()G (kg €) +0(—u) G (kg, —€) (12)
for || > m, where

| dotan[3tan~(kg/m)]
m+e

3

Qole) = _Tltan"[(—t—o-], G(kgp, €)= ;Wtan'

kp=(p?—m»)V2, m=($pj+e)V2
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Figure 1 schematically describes the behavior of the
soliton fermionic charge as a function of u for zero
temperature.

It is easily seen that for u =0 Eq. (11) reduces to
the expression derived by Niemi and Semenoff.?
They obtained their result using a trace identity and
without the use of any specific soliton profile. This
suggests that for zero u we also should be able to
get an expression for Q by our method without as-
suming any specific soliton profile. We argue below
that this dependence of Q only on the asymptotic
properties of the soliton profile may not be true for
finite u and in this case Q depends on the local
properties of the soliton profile such as the width of
the soliton.

Now we will discuss the physical meaning of our
result. Once we know the relation of the soliton-
bound-state wave function to the continuum wave
functions in the absence of the soliton, the depen-
dence of Q becomes clear. For the charge-
conjugation symmetric case (e=0), the self-
conjugate soliton bound state is made up of the
continuum states of the solitonless background field
with half of its norm from the positive-energy states
and the other half from the negative-energy states.
It is this depletion from the occupied negative-
energy continuum which shows up as a fermion
number — 5 for the soliton' (when the soliton-
bound state is unoccupied). Also, the soliton state,
being of finite size, is mostly made up of states
close to the bottom and top of the positive- and
negative-energy continuum, respectively. The en-
ergy width of this region is proportional to the ener-
gy €g required to localize a Dirac particle in a linear
dimension of the order of the soliton size. When
these states are emptied or filled by introducing fin-
ite chemical potential at 7=0, the net accumula-
tion of fermionic charge on the soliton changes.
For example, when some of the negative-energy
states are emptied at the top of the Dirac sea by in-
troducing a negative w, the charge depletion de-
creases because some of the negative-energy states
which have contributed to the formation of
soliton bound states are no longer occupied. Thus
the soliton charge almost goes to zero when the chemi-
cal potential becomes greater in magnitude than the en-
ergy €. Thus in the limit u — —oo the soliton
charge is zero. By the same argument the net soli-
ton charge decreases as u is made positive and
tends to zero as u— oo. For the above case of
€ =0, the soliton state is occupied for any positive u
and therefore it follows that Qis an odd function of
w and that | Q]| is a symmetric function of u (Fig.
1).

Q(u,0)

1+Q (€)

\;, [3 m

Q)

FIG. 1. Schematic u dependence of Qat T=0.

Similar arguments go through for the charge-
conjugation symmetry-broken case (e #0). Now
| Q| is an asymmetric function of u; the reason be-
ing that for € > 0 (for example), the soliton bound
state has more of its norm from the positive-energy
states than the negative-energy states. The effect of
finite temperature on the soliton charge has a simi-
lar interpretation.’> When some of the occupied
states are emptied or empty states are occupied by
thermal excitations, the local charge depletion gets
affected.

Now we will discuss the relevance of our finite-u
result to the lower-dimensional charge-density—
wave systems. According to the simple arguments
of Peierls,’ in a one-dimensional metal, the gap will
open exactly at 2kgp (where kg is the Fermi wave
vector) so that there are no more free carriers at
T=0. However, the lock-in commensurability en-
ergy may minimize the total energy by opening a
gap at a wave vector Q, (commensurate with the
underlying periodicity) close to 2kg rather than at
2kg. In this case we will have free carriers like elec-
trons or holes depending on whether 2k is greater
or less than Q.19 In some cases these carriers may
not be free for energetic reasons—they may be ac-
commodated as occupied or unoccupied bound
states of the solitons which are spontaneously creat-
ed.!! When this does not happen our analysis is
relevant and it amounts to having a chemical poten-
tial not coiniciding with the center of the Peierls
gap. Thus we expect distinct finite-density screen-
ing of soliton charges in a small range of densities at
very low temperatures.!? Here we should
remember that, unlike the case of the quantum-
field-theory models, in the charge-density—wave
system large changes of the chemical potential will
change the soliton charge from one rational fraction
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to another rational fraction. That is, the soliton
charge will change continuously from its rational
value when we shift from the center of the Peierls
gap until the point at which the charge-density wave
length jumps to a new commensurate value. At this
point the charge of the soliton has a new rational
value (corresponding to the new periodicity!?) and
the chemical potential will sit at the center of the
new Peierls gap. Another place to look for the
screening of the fermionic charge of soliton by fi-
nite u is the spin-Peierls instability system!* where
the chemical potential can be changed by changing
the magnetic field.

We expect the physics of the depletion of the fer-
mionic charge of soliton to be the same in higher-
dimensional quantum-field-theory models (e.g.,
skyrmions) as well. In particular, beyond a particu-
lar density of fermions or antifermions, we expect
the solitons fermionic charge to be depleted almost
to zero value.

After this paper was submitted for publication we
received a preprint by Niemi'® which addresses to-
pological solitons at uw > 0. Some of his results are
similar to ours, though, the context is not exactly
the same. We differ, however, with the interpreta-
tion of sharp changes in fermion number as phase
transitions.
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