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The problem of relating the semiclassical and quantum treatments of statistical states of an optical field is
re-examined. The case where the rule of association between functions and operators is that of antinormal
ordering is studied in detail. It is shown that the distribution function for each mode corresponding to this
case is a continuous hounded function, and is also a boundary value of an entire analytic function of two
variables. The nature of the distribution for the normal ordering rule of association and its relation to this
entire function are discussed. It is shown that this distribution can be regarded as the limit of a sequence of
tempered distributions in the following sense: One can find a sequence of density operators ¢,y which con-
verges in the norm to the density operator 5 of any given field (consisting of a single mode), such that
each member of the sequence can be expressed in the form g,y = /"¢, (2) |3)(z|d@%, where ¢, is a tempered

distribution.

I. INTRODUCTION

N the quantum description of optical coherence, one
specifies the statistical state of a radiation field by a
density operator g. In terms of this operator one can
define! the coherence functions of arbitrary order
N=n+m:

Gjlr.i2p"‘jn;k17k2|"'km(n,1n)A(x1’x2)' a5 VLYt 'ym)
(BB () By, ()
XEn® () B, (ym)}y,  (11)

where tr stands for trace and £;, (x;) and By, (y))
are the typical Cartesian components of the negative
and positive frequency parts of the electric field
operator at the space-time points x; and y,, respectively.
These operators may be expanded in a complete set
of mode eigenfunctions

O (@)= X0 0 (@)
B (@)= (B0 () 1=Ta &% @), (12)

Here, the suffix A specifies the mode which, in particular,
may characterize the momentum and the polarization
of the photon. @y and @, are the annihilation and crea-
tion operators,? respectively, of the photon in mode A,
satisfying the commutation relations

Lardv]=[atavt]=0; [dndvt]=d . (1.3)

It will be found convenient to choose the eigenstates
| {z}) of the annihilation operator @, as our basis

[{z))= 21,25, - 20, - - )=I11|20),
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1R. J. Glauber, Phys. Rev. 130, 2529 (1963). Glauber con-
sidered only even order coherence functions of the type G,
which he calls #th-order coherence functions.

2In this paper all operators are denoted by caret signatures.
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alzy=anln); &lat=n*@l; (1.5)

Since @y is not Hermitian, its eigenvalue 2\ will, in
general, be a complex number

1.7)

The states |z),) can be expressed as a linear combination
of the basis states of the Fock representation

s )=IIa[m);

n=mi=ne; (a0 real).

|{n}>E I'/’h,’l’&g,' :

7’L)\=0, 1) 27 e (18)
atar[m)y=m|m), dalm)=(m)"2[m—1),
tlmy= (m+1)"2|n+1) (1.9)
in the form
@0 Z)\"’)‘
ay=exp(—3la[) X ——[m). (1.10)
=0 (12)!)'V?
They also furnish the resolution of the identity
17 .
—/ a0(an] Paa=1, (1.11)
™

where @’z =dx\dy,=r\dndf, and the integration ex-
tends over the whole complex z plane. Any operator and
in particular the density operator g, which has the
following expansion in Fock representation:

ﬁ={2} {Z}p{mi, tny [ {m} }({n} |, (1.12)
where
pimy, (ny={{m}|p]{n}), (1.13)

can also be expressed in terms of the overcomplete
family of states |{z}) in a “diagonal” form

p= / / Py (D, (114)

where ¢({z}) is a suitable distribution over the complex
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variables {z}. A formal expression for this distribution
has been given by Sudarshan.?

In the semiclassical description of optical coherence,
on the other hand, one describes the statistical state
of the radiation field by an ensemble probability
distribution and the N =#+m order coherence functons
may be defined as*

I‘jl,iz,"'jn:kl,kz,"'kn(n)m) (xl,x%' %y Yyt 'yn)

=(Ej*(%1) - B *(00) Ery (91) - By (¥0) e

where ( ). denotes the statistical ensemble average. Tt
is convenient to introduce the linear functional

(1.15)

PLu]= <p[ ; LI (ot ) E (e <x>]d3x} )

e

(1.16)

in terms of which the coherence functions may be
defined as

Fil,J'z,-uin;kx.kzmkm(n’m)(xl;x2,' ¥ Y)Yt ‘ym)
) ) )

oujy (1) 1 (%) Surs™ (1)

= (=1

8
X————F[u]| =,

(1.15")
u m* (ym)

where 6F[%]/6u(x) denotes the variational derivative
of the linear functional F[%] with respect to u(x).> We
may think of F[#] as the characteristic functional and
the I'»™ as the (polynomial) moments.

It is of interest to associate the quantum density
operator 4 and the (semiclassical) ensemble probability
distribution p({z}) in such a way that the coherence
functions defined in the two schemes are identical.
We may, instead, require that the characteristic func-
tionals in the semiclassical and quantum descriptions
be the same.

For convenience of discussion we shall restrict our
treatment here to a system having a single degree of
freedom (one mode); the essential part of the dis-
cussion can, however, be extended to systems having
a finite number of modes. When the number of modes
become infinite, new mathematical problems arise in
connection with the quantum-mechanical specification
of the state of the system.® But we shall not enter into
these questions here.

We seek, then, a relation between the ensemble

3 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963); also
in Proceedings of the Symposium on Optical Masers (Polytechnic
Press, Brooklyn, New York, and John Wiley & Sons, Inc., New
York, 1963), p. 45.

* E. Wolf, in Proceedings of the Symposium on Optical Masers
(Polytechnic Press, Brooklyn, New York, and John Wiley &
Sons, Inc., New York, 1963), p. 29.

® Compare E. Hopf, J. Rational Mech. and Anal. 1, 87 (1952);
I. E. Segal, Canad. J. Math. 13, 1 (1961); R. M. Lewis and R. H.
Kraichnan, Commun. Pure and Appl. Math. 15, 397 (1962).

¢ I. E. Segal, Illinois J. Math. 6, 500 (1962); see also E. C. G.
Sudarshan, J. Math. Phys. 4, 1029 (1963).
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probability distribution p(z) and the quantum density
operator g such that

tr{5G (4,41} = /p(Z)G(z,Z*)dZZ (1.17)
for suitable operators G. However, since the operators
é and @t do not commute, the association of G(4,41)
with G(z,2*) is not unique, and will depend on the rule
of association between operators and functions. It is
advantageous to choose the set of operators 1G(8,4) such
that it consists of all bounded operators including the
identity operator. Since the expectation-value mapping
is a linear functional it is sufficient to consider the set of
unitary operators

G(d,4") = exp(adi—a*d). (1.18)

Using the commutation relations between d and df we
may rewrite the right-hand side in the two alternative
forms
exp (adt—a*d) = exp (— Jaa™) exp (adl) exp(—a*d) (1.19)
=exp(+3aa*) exp(—a*d)
Xexp(adt).
The statistical state is specified by the linear functional
Flo]=(exp(adi—a*d)), (1.20)
or equivalently, by the linear functionals
Fn[a]=(exp(adt) exp(—a*d))=exp(3aa*)F[a], (1.21)
Fla]=(exp(—a*d) exp(adl))
=exp(—3aa®)F[o]. (1.22)

If we consider the functional Fxy[e] to be the charac-
teristic functional, we get a distribution px(2) which
satisfies the relation

(1.19)

/ on (2) exp(az®—a*z)d?

=tr{p exp(adl) exp(—a*d)}, (1.23)

so that it is identical to the distribution ¢(z) discussed
by Sudarshan?® (see also Mehta, Ref. 7). In this paper
we shall be mainly interested in the correspondence
based on antinormal ordering and in considering
F a[a] to be the characteristic functional. Thus we seek
a distribution p4 (3) satisfying the relation

/ p4(2) exp (az*—a*z)d%

=1tr{p exp(—a*d) exp(ad?)}. (1.24)

In the following section we derive an explicit form
for p4(z) and in Sec. TIT we discuss some of the proper-
ties and show that it is in fact a continuous function.
Section IV includes a discussion about the nature of
pn () and also the relation between the function p4(z)
and the distribution py(2). It is shown that py(3) can

7C. L. Mehta, J. Math. Phys. 5, 677 (1964).
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be regarded as a limit of a sequence of tempered distri-
butions. It then readily follows that the quantum and
the semiclassical descriptions of statistical light beams
are equivalent; and we thus obtain a rigorous formu-
lation of a theorem established heuristically in an
earlier paper.?

II. THE DISTRIBUTION FOR ANTINORMAL
ORDERING

We are interested in obtaining a distribution p4(z)
such that the quantum generating functional F4[a]
satisfies the relation

Fala]=tr{p exp(—a*d) exp(adt)}

= / p4(2) exp(az*—a*z)d?s;,

(2.1)

(2.2)

where, as before, d%=dxdy and the integration extends
over the whole complex z plane. Using the resolution

of the identity
1 .
- [1ies=t,
™

we may rewrite (2.1) in the form

(2.3)

1
Flal=- / exp(az*—a*s) tr{p|2)(z| }d%. (2.4)
Comparing (2.2) and (2.4) we see that

1
pa()=—(z|32). (2.5)
™
Thus we note that the function (1/7)(z|5|2) can be
regarded as a probability distribution function so long as
the rule of association between operators and functions
is that based on antinormal ordering.?

III. PROPERTIES OF p4(z)

Since p is a density operator, which is necessarily
Hermitian and positive definite, its matrix elements in
the Fock representation satisfy the inequalities

£:.i20, 3.1)
|p5.6|2< 05,5001, for all 7 and &. 3.2)
Normalization of the density operator implies
2ipii=1, (3.3)
which gives, on using (3.1), the inequality
0<p;;<1, forall 7. (3.4)

We shall use these properties of 4 to derive the following
properties of pa(2).

(a) 0<pa(®) < (1/7), for all .

(b) For all e, |Fale]| =S pa(z) exp(az*—a*z)d%|
Sexp(—3al?).

8 While this paper was being written, a similar probability

distribution function was being considered by Y. Kano (to be
published).
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Hence, in particular, p4 is integrable and also square
integrable.

(c) 0SS pa(x,y)dx< (2/m)V2, for all y.

(d) pa(z)=pa(x,y) is the boundary value of an
entire analytic function of two variables, and also
satisfies certain constraints connected with self-
reproducing properties.

That property (a) is satisfied, can easily be seen if
one expresses p in the form

ﬁ=Zn>\nl¢n>(¢n|, 3.5
where |¢,) are the eigenstates of p and \, are the
corresponding eigenvalues. Thus, since 0<A, <1, we
have

1
pa(2)==22 M| (s|¥n)[220; (3.6)
and also
1 1
<=2l P =—. (3.7

To prove the assertion (b) we note that

/ pa(z) explas®—a*z)d?%= (exp(—a*d) exp(adl))
=exp(—%|a|?){exp(adt—a*d)).

But since exp(adf—a*d) is unitary, we obtain
|{exp(adt—a™d))| = | tr{p exp(adi—a*d)}| < 1.

Hence,

(3.8)

/ pa(9) exples'—a)s| Sexp(— 4 al9), (39)

as required. In particular when a=0 we obtain the
normalization condition

/ pa(z)d?=1.

If F4(s,t) denotes the Fourier transform of p(x,y):

(3.10)

Falsi)= / / pa(xy) expli(se-+iy)Jindy, (3.11)

then using (3.9) with a=2%4(s4) we obtain
|Fals,t)| Sexp[—3(s’+8)]. (3.12)

Now since p4(2) is bounded and integrable, it is
square integrable. In fact

/ w/{m(x,y)}ﬁdxdy

—

1 el
=——//|FA(s,l)|2dsdt
4m* J
1 £

= 1
< / / expl 4 (s212) Jdsdt=—.
4'71‘2 J ™

0

(3.13)
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I'ourier inversion of (3.11) gives
1 0
pa (x,y)=‘—1——2 / / F4(s,t) exp[—i(sx+1y) |dsdt. (3.14)
Y[ -

Hence, integration over x gives

/ pa (x:y)dx

1 )
=——/ F4(0,2) exp(—1ty)dt
2w J_o

1 il 1 o
< / | Fa(0,0)] dt<— / exp(—12)dl
2 J o 21 J

Y
=(2/m)"?,  (3.15)
which proves assertion (c). Similarly for all x,
0 [ iy e (16)

To show the last property (d), we define a function
p($sm) as

1
p(Em)=—*|p|n) expG[S[*+5[n]®)  (3.17)

1 gmnn
==>2 pmu (3.18)
Tom o (mIn!)l/?
so that
p4(2)=p(z*z)e" 17, (3.19)

It may easily be seen using (3.2) and (3.4) that the
series on the right-hand side of (3.18) is absolutely
convergent for all finite values of |{| and ||, and hence
p(¢,m) is an entire analytic function of the two complex
variables ¢ and 7. It also follows, therefore, that p
regarded as a function of two new independent variables
a=%(¢{+n) and B=2%i(¢—n) is an entire function of
both variables. When both « and S are real, {*=7% and
o(¢m)=pa(n)e'®. Further in this case « and B are the
real and imaginary parts, respectively, of . Hence, we
conclude that p4(2)=p4(x,y), (z=2x+1y), regarded as a
function of x and v is the boundary value of an entire
analytic function in a and 8 for their real values. [The
exponential factor exp(|z|?)=exp(x®+14?) is already
the boundary value of the entire function exp(a*+43?)
of @ and B.]

To make our statement clear and unambiguous, we
stress that what is meant here is that if one formally
replaces the real variable » and y in p4(x,y) by two
complex variables a and 8 then p4(e,3) is an entire
analytic function of a and 8.

This property has a very interesting consequence

B 277

which may be expressed by the following
Tlieorem® : Tf for any bounded operator 4,
A(@)= (3|4 |z)=0

in any finite area over the complex plane z= a1y, then
A (2)=0 over the whole complex z plane and further
the operator A itself is identically zero.

Proof: In proving property (d) we only utilized the
boundedness of 5 and hence the final result is valid for
any bounded operator. Thus

A(D)=A(x,y)=(x+iy| 4 |x+iy},

regarded as a function of x and v, is also a boundary
value of an entire analytic function of two variables
« and B for their real values. We are given that 4 («,8)
is analytic in @ and 8 and that

A(x,9)=0, for

(3.20)

a;<x<a: and b5, <y<he. (3.21)

Hence according to a well-known theorem of complex-
variable theory 4 (a,8)=0 for all & and 3, and hence
certainly for @ and 8 real, i.e., 4 (x,y)=0 for all real x
and y. We can go a step further and say that 4 (e,8)
regarded as a function of { and # where {=a—43 and
n=a-+1B is also identically zero for all { and 5. This
shows that

(¢*|A|n)=0, for all { and 7,
which holds only if 4=0.

(3.22)

Self-Reproducing Property

Since the “over-complete” representation | z) furnishes
the resolution of the identity [Eq. (2.3)]

1
~/]z>(z[d2z=i, (3.23)
we obtain from Eq. (3.17)
1
o= [ 13l2)eln) expbs =+l
1
—~ [ 569 exp(—[sl+neth. (3.29)

In the above derivation, use has been made of Eq.
(1.10) and its Hermitian adjoint. Thus we see that
p(t,m) possesses the self-reproducing property™

p(tm)= / K (0,2)p(¢,2)d%, (3.25)

9 The last part of this theorem, namely that (z|A4 |z)=0 for all 5
implies the vanishing of A has alse been formulated and proved
for any continuous representation of the canonical variables by
J. R. Klauder, J. Math. Phys. 5, 177, 184 (1964); see also T. 1.
Jordan, Phys. Letters 11, 289 (1964).

1 N. Aronszajn, Trans. Am. Math. Soc. 68, 337 (1950).
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with the kernel!

K (n,2)= (1/7) exp(— |z]*+nz*).

In a strictly similar manner, one can also show that

(3.26)

1
e == [ 1s)E I expd a1

= / K(f,z)ﬂ(zm)d?z . (327)

It may be noted that Egs. (3.25) and (3.27) are not
independent and are in fact complex conjugates of each
other.

The distribution p4(z) does not satisfy the self-
reproducing property of the type given above; however,
it satisfies the following constraints:

1 g4y zF—n
pa(z)=- /PA( )@ )
T 2 2

Xexp(—|n—z|0)dn (3.28a)
1 7tz n—2
Lt )
T 2 2

Xexp(—[n—2z*[2)d*, (3.28D)

where p4(e,8) on the right hand side is obtained by
replacing the real variables x and y in p4(x,y) by the
complex variables o and 8. These relations may be ob-
tained by making use of Eq. (2.3) and the analytic
properties of pa(x,y) [cf., Eq. (4.19) below ].

IV. RELATION BETWEEN THE DISTRIBUTIONS pg4(z)
AND pon(z) AND THE EQUIVALENCE OF THE
QUANTUM AND THE SEMICLASSICAL
DESCRIPTION OF STATISTICAL
OPTICAL FIELDS

In the quantum description of optical coherence,
one usually defines the coherence functions as expec-
tation values of normal-ordered operators. While it is
possible to redefine these coherence functions as
expectation values of antinormal ordered products, it
is of interest to consider in what sense the distribution
pwn (2) is defined and also to examine the relation between
pa(2) and py(2). This relation then naturally leads to a
rigorous formulation of the equivalence between
quantum and semiclassical descriptions of statistical-
optical fields which was derived heuristically in an
earlier paper.?

1Tt may be noted that all entire functions are solutions of the
integral equation

J©= [ K@ S,

where the kernel X is given by (3.26).

E.
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Ifor this purpose consider the integral equation

/ / ¢ (x,y) exp[i(sxu-tLy) Jdady

= // pa(,y) expli(sx--ty)]
Jo 82_*_[2

Xexp(————)dxdy , (41)
4

where, as in the previous section,

so that

Fyla]=Fx(s)
= / / & (x,y) exp[i(sx+ty) Jdxdy

=exp[{(s™+2)JF 4 (s,t) = ! F 4[a];
a=21i(s+il).

Hence,if a solution exists for ¢ (x,y),it could be identified
with py(x4-1iy), the distribution for normal ordering.
Given such a distribution ¢(z)=¢(x,y) we can express
the density operator in the “diagonal” form

(4.2)

5= / 6|2z 2, (4.3)

since then

tr{p exp(adt) exp(—a*d)} =/ #(z) exp(az®*—a*z)d?s.

Using this diagonal form we may rewrite the relation
between py(2)=¢(z) and p4(z)=pa(x,y) in the form

1

pa(z)=-
™

/ o ()| ]2, (4.4)

Thus given py, the computation of p4 is immediate. The
problem of defining py(z) is the problem of inversion
of the integral equations (4.1) or (4.4). We have, of
course, no guarantee that py(z) will be a continuous
function.

We note, however, that (4.2) may be considered as
the defining equation for a distribution ¢ which maps
the test function exp[4(sx+¢y)] according to®?

expli (s2--19)] > Fu(s,0).

If it turns out that Fy(s,t) has appropriate behavior,
we may identify the linear functional ¢ with the linear

(4.5)

2 Distributions which are defined as the Fourier transforms of
entire analytic functions have been considered in the literature;
see for example L. Ehrenpreis, Ann. Math. 63, 129 (1956). We are
thankful to C. P. Gupta for drawing our attention to this paper.
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functional associated with a function ¢(z)=pn(z). If
Fy(s,t) does not increase faster than a polynomial in
s, ¢, we may identify ¢ with a tempered distribution.
But in general neither of these conditions can be
guaranteed. It is easy to construct examples in which
Fy(s,t) increases like an exponential or even like the
exponential of a quadratic form [compare the Appendix
B, Ref. (13)]. In fact, the only requirements on the
distribution ¢ are normalization and a positivity
condition. The normalization condition can be written
simply as

Fy[0]=1. (4.6)

The positivity condition is more involved, and may be
written in the form

N (9 (9 n
[£eC-2)
I n=1 as at

for all sets of numbers @, and for all V.

While it is not possible to construct ¢ as a tempered
distribution in all cases, it is possible to exhibit a
sequence of tempered distributions ¢, such that the
sequence of operators

2

4.7)

F(s,z)} >0

8={=0

por= [ 6@l (@8
converges to the operator
9= [ o@lo)el . (4.9

Weak convergence implies that for any two fixed
vectors # and v, the sequence of matrix elements

/ b (2)(z| vut| 2)d% (4.10)

converges to

1r(ﬁvuf)=/qb(z)(z[z!w'[z)d?z. (4.11)

The operator integrals (4.8), (4.9) involving the distri-

13 If we are only interested in weak-operator convergence, we
can follow J. R. Klauder, J. McKenna, and D. G. Currie (to be
published) and exhibit a series of density operators which con-
verge weakly, for which the associated distributions ¢, can be
identified with square integrable functions. The essential point
of the construction is to define the distributions ¢, by the

mapping

®)
; Fn(st), —v<s,i<
exp[i(sx+ty)] — { 0’\ %t%l’erwis,; S st<w

In this case we can associate with ¢y a function whose double
Fourier transform vanishes outside a rectangle and is bounded
inside it. Note added in proof. Dr. J. R. Klauder has informed us
that this sequence of density operators also converges in norm.
It is therefore possible to construct a sequence ¢,y of distributions
which is not only tempered but also square integrable which con-
verges in norm with the distribution ¢ associated with an arbitrary
density operator p.
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butions are to be understood in terms of the linear
functions (4.10), (4.11) defined over the matrix ele-
ments. Since every bounded operator can be expressed
as a linear combination of the unitary operators given
by (1.18), it follows that the correspondence (4.5)
defines the density matrix integral (4.9).

To demonstrate this assertion we note first of all that
since

dout= (u+v) (u+0v)t— (u—2v) (u—0)t
+1(u—1v) (u— 1) T — 1 (u+1v) (u+19v)1,

it is sufficient to show that the sequence of matrix
elements

/ by (2)(z]| ww' | 2)d%,
converges for every vector w, to
/ ¢ (2)(z| ww' | 2)d%.

For this purpose consider the operators g and ¢=wwf
in terms of their Fock representation matrix elements
Pn,n and o, ., respectively. Without any loss of gener-
ality we may choose w also to be normalized so that
tr(wwh) =wlw=1. If

onnw=0, n, W' >M,

then it is easy to show that Fy[a], {a=3i(s+1))
increases only as a polynomial of degree not greater
than 2M. Consequently, py(z) will be a tempered
distribution. It is thus sufficient to show that we could
construct a sequence of density matrices p(,y with

Pynw=0, n,w'>v, (4.12)
such that the sequence of numbers
ll'(ﬁ(,,)é‘)z Z Pyn,n'On' n, (413)
n,n':ﬂ
converges to
tr(ﬁ&)= Z Pn,n'0n,n’- (414)
n,n'=0

Let us define p(yyn,n as

Pyn,n' = Pn,n’y 0<1'l<11, 0$n’§v, but not n=n’=v;

o0

’ .

=2 puw N=w=v;
=

=0, (4.15)

otherwise.

The operator p,) so defined is positive definite and has
unit trace. To prove the weak convergence we note
that since both 4 and ¢ are Hermitian and since

@<, w@E)=1,
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it follows from Schwarz’ inequality that not only is

tr (¢) defined and less than unity, but the series

0
Z Pn,n'0n’,n
n,n'=0

is absolutely convergent. But this in turn implies that
the sequence of numbers

v
Z Pn,n'0n’,n

n,n'=0

converges to tr(pé). On the other hand, the sequence
of numbers 3,14, Converges to zero. Hence the
sequence (4.13) converges to (4.14) and our assertion
is proved.

It is to be noted that in view of the nature of the
operators Ay, we have succeeded in exhibiting a
sequence of density operators which have associated
tempered distributions ¢(,) and which weakly converges
to the density operator p. While the sequence chosen
here is in some ways the most immediate, it is by no
means unique.’

Actually the convergence of the operator sequence
is much stronger. We can, in fact, show that the operator
sequence converges in norm, i.e., the sequence of
numbers

p=pll*= 2 lpnaw—pornnl® (4.16)
0

n,n’=l

converges to zero. Now

o 0
Z Ipn,n’—P(v)n,n”?:: Z lpn,n’

’ ’
n,n =0 n,n'=»

2 2
—Py,y

S <2 o),

n=p+1

and since the series

Z Pn,n

n=0

is absolutely convergent, it follows that the sequence
(4.16) also converges to zero. Since convergence in the
norm implies strong convergence, the sequence of
operators p,) converges strongly.

We have thus been able lo exhibit a sequence of densily
operators which converges in norm (and hence, strongly)
to any given density operator, for each member of which
the associated distribution ¢y is lempered. But in
general, the distribution associated with the limit is
not tempered.
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We conclude this section by pointing out some formal
relations. The integral equation (4.1) has the formal
solution

é(2)=pw(z)=exp(—iV?)pa(2), (4.17)
and we can write formally
ﬁz/ [2)(z] exp(—%1V®)pa(z)d. (4.18)

We can also obtain an alternative expression for
in terms of p4 in the following manner by using the
analytic properties of p({,n), which is defined by (3.17).
If we formally replace  and y in pa(x,y) exp(x*+3?)
by 3(+n) and %i({—n) respectively, we should
essentially obtain p({,7). In fact!*

p(cm)=exp(EmpaG (E+n), 32 —mn).

Hence

(4.19)

1
p=— [ [1006simtal e
1 .
— / / o(e%m) expl—3 (1% [n]2)] ¢ )n] ey

1
=;//Is‘><nl exp(E1—3 ¢ 1*— 3] ]?)

e
XpA( ; X 5 >d2§’d27). (4.20)

Finally one may note that, if the given function
p4(x,y) is not the boundary value of an entire analytic
function then (1/7){z|p|2) obtained by using the ex-
pression (4.20) for p will not agree with the original
expression for p4(z). The reason for this is that, in
general, any arbitrary function cannot be identified
with the matrix element of a bounded operator in the
over-complete |z) states. In fact (1/7)(z|p|z) thus
obtained will only be a projection of p4(z) which can be
identified in this way.
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1 An alternative algorithm for determining the operator from

its diagonal matrix elements in the |z) representation has also
l()een given by J. R. Klauder, J. Math. Phys. 5, 177 (1964), Eq.
23).



