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Abstract

In the interlayer pair tunneling (ILPT) theory of superconductivity the large

scale Tc has its origin in the k-space locality of the inter layer pair tunneling

matrix elements. We reinterpret the same physics as a process of resonant pair

tunneling and illustrate it through cooper pair analysis. This interpretation is

used to give a mechanism which leads to a singular suppression of Tc as func-

tion of c-axis(off plane/axis) disorder. In this mechanism the non resonant

tunneling processes arising from the c-axis disorder in general contributes a

pair binding energy which is reduced by a factor TJ

ǫF
, where TJ is the interlayer

pair tunneling matrix element and ǫF is the fermi energy. This leads to a sim-

ple theorem which states that the scale of Tc is controlled by the space average

value of the bare one electron interlayer hoping matrix element. After briefly

discussing that the ET and TMTSF molecule based organic superconductors

are strongly correlated narrow band systems, the dramatic reduction of Tc

by anion disorder in organic superconductors is explained by our mechanism.

Off plane disorder effects in some of the cuprates are also discussed.
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I. INTRODUCTION

One of the important component of the RVB theory for the cuprates is the inter layer

pair tunneling (ILPT) mechanism for superconductivity proposed by Wheatley, Hsu and

Anderson [1] (WHA). This mechanism owes its existence to the anomalous normal state

of the CuO2 layers which i) suppresses the coherent one electron tunneling at low energies

between two adjacent CuO2 planes and ii) does not suppress the second order process of

coherent pair tunneling. The blocking of coherent one electron tunneling has been called [2]

‘confinement’. Anderson suggested [3] sometimes back a BCS like formalism that incorpo-

rates the physics of interlayer pair tunneling. He also traced the origin of the large scale of Tc

to a k-space local character of the pair tunneling matrix elements. Following this the WHA

theory got a recent revival and important applications [4] have been made to the cuprate

superconductors. ILPT processes as a source of pairing has been invoked in the past for

quasi 1-d organic conductors [5].

From experimental point of view, the anomalous c-axis transport ρc(T ) and σc(w) for

cuprates exhibit striking features suggesting confinement [6]. Families of quasi 1-d and 2-d

organic conductors, where strong correlation and narrow band character is manifest, has also

been suggested [?] to exhibit confinement by an analysis of the commensurability effects in

the angle dependent magneto resistance in (TMTSF )2X family.

The aim of the present paper is two fold: i) to give a reinterpretation of the origin of

large scale of Tc as a consequence of “pair tunneling resonance” arising from the k-space

locality of pair tunneling process and ii) To provide a simple mechanism of how c-axis (off

plane or off axis) disorder can remove the pair tunneling resonance and lead to a strongly

reduced scale of Tc; and discuss existing experimental results in cuprate and and organic

conductors from the point of view of our new mechanism. At the end we discuss our result

in the light of Anderson’s theorem [8] on dirty superconductors. We find that the simple

cooper pair analysis, to which we restrict ourselves in this paper, already brings out the

consequences of resonant pair tunneling and and also shows how the off plane disorder can
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affect Tc in a singular way. We state our result in the form of a theorem. We also feel

that our explanation of the anomalous suppression of Tc by off plane disorder gives support

to a substantial contribution from the ILPT mechanism of for superconductivity in organic

superconductors [5].

II. RESONANT PAIR TUNNELING AND THE LARGE SCALE OF TC

As mentioned in the introduction, the spin-charge decoupled anomalous normal state

prevents coherent one electron tunneling at the lowest energies. This blocking has been ex-

plained as an orthogonality catastrophy [2] arising in the two non fermi liquids planes after

the event of one electron transfer between the them. What is remarkable is the suggestion

that this orthogonality catastrophy is absent when two electrons with zero centre of mass

momentum in a spin singlet state is transferred from layer to layer in a second order quantum

mechanical process. The presence of coherent interlayer pair tunneling and absence of coher-

ent interlayer one electron tunneling is the origin of the novel WHA mechanism. Anderson

[3] incorporates the key features of the above physics in a BCS type reduced Hamiltonian.

H =
∑

(ǫk − µ)(c†kσckσ + d
†
kσdkσ) +

∑

TJ(k)(c†k↑c
†
−k↓d−k↓dk↑ + h.c.)

+
∑

Vkk′(c†k↑c
†
−k↓c−k′↓ck′↑ + d

†
k↑d

†
−k↓d−k′↓dk′↑) (1)

Here c’s and d’s are the electron operators of the two layers and k = (kx, ky) is the in plane

momentum of the electron. TJ(k) ≈
t2
⊥

(k)

t
, is the interlayer pair tunneling matrix element.

Here t⊥(k) is the inter layer one electron bare hoping matrix element and t is the in-plane

hoping matrix element. And Vkk′ is the residual in plane pair scattering matrix element

which summarizes formally the effect of phonon mediated and residual correlation induced

attraction processes. For convenience we will concentrate on two coupled layers throughout

this paper. The two layer case captures most of the important aspects of an n-layer system.

The entire physics of spin-charge decoupling, confinement and pair tunneling is approxi-

mately modeled through the presence of pair tunneling and absence of one electron tunneling
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terms between planes in an otherwise fermi liquid like BCS Hamiltonian. Anderson [3] ar-

gues that this fermi liquid approximation is a reasonable one below Tc in view of the fact that

the electron propagator changes its branch point singularity into BCS quasi particle poles.

Recovery of a pole structure of the propagator is argued to be a self consistent justification

for starting with a fermi liquid like picture to study the superconducting state.

Another important aspect of the above Hamiltonian is the individual electron momentum

conserving nature of the pair tunneling terms, which Anderson calls as k-space locality. This

k-space locality, however, does not simply follow from the non fermi liquid or spin - charge

decoupled character of the normal state of CuO2 planes. Recently I have argued [9] that it

arises if one assumes a tomographic Luttinger liquid normal state.

Anderson argued that it is the k-space locality that leads to a scale of Tc which is linear

in the pair tunneling matrix element. Anderson, on solving the resulting gap equation in

the limit of interlayer pair tunneling matrix element TJ large compared to Vkk′, finds

kBTc ≈
TJ

4
for TJ > Vkk′ (2)

In the other limit he finds the usual BCS expression

kBTc ≈ h̄ωDe
− 1

ρ0V0 (3)

where ωD is the Debye frequency, ρ0 is the density of states at the fermi energy and V0 is

the fermi surface averaged matrix element Vkk′ of equation 1.

The above result of Anderson for the case TJ > V0 lends itself to an interpretation of

a binding energy arising from splitting of two degenerate pair states (one from each layer),

which are resonantly coupled by the pair tunneling matrix element TJ . Our interpretation of

Tc enhancement or the corresponding pair condensation energy or the gap, as arising out of

a resonant phenomenon brings out the singular effects of off plane disorder in a natural way

as we will see in the following sections. What we are going to do is a cooper pair analysis

for various cases. It turns out that this simple minded analysis brings out the basic physics

that we are after.
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Mention should be made of phase fluctuations associated with the ultralocal interlayer

pair tunneling processes of equation 1. This process, as explained recently [9], has a local

U(1) invariance in k-space and by itself is not capable of generating a finite Tc. It needs

the help of additional k-space non local terms such as the third term of equation 1. What

is important is that even with a little help from these non local terms, the local term can

become important and even provide a large scale for kBTc ≈
TJ

t
. In other words, Anderson’s

mean field analysis of the Hamiltonian of equation 1 is meaningful only in the presence

of the third term which is non local in k-space. Our Cooper pair analysis should be also

understood in the above light. The ultra locality in k-space is only an idealization. In

general the k-space locality will be smeared by finite temperature effects or the locality can

change from a delta function type to a power law one [9]

When the two adjacent planes of a bilayer are identical, the k-space locality of pair

tunneling also implies a resonant tunneling of a pair of electrons between two states (k,−k)

and (k,−k) of the two planes. To understand the resonant tunneling, let us consider the

Cooper pair problem with the Hamiltonian given by equation (1). We consider two electrons

in an otherwise frozen fermi sea of the two layers. The Schrodinger equation for the Cooper

pair problem is

2(ǫk − µ)φk − TJηk +
∑

k′

Vkk′φk′ = Eφk (4)

2(ǫk − µ)ηk − TJφk +
∑

k′

Vkk′ηk′ = Eηk (5)

where φk and ηk are the pair amplitudes in layers 1 and 2 respectively. We will assume a

simple BCS kind of model potential for Vkk′: a value −V0 for k, k′ lying in an energy shell

of h̄ωD around the fermi surface and zero otherwise.

The above Schrodinger equation is easily solved for TJ > V0 to get an expression for

Cooper pair binding energy:

EB ≈ TJ + h̄ωde
− 1

ρ0V0 (6)
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where ρ0 is the density of states at the fermi level.The first term is the binding arising from

pair tunnel splitting and the second term arises from the usual BCS type in plane pair

scattering processes. This interpretation is also obvious if we look at Anderson’s analysis of

the gap equation and Tc for the above limit. It is interesting to note that our explanation

of resonant pair tunneling also brings out the ‘kinetic’ or interlayer delocalization origin of

the pair binding energy of the Cooper pairs.

III. NON RESONANT PAIR TUNNELING AND REDUCTION IN THE

COOPER PAIR BINDING ENERGY

The resonant cooper pair tunneling together with the presence of other non-local terms

can lead to a superconducting state with a large Tc. In this paper we will concentrate on

how this resonant character of pair tunneling can be offset by off axis or off plane disorder.

Application to cuprates and organic conductors will be discussed in the next section.

We model the c-axis or off plane randomness by a position dependent one electron in-

terplane hoping matrix element t⊥ij . For simplicity we assume t⊥ij ≈ δijt⊥i, a short ranged

form. Here i and j are the site indices of the two planes respectively. It is important to

introduce randomness at the level of bare one electron inter layer hoping and and see how

the pair tunneling terms that are generated by the physics of the non-fermi liquid state of

the planes get modified. The bare one electron tunneling term is

H12 =
∑

t⊥i(c
†
iσdiσ + h.c.)

=
∑

t⊥(k, k′)(c†kσdk′σ + h.c.) (7)

The c-axis disorder does not conserve the in plane momentum in the one electron in-

terlayer hoping process. This term. when small compared to the in plane t, which is the

case with the anisotropic conductors under study, does not directly affect the anomalous

normal state of the plane and the nature of the quasi particles. As we will mention in the

last section, this assumption is not really valid if we have a weakly coupled fermi liquid at
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zero temperature. In view of this, while constructing the pair tunneling Hamiltonian we

need not go to scattering eigen state representation, i.e. the eigen states of the one electron

hamiltonian of the two layers including the random one electron inter layer hoping terms.

At the level of approximating the in plane physics by a fermi liquid physics a la’ Anderson,

the relevant one electron eigen states continue to be plane waves. This is an important

difference, when we contrast it with the situation of Anderson’s theorem [8] for disordered

superconductors.

Using a procedure recently suggested by the author [9], we get an expression for the pair

tunneling term

∑ t2⊥(k, k′)

t
c
†
k↑c

†
−k↓dk′↓dk′↑ + h.c. (8)

The pair tunneling term, while it conserves the in plane center of mass momentum does not

conserve the individual electron’s in plane momentum. Thus the pair tunneling term looses

the local U(l) invariance in k-space. While this is good for stabilizing the phase fluctuations,

it is not so good in the sense of loosing resonant pair tunneling processes at the expense of

introducing non-resonant tunneling processes as we will see below.

A general matrix element t⊥(k, k′) of equation 8 represents a pair tunneling between

two states (k,−k′) and (k′,−k′) of layers 1 and 2. Since in general ǫk 6= ǫk′ , it causes

non resonant pair tunneling processes. The reduction in cooper pair binding can be easily

estimated by concentrating on the pair subspace (k,−k) and (k′,−k′) of layers 1 and 2. This

is a good approximation in the limit TJ(k, k′) ≫ Vkk′. The corresponding 2× 2matrix to be

diagonalized is:









2(ǫk − µ) TJ(k, k′)

TJ (k, k′) 2(ǫk′ − µ)









The lowest eigen value of this matrix gives us the new energy eigen value of a pair of electron

taking into account the tunneling. The shift in the lowest eigen value, which is a measure

of inter plane pair delocalization energy or pair binding energy EB is given by
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EB =
√

(ǫk − ǫk′)2 + T 2
J (k, k′) − |ǫk − ǫk′| (9)

This pair binding energy is the largest in the resonant case, ǫk = ǫ′k :

EB = TJ(k, k) (10)

When it is maximally nonresonant, ǫk − ǫ′k ≫ TJ(k, k′) the pair binding is given by

EB ≈
T 2

J (k, k′)

|ǫK − ǫk′ |
(11)

We will discuss two simple cases of randomness and calculate reduction in average cooper

pair binding energy: a) the interlayer hoping parameter t⊥i becomes an uncorrelated random

variable with a mean < t⊥i > and spread δt⊥ and b) t⊥i = ±t⊥0 with probability p and

(1-p). And the average < .. > symbol stands for a spatial average over the plane. For case

a,

H12 =
∑

t⊥i(c
†
iσdiσ + h.c.)

=
∑

< t⊥i > (c†iσdiσ + h.c.) +
∑

δt⊥i(c
†
iσdiσ + h.c.) (12)

where δt⊥i is an uncorrelated random variable with mean 0 and spread δt⊥. In momentum

representation

H12 = < t⊥i >
∑

(c†kσdkσ + h.c.) +
∑

δt⊥(k, k′)(c†kσdk′σ + h.c.)

=
∑

(< t⊥i > δkk′ + δtperp(k, k′))(c†kσdk′σ + h.c.) (13)

The first term, the average term, conserves the in plane momentum in the hoping process.

The second term, the fluctuation term, does not conserve the in plane momentum. The one

electron tunneling term leads to a pair tunneling matrix element of the form

TJ(k, k′) ≈ δk,k′

< t⊥i >2

t
+

(δt⊥(k, k′))2

t
(14)

Since we have a spatially uncorrelated random variable, a typical value of of |k−k′| ≈ π
a
. For

this type of momentum transfer, the typical value of ǫk − ǫk′ ≈ ǫF , of the order of the fermi

energy or band width. Thus for a typical value of kandk′ the pair delocalization energy is
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EB ≈
T 2

J (k, k′)

|ǫK − ǫk′|
≈

T 2
J (k, k′)

ǫF

=

(

TJ(k, k′)

ǫF

)

TJ(k, k′) (15)

The pair binding energy is thus reduced from a resonant value of the order of TJ to a

fraction TJ

ǫF
of TJ . For the case of the cuprate superconductors for a bi-layer of 123 material,

TJ ∼ 40 meV and assuming a fermi energy of 2 eV we get TJ

ǫF
∼ 1

50
. Thus a typical pair

binding energy due to the process of pair tunneling is reduced by a factor of 50.

The first term of equation (14)leads to resonant tunnelling, whereas the second term

is non resonant. By the fact that the mean t⊥i gets reduced as we introduce randomness

and also the fact that the second term is non resonant, the cooper pair binding energy

and the corresponding Tc decreases. Since the typical momentum transfer due to the c axis

randomness is large ≈ π
a
, the non resonant term practically leads to no pair tunneling binding

energy. Hence in the first approximation the pair tunneling binding energy is controlled by

the diagonal value TJ(k, k) ≈ <t⊥i>
2

t
, the resonant part of the pair tunneling processes.

For the second type of disorder, arguing in a similar fashion, Tc is given by

kBTc ≈
< t⊥i >2

4t
=

(p − 1
2
)(t⊥0)

2

4t
(16)

We summarize the discussion of this chapter in the form of a theorem: ‘The transition

temperature in the interlayer pair tunneling mechanism of superconductivity is governed

primarily by the spatial average of the interlayer one electron bare hoping matrix element’.

We are of course inspired by Anderson’s theorem on dirty superconductor to call our semi

quantitative conclusion a theorem!

IV. APPLICATION TO CUPRATES AND ORGANIC SUPERCONDUCTORS

It has been well established that the layer cuprate superconductors are strongly corre-

lated electron systems. There are also families of organic superconductors [10] which are

strongly correlated electronic systems. Two major groups are the TMTSF and the ET

molecule (Bechgaard salt) based organic conductors. The first group are quasi one dimen-

sional and the second one are quasi 2 dimensional. These are also essentially narrow one
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band systems in which electron-electron interaction is important and the scale of electron

repulsion energy is large compared to the one electron band width. Systematic experimental

studies involving NMR, photoemission and transport studies on the TMTSF based organic

conductor in its normal state has brought out the Luttinger liquid character of the conduct-

ing chains. The existence of spin density wave states, spin Peierl’s phase also brings out

the important of electron correlation in this one band tight binding systems. One of the

remarkable manifestation of strong correlation, is the recent suggestion that there is ‘con-

finement’: Strong and collaborators have suggested that the anomalous angular dependence

of the magneto resistance in (TMTSF )2X could be explained as a commensurability effect

arising from confinement.

One of the puzzling and ubiquitous features of the organic superconductors [10] is the

universal sensitivity of Tc to off plane or off axis disorder. It is so dramatic that in one of

the ET based systems that in one case the Tc is reduced from 8 K to nearly 0 K by the

disordering of the anion group, which is non centro symmetric. What is remarkable is that

the disorder is a physical effect rather than a chemical effect in the sense of not changing

the charge transfer to the planes and not changing the nature of the chemical bonds. The

normal state properties of the chains and planes are perhaps not strongly affected.

One of the systematically studied compound is the solid solution β(ET )2(I3)1−x(IBr2)x.

The anions I3 or IBr2 are located at crystallographic inversion centers. Thus a non centro

symmetric anion like IBr2 can be orientationally ordered or disordered, even though posi-

tionally it is ordered. For the case of x = 0, the above compound has a Tc ≈ 8K. And

for the case of x = 1, it has a TC ≈ 2K. The anions I3 and IBr2 continue to be powerful

acceptors and are in valence state of 1. It is found [14] that as x is varied continuously, Tc

falls rather fast and is essentially zero in the range 0.2 < x < 0.7. In this region the anions

IBr2 are orientationally disordered.

Similarly the quasi one dimensional conductor (TMTSF )2Cl04 exhibits singular sup-

pression of Tc with the anion disorder: in this case also the non centro symmetric Cl04 ion

is situated at a crystallographic inversion center leading to a possibility of the orientational
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disorder of the anions.

Even more remarkable is the salt (ET )2I3 itself, which can occur in three closely related

crystallographic forms: β, βc, β
∗, and their enomalous Tc differences. The ethylene side

groups of the ET molecule is capable of being in two conformations called the eclipsed and

staggered conformations. In the above three crystallographic forms the essential difference

is in the conformation of the ethylene side group. If these two conformations occur in a

random fashion, the anion molecules are also correspondingly disordered, leading to a large

suppression of Tc.

Some explanations [11] invoking Anderson type of localization induced in the chains by

the off axis randomness exists. However, in view of the reduction of Anderson localization

phenomenon for weak disorder in a strongly correlated system such as the organic conductors,

one needs a more satisfactory explanation. Brazovskii and Yakavenko were one of the first

to study the sensitivity of Tc to the type of anion order in organic conductors. Even though

they talk about conservation of coherence of cooper pairs between the conducting chains,

our mechanism that we will discuss here seems to be natural and simple.

We argue that the off plane chain randomness suppression the resonant pair tunneling

process is the major source of reduction of Tc. The non centro symmetric character of the

anion group plays an important role, as we demonstrate below.

The effective electronic Hamiltonian for these systems is a spatially anisotropic Hubbard

model:

H = −
∑

tijc
†
iσcjσ + h.c. + U

∑

ni↑n↓ (17)

The details of anisotropy is contained in the one electron hoping matrix elements tij. For the

TMTSF family of conductors [7] the hoping matrix element along the chain is ≈ 0.25eV .

The hoping matrix element in the two directions normal to the chain is low by about 1
20

and

1
30

. The on site U is at least twice as large as the band width along the chain. For the ET salts

the electronic parameters are very similar except that it is quasi 2-dimensional. There are

also strong electron phonon interactions (both intra molecular and inter molecular), whose
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real role in stabilizing a relatively high Tc is not very clear. It is likely, like in the curates

the effect strong electron correlation masks the importance of electron phonon interaction.

Electron lattice coupling stabilized their own phases such as Spin Peierls’ with the help of

electron correlations for some value of the parameters.

For us the important thing to understand is the nature of the bare one electron hoping

matrix elements between two adjacent molecules in the two planes or two chains. In tight

binding systems like the cuprates or the organic conductors, it is natural to think, while

discussing about one electron hoping matrix element between adjacent layers, in terms of

symmetry adapted molecular or Wannier orbitals. The tunneling is from one Wannier orbital

of a layer to a nearby Wannier orbital of the adjacent layer. In view of the large separa-

tion between the adjacent planes or chains, the direct hoping matrix elements between the

adjacent Wannier orbitals are negligibly small. Some LUMO bridging orbitals of the anion

groups play important role in establishing an appreciable bare one electron tunneling matrix

element.

Let us take the case of TMTSF system . The relevant Wannier orbitals of the two

adjacent planes are the HOMO of the TMTSF molecules φiα, (α = 1, 2). It is a pπ bonded

molecular orbital. Direct tunneling matrix element between them in adjacent planes is

negligibly small: < φi1|H|φi2 >≈ 0. However, there is a finite overlap of the above orbital

with the LUMO of he ClO4 group. The LUMO orbitals could be degenerate in general. Let

us denote the bridging orbitals by φbiµ, where µ is the degeneracy index and the subscript b

stands for the bridging orbital. The effective one electron tunneling matrix element through

the bringing orbital in a second order process is given by

t⊥i ≈
∑

µ

< φi1|H|φbiµ >< φbiµ|H|φi2 >

Ei − Eb

(18)

where Ei and Eb are the energy of the Wannier orbital of the planes and the bridging orbital

respectively. And H is the one electron Hamiltonian.

The LUMO’s have in general nodes and change sign as we move within the anion group.

Thus, when the anion molecules are disordered the matrix elements < φi1|H|φbiµ > can

12



change in sign and magnitude depending on the orientation of the anion molecule. That is,

< φi1|H|φbiµ > can change in sign and induce sign disorder in the bare one electron hoping

matrix element t⊥i (equation 18).

This is the way the disordered cation group can introduce disorder in the sign of t⊥i,

This in turn suppresses the resonant pair tunneling by the reduction in the spatial average

value < t⊥i >. Using our earlier argument we have a simple prediction. For a completely

disordered cation,

< t⊥i >= 0 ⇒ Tc ≈ 0 (19)

In general if a fraction p of the anions are disordered,

kBTc ≈
(p − 1

2
)2 < t⊥i >2

4t
(20)

We are able to make a reasonable fit of this with the experimental results [14] on the solid

solution β(ET )2(I3)1−x(IBr2)x discussed earlier. It will be important to find this quadratic

decrease of Tc with the degree of orientational disorder of the non-centro symmetric anyons

in organic superconductors in related systems.

we will now turn briefly to the case of cuprates, where the nature of coupling between the

planes is more complicated and has different solid state chemistry. It has been experimentally

seen [?] that the oxygen vacancies in the CuO2 have little effect at low concentrations, while

those that form between the planes systematically lower Tc. What is important is that it is

not a mere charge transfer change that reduces Tc.

It has been noticed [?] that the structural coherence of the CuO2 planes, even though

do not change the normal state properties does affect the Tc rather strongly. It is generally

believed that both in the 214 and 123 compounds any tendency to have orthorhombic short

range order suppresses superconductivity. A good example could be the 214 compound for

the magic value of x = 0.12. At this value Tc almost vanishes. Various explanations have

been put forward to understand this. What is striking is that there is no true long range

orthorhombic order. We believe that the reduction in the pair resonant pair tunneling matrix
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element caused by the structural incoherence at atomic scales (owing to the well developed

short range orthorhombic distortions) in the CuO2 planes is responsible for the reduction in

Tc. The lack of structural coherence in the plane and its environment severely suppression

the resonant tunneling of pairs between neighboring layers could be an important source of

Tc reduction as we go to the overdoped region, i.e. x > .24. The conventional explanation

for the reduction in Tc this region is overdoping and the associated recovery of fermi liquid

character.

Recently a family of CuO2 layered superconductors also having bridging CO3 groups

have been synthesised. Unusual sensitivity of the superconducting Tc to the disordering of

the non centro symmetric carbonate group has been observed often. This could again be

explained by our mechanism of reduction of Tc by c-axis disorder.

V. RELATION TO ANDERSON’S THEOREM ON DIRTY SUPERCONDUCTORS

It is important to point out that Anderson’s theorem [8] on dirty superconductor was

proposed in the context phonon mediated superconductivity. We point out below that there

are important modifications to this theorem in the context of anisotropic superconductors

in the presence of strong correlations. Soon after the appearance of BCS theory, Anderson

explained the unexpected insensitivity of the superconducting Tc on time reversal symmetry

respecting disorder like positional disorder or alloying or non magnetic impurities. Ander-

son’s first point with respect to setting up an effective BCS Hamiltonian was to emphasize

the formal use of the exact eigen states in the presence of the random potential. Electron

phonon scattering among these exact eigen states is used to construct the phonon mediated

two body interactions. He emphasized the pairing among time reversed eigen states as the

basic and relevant two body terms that will lead to a coherent superconducting state.

Our case is different and we can not use Anderson’s theorem directly. In view of the

phenomenon of confinement and in view of the fact the system is anisotropic, to a first

approximation the off plane disorder does not affect the anomalous normal state. This
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means while employing a fermi liquid like BCS Hamiltonian for the physics of interlayer pair

tunneling a la’ Anderson, one needs to use only plane wave states. The exact eigen states of

the one electron problem of the coupled planes (including the random t⊥i) is something that

is not relevant for the problem in the presence of strong correlation in the plane. In this

sense the presence of strong correlation defies Anderson’s dirty superconductor theorem.

Recently Fay and Appel [15] have argued that it is the non retarded character of super-

conductivity in cuprates that is responsible for the violation of Anderson’s theorem. What

we have argued in our paper is a more fundamental reason which relies on the resonant

tunneling character of the interlayer pair tunneling mechanism, and not on its non retarded

character.
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