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ArF Excimer Laser-Enhanced Photochemical Vapor
Deposition of Epitaxial Si from Si2H6: A Simple Growth
Kinetic Model
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Photolysis of Si2H6 u s i n g 193 nm r a d i a t i o n from a n ArF excimer l a s e r has been used
to deposit homoepitaxial Si f i l m s in the temperature r a n g e of 250 to 350° C. Photolytic
decomposition of Si2H6 generates g r o w t h precursors w h i c h adsorb on to a hydrogenated
Si surface. A g r o w t h k i n e t i c m o d e l is proposed b a s e d on single-photon 193 nm absorp-
tion by Si2H6, and chemical reaction of the photofragments as they diffuse to the sub-
s t r a t e surface. With the l a s e r beam positioned parallel to the Si substrate, the deposi-
tion y i e l d of solid Si from photo-excited Si2H6 is estimated to be 0.20 +- 0.04. G r o w t h
r a t e s vary linearly with l a s e r i n t e n s i t y and Si2H6 p a r t i a l pressure over a r a n g e of 1 -
15 m J / c m2. p u l s e and 5 - 4 0 mTorr, respectively, and epitaxial f i l m s are deposited when
l a s e r intensity and Si2H6 p a r t i a l pressure conditions are such t h a t the i n i t i a l photofrag-
ment concentration is less than - 1 0 1 3 cm-3.
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1. I N T R O D U C T I O N

Low temperature silicon epitaxy c a n be achieved
u s i n g the monochromatic 193 nm emission from a n
ArF excimer laser as a nonthermal excitation source
to dissociate Si2H6 into photofragments that adsorb
on the Si substrate and r e s u l t in film growth. 1'2 By
minimizing parallel reaction p a t h w a y s with such a
h i g h l y selective UV source, film morphology c a n be
improved and semiconducting films with a b r u p t
heterointerfaces and d o p i n g transitions c a n be de-
posited. 3 Such fabrication techniques will be crucial
to the production of semiconductor material sys-
tems such as n-i-p-i doping superlattices and Si-
Sil_xGex strained-layer heterostructures for novel
electro-optic and optoelectronic device applica-
tions. 4'5'6 Photoenhanced chemical v a p o r deposition
(Photo-CVD) has been demonstrated by several
methods including direct substrate illumination by
deep ultra-violet (UV) lamp sourcesv and excimer
lasers, 8 melt and recrystallization of amorphous
layers by UV lasers,9 and o t h e r techniques u s i n g
UV radiation. ~°'11 Photo-CVD of amorphous Si:H
f i l m s has been s t u d i e d in d e p t h since, u n d e r pho-
tolytically sustained deposition conditions, the sub-
s t r a t e temperature c a n be used to control the H con-
tent of deposited films, and c a n therefore control
various properties of the f i l m s such as the i n d e x of
refraction and the photoconductivity. 12'13'14 U s i n g a n
ArF excimer laser as the Photo-CVD source pre-
s e n t s distinct advantages over o t h e r Photo-CVD
methods. A p h o t o n e n e r g y of hv = 6.4 eV readily
dissociates Si2H6 by single p h o t o n absorption, '4 pro-
d u c i n g Si-containing radicals t h a t lead directly to
film g r o w t h . O r i e n t i n g the l a s e r so that it passes
parallel to the substrate surface allows reactive
molecules to be created near the g r o w t h surface
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w i t h o u t a n appreciable substrate temperature rise.
In our study, epitaxial films were deposited a t growth
r a t e s of 1-10/~/min, w h i c h is suitable for superlat-
tice-type applications.

I n this p a p e r we present dependencies of g r o w t h
rate and film morphology on process parameters and
discuss the results in terms of a g r o w t h kinetic model.
The results indicate that the d o m i n a n t g r o w t h pre-
cursor has a sticking coefficient of >-0.6, and t h a t
the sticking coefficient is insensitive to substrate
temperature in the temperature regime of laser-
controlled deposition (less than - 3 5 0° C). At l a s e r
intensity and Si2H6 p a r t i a l pressure conditions such
that initial photofragment concentrations are greater
than - 1 0 1 3 molecules/cm 3, epitaxial g r o w t h is not
achieved. G r o w t h r a t e s are somewhat decreased as
the distance between the l a s e r beam axis and the
substrate is increased, but significant deposition still
occurs for beam-to-substrate distances of - 2 cm, in-
d i c a t i n g t h a t the d o m i n a n t g r o w t h precursor is a
resonably kinetically stable radical with respect to
gas p h a s e reactions.

2. EXPERIMENTAL

The substrate cleaning techniques and the u l t r a -
high v a c u u m photo-CVD system used to deposit the
f i l m s have been described previously. 1'2 Briefly, the
Si substrates are solvent and RCA cleaned, and, im-
mediately p r i o r to l o a d i n g into the u l t r a - h i g h vac-
u u m (UHV) deposition chamber, a HF dip is per-
formed to H passivate the substrate surface.15'16 The
ArF excimer l a s e r o u t p u t s 20 ns pulses a t a m a x i -
mum repetition rate of 80 Hz , and the pulse e n e r g y
c a n be v a r i e d from 15 to 200 m J / p u l s e . In o r d e r to
deposit onto a l a r g e r area of the 10 cm diameter
substrates, the i n i t i a l 20 x 10 m m beam cross-sec-
t i o n a l area is converted to 45 x 2 mm with beam
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Fig. 1 - - A schematic representation of the fraction of each pho-
tofragment that incorporates into the film. The q u a n t u m y i e l d
i s 4~, the n u m b e r of excited disilane molecules i s N , the fraction
of the photoproduct w h i c h diffuses t o w a r d the s u b s t r a t e and sur-
vives gas phase reaction i s represented by the factor f, and fl i s
the fraction w h i c h i s physisorbed on to the substrate surface. The
fraction of Si lost through desorption from the surface i s T, a n d
S is the total sticking probability of the photofragment.

s h a p i n g optics. The beam is passed tangentially un-
der the substrate to a v o i d laser-induced damage or
heating, and e n t e r s and e x i t s the chamber t h r o u g h
quartz windows which are purged with 1600 to 2400
sccm of He to p r e v e n t Si deposits from forming and
absorbing the beam. Pure Si2H6 is mass-flow con-
trolled a t flow r a t e s r a n g i n g from 14 to 114 sccm
and is introduced t h r o u g h a 10 cm wide gas tee with
e i g h t equally spaced pinholes, w h i c h is positioned 9
cm from the edge of the substrate and 2 cm below
it.

An oxide/polysilicon s t a c k covers a t h i r d of the
substrate surface so that the laser-deposited film
thickness profile c a n be measured with a spectro-
photometer. Silicon etching d u r i n g the RCA clean
was t a k e n into account when determining the de-
posited film thickness. 17 D u r i n g the RCA clean, the
polysilicon film is etched 63 ± 4/~, as determined
by measurements performed before and a f t e r clean-
ing and a HF dip. The average film thickness was
divided by the deposition time to calculate the av-
e r a g e g r o w t h rate over a n area o f - 9 0 cm2 on the
substrate surface. The n u m b e r of Si a t o m s incor-
porated into the film was calculated from the av-
erage film thickness, the measured area , and the
atomic n u m b e r d e n s i t y of solid Si (5 × 1033 a t o m /
cm3). When the beam is w i t h i n 1 mm of the sub-
strate, peak g r o w t h r a t e s are typically - 1 . 8 t i m e s
the average g r o w t h r a t e .

3. M O D E L

In o r d e r to estimate the fraction of photolysis
products t h a t c a n r e a c h the film by diffusion from
the beam-excited r e g i o n to the substrate, the q u a n -
tum yields for formation of the various photolysis
products must be estimated and the gas p h a s e ki-
netics of the individual products must be consid-
ered. The fraction of each photofragment that in-
corporates into the film is represented schematically
in Fig. 1. The n u m b e r of each photoproduct is g i v e n
by the p r o d u c t of the q u a n t u m y i e l d for the species,
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~b, and the n u m b e r of excited Si3H6 (Si2H6*), N. The
fraction of the photoproduct w h i c h diffuses t o w a r d
the substrate and survives gas p h a s e reaction is
represented by the factor f. Of the photoproducts that
s t r i k e the substrate surface a fraction fl is physi-
sorbed and a fraction (1-fl) is reflected back into the
bulk of the gas. Once physisorbed on to the sub-
s t r a t e surface, the presursor c a n m i g r a t e a l o n g the
substrate surface and Si c a n be removed from the
surface if the precursor desorbs from the surface, or
if the precursor reacts heterogeneously to form mol-
ecules w h i c h desorb from the surface (T). Solid Si is
deposited if the precursor chemisorbs (S) into the
film.

The dissociative q u a n t u m y i e l d in Si2H6 photo-
l y s i s a t 193 nm has been measured to be 0.7 -+ 0.1,
a l t h o u g h the y i e l d for loss of Si3H6 c a n increase to
- 4 when the time between l a s e r pulses is less than
the gas residence time in the l a s e r beam volume.TM

The additional 30% of the Si2H6* is t h o u g h t to de-
c a y radiatively or be stabilized collisionally. The in-
creased y i e l d a t high l a s e r repetition r a t e s is accom-
p a n i e d by b r o a d infrared emissions and is
presumably due to the o n s e t of gas-phase nucle-
a t i o n i n i t i a t e d by secondary photolysis of long-lived
photoproducts or a b u i l d u p of u n s a t u r a t e d silicon
hydrides. ,9 Gas p h a s e nucleation effects c a n explain
observations of amorphous Si:H powder formation
a t high l a s e r repetition rates.2° However, it is un-
l i k e l y that significant gas p h a s e nucleation is oc-
c u r r i n g when epitaxial films are produced in our re-
actor because it w o u l d interfere with epitaxial
growth.

Denoting the deposition y i e l d by a , the following
expression c a n be w r i t t e n involving the q u a n t u m
yields, ~, the fraction s u r v i v i n g diffusion to the sub-
strate, f, and the t o t a l sticking probability, S, of each
photofragment "i":

1
a = ~7~ a i ~ S i ~ i , (1)

w h e r e a i is the n u m b e r of Si a t o m s produced in the
photolysis step t h a t are contained in the photofrag-
ment of interest, and ~i~bi = 0.7.

The n u m b e r of Si2H6 molecules directly u n d e r the
substrate t h a t absorb a p h o t o n c a n be estimated by
u s i n g the photoabsorption cross-section of Si2H6 a t
193 nm, ~r = (3.4 -+ 0.3) × ] 0 -18 cm2,TM the Si3H6
concentration, n, and the path l e n g t h of the beam
inside the chamber. The differential equation de-
scribing the change of l a s e r beam intensity, I ( z ) , as
a function of propagation distance, z, is

- d I ( z ) = ~rnI(z) d z . (2)

The Si2H6 concentration, n, ranges from 1.6 x 10'4
to 1.3 × 10'~ cm-3 for the Si2H6 p a r t i a l pressures
between 5 and 40 m T o r r used in this w o r k . With
the chamber geometry s h o w n in Fig. 2, Eq. 2 is in-
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Fig. 2 -- Schematic of the photo-chemicalvapor deposition sys-
tem showing relevant chamberdimensions.

t e g r a t e d to give the i n t e n s i t y absorbed by the Si2H~
molecules in the beam and u n d e r the substrate.

I,~ = Ie-"~(1 - e - ' ~ n d ) , (3)

w h e r e L and d are as s h o w n in Fig. 2, and I is the
measured l a s e r i n t e n s i t y in J / c m2. p u l s e that en-
ters the chamber t h r o u g h the l a s e r i n l e t window.
The n u m b e r of p h o t o n s absorbed per pulse, N, is I a
divided by the p h o t o n energy, hv, and multiplied by
the beam cross sectional a rea , WH. Thus,
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Fig. 3 -- Average growth rate vs substrate temperature, T. The
total pressure was 600 mTorr and the He flow rate was 1600
sccm.

I
N = ~ WHe-~nL(1 - e-~nd), (4)

h p

w h e r e W is the beam w i d t h , and H is the beam
h e i g h t . U n d e r optically thin absorption conditions,
w h i c hoccur for Si2I-I~ partial pressures of ~35 mTorr,
Eq. 4 reduces to

N = Io 'nV /hv , (5)

w h e r e V is the volume of the beam u n d e r the sub-
strate, w h i c h will be referred to as the "active vol-
ume." The n u m b e r , N, is also the n u m b e r of excited
Si2H6 molecules, Si2H6*, i n the active volume.

The deposition y i e l d c a n be measured by d i v i d i n g
the n u m b e r of Si a t o m s incorporated into the film
by 2N. In t e r m s of the average g r o w t h r a t e , (G), the
expression for the deposition yield is g i v e n by Eq.
6,

o~= ((G>Ap)/(2N~), (6)

w h e r e A is the measured film area , p is the atomic
n u m b e r d e n s i t y of solid Si, and ~ is the l a s e r rep-
e t i t i o n r a t e .

By combining the two expressions for a (Eqs. 1
and 6), a g r o w t h kinetic model c a n be constructed
to give a n expression for the average g r o w t h r a t e ,
(G>,

IDo'n_... V ~ a ~ S i ~ i ,
(G) = A p h v (7)

w h e r e we have used Eq. 5 to w r i t e (G) as a function
of the process parameters. This model describes the
average g r o w t h rate expected for laser-controlled
deposition. The exact form of Eq. 7 depends on the
gas p h a s e reaction of the d o m i n a n t g r o w t h precur-
sor t h r o u g h the factor f, and the temperature de-

pendence of the average g r o w t h rate is expressed
t h r o u g h the factor S. As described in the following
section, the g r o w t h rate is not a s t r o n g function of
the substrate temperature for temperatures below
- 3 5 0 ° C. T h u s , for low substrate temperatures, a
simple expression involving the process parameters
c a n be used to predict the average g r o w t h rate for
films deposited u s i n g ArF excimer l a s e r photolysis
of SizH6. U s i n g Eq. 1, the average g r o w t h rate is
simply,

I ~o-n V
(G} = ~ 2a , (8)

A p h v

w h e r e a is the deposition yield, w h i c h c a n be de-
t e r m i n e d by u s i n g Eq. 6 and measurements of the
average g r o w t h r a t e .

4. E X P E R I M E N T A L R E S U L T S

The effects of substrate temperture, Si2H6 p a r t i a l
pressure, and l a s e r intensity on the average g r o w t h
rate have been characterized. From the results shown
in Fig. 3, it is a p p a r e n t t h a t in the temperature re-
gime w h e r e g r o w t h is laser-controlled, i.e. less than
- 3 5 0 ° C, g r o w t h r a t e s are not a s t r o n g function of
substrate temperature. Above 350° C, g r o w t h r a t e s
are significantly increased due to pyrolytic decom-
position of Si2H6. Included in Fig. 3 are t h r e e ex-
periments performed w i t h o u t the laser, w h i c h ver-
ify that Si2H6 pyrolysis becomes appreciable above
350 ° C. Amorphous films are produced when pyro-
l y t i c g r o w t h b e g i n s to dominate, presumably due to
insufficient a d a t o m mobility and the loss of H pas-
sivation. At temperatures below 250° C, the breakup
of SixHy species on the Surface may be incomplete,
l e a d i n g once a g a i n to amorphous films.13

The expression in Eq. 8 indicates t h a t the aver-
age g r o w t h rate should increase linearly with Si2H6
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Fig. 4 - - Average growth rate versus Si2H6 partial pressure, p.
The total pressure was 600 mTorr and the He flow rate was 1600
seem.

concentration and laser intensity, as observed in Figs.
4 and 5, respectively. As the Si2H6 p a r t i a l pressure
is increased above ~ 3 5 mTorr, the g r o w t h rate will
b e g i n to e x h i b i t a sublinear dependence on Si2H6
concentration since optically thin absorption con-
d i t i o n s will no l o n g e r be in effect and the n u m b e r
of SizH6* molecules will be given by Eq. 4. The value
of 35 m T o r r is the p o i n t w h e r e the term e x p ( - o n L )
in Eq. 4 is reduced to 4 0 . 9 . A f u r t h e r increase in
Si2H6 concentration results in significant absorp-
tion of the l a s e r beam in the r e g i o n between the
l a s e r i n l e t window and the substrate. At this point,
the g r o w t h rate is no l o n g e r a l i n e a r function of the
Si2I-I6 partial pressure. The fact that the growth rate
increases linearly with increasing laser intensity and
Si2H6 p a r t i a l pressure indicates t h a t the deposition
y i e l d depends directly on the generation of photo-
lysis products. The results s h o w n in Fig. 4 indicate
t h a t epitaxy is lost a t Si2H6 p a r t i a l pressures of 30
m T o r r and laser intensities of 2.6 m J / c m2- pulse,
w h i c h is expected to produce a Si2H6* concentration
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Fig. 5 -- Average growth rate vs laser intensity, I. The total
pressure was 600 mTorr and the He flow rate was 1600 sccm.

of ~ I n / h v - 8 × 1012 cm-3. From the results s h o w n
in Fig. 5, polycrystalline films are deposited when
the laser intensity is increased to 15 m J / c m2. pulse.
At a Si2H6 p a r t i a l pressure of 5.4 m T o r r used for
t h e s e experiments, the concentration of Si2Hs* is
expected to be - 9 × 1012 cm-3. It is c lear t h a t a
t r a n s i t i o n from single crystal to polycrystalline
g r o w t h occurs when the product of l a s e r i n t e n s i t y
and Si2H6 p a r t i a l pressure results in photofragrnent
concentrations o f - 1 0 1 3 cm -3. The effect could be due
to excessive precursor fluxes or gas p h a s e nucle-
a t i o n processes. As the deposition rate becomes
comparable to the H2 desorption r a t e , H desorption
may not be r a p i d e n o u g h to allow SixHy complexes
to decompose into species w h i c h c a n form a n epi-
t a x i a l film. 13 A h i g h e r photofragment concentration
may also increase the chance for homogeneous re-
action between the photofragments, possibly lead-
ing to SixHy particulates b e i n g formed in the gas
phase. A significant flux of such particulates onto
the g r o w i n g film w o u l d induce polycrystalline or
amorphous growth.

U s i n g the data presented in Figs. 3 - 6 and Eq. 6,
it is f o u n d that a , the y i e l d for solid Si film for-
mation, is 0.20 -+ 0.04, where the uncertainty in this
v a l u e is one s t a n d a r d deviation. In all of the ex-
periments of Figs. 3 - 6 , the top of the laser beam
was w i t h i n - 1 mm of the substrate surface. It is
expected that m o v i n g the l a s e r beam f u r t h e r from
the substrate will r e s u l t in lower deposition yields,
and f u t u r e experiments are p l a n n e d to address this
issue.

5. D I S C U S S I O N

The photochemistry of Si2H6 is q u i t e complex, and
the predominant photoproducts of Si2H6 photolysis
responsible for sustaining low temperature deposi-
tion are yet to be conclusively determined. It has
been proposed that a m a j o r decomposition p a t h w a y
is the formation of SiH3SiH and H2, a l t h o u g h this
has yet to be verified spectroscopically.13 The 193
nm photons from a n ArF excimer l a s e r contain
e n o u g h e n e r g y to b r e a k several combinations of Si-
Si and Si-H b o n d s in Si2Hs, and it is estimated t h a t
t h e r e are a t l e a s t t w e n t y energetically possible de-
composition pathways for single p h o t o n Si2H6 pho-
todissociation involving a t l e a s t fourteen distinct
photoproductsY The only stable molecules pro-
duced are S i l l , and H2, w h i l e the bulk of the pho-
toproducts are t h o u g h t to be from two g r o u p s of sil-
icon hydride species: monoradicals such as Sill3,
HaSiSiH2, and H2SiSiH, a n d / o r the closed-shell dis-
ilicon species, H2SiSiH2 and Si(H2)Si.TM These t r a n -
s i e n t species are reasonably kinetically stable and
reac t much slower with Si2H6 than do members of
a t h i r d g r o u p containing the silylenes and silyli-
d y n e s Sill2, SiH3SiH, S i l l and SiSiH2, w h i c h are be-
lieved to make up less than 20% of the photolysis
products. TM The molecules responsible for Si depo-
s i t i o n are most l i k e l y produced from the i n i t i a l pho-
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tolysis steps shown in Table I. O t h e r products which
c a n be produced include Sill and atomic Si, but these
are believed to arise m a i n l y from multi-photon pro-
cesses w h i c h are u n l i k e l y to be i m p o r t a n t for the
low l a s e r intensities used in our experiments. 22 The
identification of S i l l 4 and Sill3 as p r i m a r y photo-
l y s i s products has been confirmed by u s i n g time-re-
solved infrared diode l a s e r absorption spectroscopy
and t u n a b l e diode l a s e r flash k i n e t i c spectroscopy,
respectively, and the q u a n t u m yields for production
of t h e s e molecules have been measured to be 0.1 -+
0.03 for S i l l 4 and 0.05 -+ 0.05 for Sill3.1s'23 The rad-
ical S i l l 2 is also formed in ArF l a s e r Si2H6 photo-
lysis.24 A l t h o u g h the y i e l d for this radical has yet
to be measured directly, it may be - 0 . 1 since S i l l 2
is formed in conjunction with S i l l 4 in several of the
Si2H6* decomposition pathways. The q u a n t u m yields
for the remaining photolysis products are not known.
Silylsilylene, SiH3SiH, c a n form the stable, closed-
shell isomer H2SiSiH2 by a 1,2 h y d r o g e n shift.2s The
radical H2SiSi c a n form the lower energy isomer,
Si(H2)Si, and the monoradical H3SiSiH2 is t h o u g h t
to be relatively stable.24 U s i n g fluorescence emis-
sion spectroscopy, researchers have consistently
identified silylidyne radicals, S i l l , as a photo-prod-
uct of ArF excimer l a s e r dissociation of Si2H6. The
fluorescence intensity of S i l l * scales as the s q u a r e
of laser intensity, indicating that its presence is likely
due to a cascade photodissociation process where the
p r i m a r y photefragments Sill322 and SiH3SiH13 ab-
sorb a p h o t o n d u r i n g the same l a s e r pulse. Evidence
also exists for the creation of atomic Si by a three-
step cascade absorption mechanism.22 The S i l l *
concentration has been f o u n d to have l i t t l e effect on
film g r o w t h rates,~3 indicating t h a t this species is
produced in concentrations much lower than the
species responsible for the bulk of the film growth.
This is a reasonable assumption to make for o u r
processing conditions w h e r e typical beam intensi-
ties excite only ~1% of the source gas in the beam.
We therefore neglect multi-photon processes in this
paper.

N e x t , the gas p h a s e chemical reactions of the var-
ious photofragments are discussed. Because of the

pulsed n a t u r e of the excitation, the time evolution
of each photofragment concentration will approxi-
m a t e l y follow a differential equation of the form

Oni ni
. . . . + k~nni + 2kin2 + ~ kijnjni (9)

Ot T j

w h e r e ni is the photofragment concentration gen-
e r a t e d in the active volume, v is the average time
r e q u i r e d to diffuse to the chamber walls, k~ is the
rate constant for the removal of the photofragment
by Si2Hs, ki is the rate constant for the recombi-
n a t i o n reaction between photofragments, and kij is
the rate c o n s t a n t for the reaction of the photofrag-
ment with o t h e r photofragments of concentration nj.
It may be n o t e d t h a t Eq. 9 is only expected to give
a f i r s t o r d e r estimate of the effects of diffusion on
the photofragment concentration.

The average t i m e , t, required for the photofrag-
m e n t s to diffuse a distance x to the substrate is x2/
2D,2° w h e r e D is the diffusion constant. If we ne-
glect the time dependence of nj on the r i g h t hand
side of Eq. 9 and replace nj with a n average value,
(nj), the general solution to Eq. 9 is g i v e n by Eq. 10,

ni(t) =
C ni(0)exp(- tC) (10)

C + 2kini(0)[1 - exp(-tC)]'

w h e r e C = k~n + Z k i j ( n j ) + 1/v
J

The f i n a l form of Eq. 10 depends on the photofrag-
ment b e i n g considered, w h i c h determines what gas
p h a s e reaction mechanism dominates the loss pro-
cess . When considering the SiH~ radical concentra-
t i o n , i t is expected t h a t the d o m i n a n t gas p h a s e re-
action is with Si2H6, w h i c hproceeds with a n absolute
rate constant of kio -~ 1.5 x 10 -'° cm3/molecules's
in a He a m b i e n t a t t o t a l pressures near 1 T o r r .26 In
this case , Eq. 10 w o u l d reduce to ni(O)exp(-tk~n).
The Sill3 concentration is likely to be influenced most
by the recombination reaction, w h i c h proceeds with
a rate constant of ki - 10 -1° cm3/molecule's,~'2v and

Table I. T h e Quantum Yields , ~b, the Fractions of Photoproducts Surviving Diffusion, f, and the S t i c k i n g
Coefficients, S , for Various Dissoc ia t ion Steps in 193 n m S i 2 I - I ephotolys is . Values of f are Est imated Using
Eq. 11 for a Si2He Partial Pressure of 10 mTorr and Di f fus ion T i m e s 40 ps and 3 ms. References u s e d for

the values of ~b and S are Given i n Brackets Next to Each Value .1 Assumed Values for ~b.2 Est imated Values
for S B a s e d on a Depos i t ion Yie ld of 0.2.

Dissociation Step ¢ Molecule f(t = 40 ~ts) f(t = 3 ms) S
Si21-I6 + hv--~ Sill2
+ Sill4 0.I [18] Sill2 0.07 0.00 0.7 [30]
Si2H6 + hz,
SiH3SiH + H2 0.41 H2SiSiH2 0.50 0.40 ->0.62
Si2H6 + hv
2Sill3 0.05 [23] Sill3 0.50 0.46 0.1 [29]
Si2H6 + hi,
H2SiSi + 2H2 0.11 H2SiSi 0.48 0.03 >--0.62
Si2H6 + hv --*
H3SiSiH2 + H 0.051 H3SiSiH2 0.50 0.46 0.1 [29]
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the 2k~n~(0) term in Eq. 10 w o u l d dominate the
expression for the Sill3 concentration. For H~SiSiH~,
the removal of this species in the gas p h a s e is slow
and may d e p e n d on b o t h the l a s e r beam i n t e n s i t y
and the Si2He p a r t i a l pressure.24 Therefore, it ap-
p e a r s t h a t the d o m i n a n t gas p h a s e reaction is with
photolysis products. The radical H2SiSi is expected
to r e a c t with Si2H~ isbecause it is a silylene, and
H3SiSiH2 is expected to behave similarly to Sill3
since both of t h e s e are monoradicals.

The fraction of each photofragment, "i", w h i c h
survives reaction as it diffuses to the substrate c a n
therefore be estimated by

f i = (1/2)[ni( t ) /ni(O)] , (11)

w h e r e the factor of one-half indicates that only half
of the photofragments are expected to diffuse to-
ward the substrate. A more rigorous estimate of f~
w o u l d require the diffusion equation to be solved with
the appropriate b o u n d a r y conditions. The estimated
values of f / f o r the various g r o w t h precursors and
t h e i r t o t a l sticking probabilities are l i s t e d in Table
I. It is a p p a r e n t from the v a l u e s of ~b(SiH2) and
f(SiH2) t h a t the Sill2 radical contributes l i t t l e solid
Si to the films. Also, the values of ~SiH3) and S(SiH3)
indicate that the radical S i l l 3 is not the d o m i n a n t
g r o w t h precursor. Silane, Sill4, does not form s o l i d
films a t the substrate temperatures used in this work,
and hence c a n be r u l e d out as a possible g r o w t h pre-
cursor. L i t t l e is k n o w n a b o u t the role of H2SiSiH2,
H2SiSi, or H3SiSiH2 in CVD conditions used in our
w o r k . In calculating the values of f(H2SiSiH2), it is
assumed that the d o m i n a n t gas p h a s e loss mecha-
nism for H2SiSiH2 is recombination and t h a t the re-
action proceeds with a rate constant of - 3 × 10 11
cm3/molecule.s. For the values of f(H2SiSi), it is as-
s u m e d t h a t H2SiSi reacts with Si2H6 with a rate
constant of - 3 × 1 0 -12 cm3/molecule.s. If H2SiSi
were to reac t gas kinetically with Si2H6 to form sta-
ble products such as Si3H8 and Si, it w o u l d be ex-
pected that l i t t l e Si deposition w o u l d r e s u l t from
Si2I-I6 dissociation into H2SiSi. However, H2SiSi could
reac t with Si2H6 to form H2SiSiH2 and H3SiSiH, and
t h e s e radicals could r e s u l t in Si deposition. The gas
p h a s e kinetics of H2SiSi are f u r t h e r complicated by
the fac t t h a t this species c a n form the l o w e r energy,
bridged isomer, Si(H2)Si. The a m o u n t of H2SiSi t h a t
reacts with Si2I-I6 may therefore depend on how much
of the H2SiSi forms Si(H2)Si before reacting with
Si2H6. The molecule H2SiSiHz is a good candidate
for b e i n g a d o m i n a n t g r o w t h precursor since it is
believed to be kinetically stable and c a n potentially
be formed with high y i e l d from Si2H6* photolysis.
Additionally, H2SiSiH2 could easily contribute solid
Si to the film if it decomposes into Sill2 on, or very
n e a r , the substrate surface. Alternatively, if the 7r
bond of this precursor is sufficiently weak to be re-
active with the Si surface, i t seems plausible t h a t
i t could i n s e r t into the lattice in a m a n n e r s i m i l a r
to the insertion of Sill2,2s but r e q u i r i n g two H2 de-
sorption events i n s t e a d of one. It is expected that
the radical H2SiSi has a l a r g e sticking coefficient

since it is classified as a silylene and s h o u l d behave
similarly to Sill2. The monoradical H~SiSiH2 s h o u l d
have a low surface loss probability s i m i l a r to the
monoradical S i H J 9 but if thermally dissociated into
S i l l 3 and S i l l 2 on the surface, could lead to Si de-
position. The assumed low surface loss probability,
however, w o u l d preclude the possibility of H3SiSiH2
b e i n g the d o m i n a n t g r o w t h precursor. U s i n g the
k n o w n q u a n t u m yields of ~(SiH2) - 0 . 1 and ¢(SiH3)
- 0 . 0 5 leaves - 0 . 5 5 of the Si2H6* molecules to dis-
sociate into o t h e r species. If we assume that the bulk
of the deposited Si is transported to the film by
H2SiSiH2 and H2SiSi, then the sticking coefficient
t h a t we assign to t h e s e precursors must be ->0.6 in
o r d e r to account for the measured deposition y i e l d
of 0.20 -+ 0.04.

6. C O N C L U S I O N

Homoepitaxial Si f i l m s c a n be controllably de-
posited a t temperatures from 2 5 0 - 3 5 0 ° C if l a s e r
i n t e n s i t y and Si2H6 p a r t i a l pressure conditions are
such t h a t the i n i t i a l photofragment concentration is
less than - 1 0 1 3 c m -3. G r o w t h r a t e s vary linearly
with l a s e r intensity and Si2H6 p a r t i a l pressure over
a r a n g e of 1 - 1 5 mJ/cm2.pulse and 5 - 4 0 mTorr, re -
spectively, indicating t h a t the deposition y i e l d de-
p e n d s directly on the generation of photolysis prod-
ucts. At temperatures g r e a t e r t h a n - 4 0 0 ° C ,
deposition r a t e s are increased due to Si2H6 pyroly-
sis. The deposition y i e l d of Si a t o m s from ArF ex-
cimer l a s e r photolysis of Si2Hs has been measured
to be 0.20 -+ 0.04, indicating t h a t in o r d e r for film
g r o w t h to r e s u l t solely from the p r i m a r y products
in 193 nm Si2H6 photolysis, a sticking coefficient ->0.6
must be assigned to the d o m i n a n t g r o w t h precursor.
A g r o w t h k i n e t i c model has been developed b a s e d
on the most l i k e l y d o m i n a n t g r o w t h precursors re -
sponsible for Si deposition u n d e r laser-controlled
g r o w t h conditions. The precursors responsible for the
bulk of the deposited Si must be relatively stable
with respect to gas p h a s e reactions and are most
l i k e l y H2SiSiH2, Si(H2)Si, and possibly some s m a l l
fraction of H3SiSiH2.
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