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1. Introduction

Resonating valence bond (RVB) states occupy a special position
among quantum states and phases in condensed matter physics.
They became popular and important, as a seat for high
temperature superconductivity[1, 2] in cuprates. Subsequently,
their novel quantum properties, such as quantum number
fractionization, topological order and a deep connection to
gauge theories, have also received a well deserving attention in
the past two decades. In this article, we give a brief history of
RVB theory, focussing on the insulating states, followed by a
short introduction to RVB states. Then we provide some
examples for RVB states from real systems in 2 and 3D, based on
our own results and new understanding that have come in the
last few years: (i) boron doped diamond, (ii) NaxCoO2:yH2O,
(iii) quasi 2D organic conductors and (iv) a 2D graphene sheet.

2. A brief history

The idea of resonating valence bond (RVB) arose in the
description of quantum mechanical resonance of covalent bonds
in unsaturated p- p bonded organic molecules such as
benzene. It was soon generalised to 2D graphite and metals by
Pauling[3]. The overwhelming phenomenological success of
semi empirical results and reasonings of Pauling, apparently

even questioned the need for notions such as Fermi surface in
describing a metal. It was at this point, in 1973, Anderson [4]
became enthusiastic about the idea of RVB in a Mott insulator,
while he remained silent about metals. He pointed out that the

idea of RVB could be really relevant to family of spin-1
2  Mott

insulators, where an expected long range antiferromagnetic order
was often absent. Anderson attributed this to enhancement of
quantum fluctuations created by frustrated spin interactions
and lower dimensionality. He elaborated this by an analysis of a
2D triangular lattice of spin-half Heisenberg antiferromagnet.
His variational study showed that this system could very well
have a quantum spin liquid ground state, a short range RVB
state.

Very few in condensed matter community paid attention to
this proposal; exceptions were Fazekas[5], Klein, Shastry,
Sutherland, Caspers, some Japanese experimental groups
(Hirakawa, Yamada and possibly others) and to some extent
myself. I was familiar with RVB ideas, partly through Fazekas in
the early 80's, at ICTP, Trieste, a wonderful meeting ground of
so called third and first world. (A first rate condensed matter
theory activity, that continues now, was being nurtured by the
efforts of Stig Lundquist, Norman March, Paul Butcher, Eli
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Burstein, Abdus Salam and faculty like Mario Tosi, Erio Tosatti,
Michele Parrinello, Roberto Car and others. People like Phil
Anderson, Bob Schrieffer took great interest in ICTP activities
and frequented the center. My association with Anderson was
made possible by ICTP and Erio Tosatti).

In the early 1986, just before Bednorz-Muller's discovery
was published, I was intrigued by the question of phase relations
among valence bond configurations in a short range RVB wave
function, and what it really meant in a magnetic insulator. When
Anderson responded[2] to Bednorz-Muller's discovery of high
Tc superconductivity, with his RVB proposal, I was well prepared
and was quick to appreciate it. That is how I joined Anderson in
his second RVB journey, as a partner. A 20 year long journey is
still continuing. Anderson's Science paper[2] and our
collaborative works[6-8], interestingly, done during the very first
year of this journey (1987-88), continue to light the path.

On another front, a non-trivial solution to 1D anti-
ferromagnetic Heisenberg chain by Bethe[9] was drawing more
and more attention; its mathematics was formidable and revealed
surprises such as, absence of long range antiferromagnetic order,
even at T = 0 and presence of gapless topological (domain wall)
spin half excitations[10], which was later named[8] spinon. It is
in this background, before Anderson proposed his RVB theory
in 1973, Majumdar and Ghosh discovered a model[11] in 1969, a
slight variant of standard Heisenberg chain, which exhibited a
strikingly simple many body ground state - a valence bond solid.
Valence bond resonance was completely absent.

Even these developments did not suggest an RVB
description of the complicated Bethe ansatz ground state.
Shastry, Sutherland[12], Klein[13] and others went for higher
dimensional generalisation of Majumdar-Ghosh model and
valence bond solid phases. Interestingly, recent study[14] of
Klein models have given a rich possibility of quantum liquid of
valence bonds, at some special lattices and for some choice of
parameters. The fertile modern materials science has offered a
compound [15], SrCu2(BO3)2, where the Shastry-Sutherland
model is indeed realized.

The idea of resonating valence bond was in the hands of
quantum chemists for a long time, mostly studying the p- p
bonded organic systems. The richness of this novel quantum
phase was yet to be unravelled. According to Anderson, when
superconductivity in oxides such as LiTi2O4 and BaBi1 – xPbxO4
were discovered[16] thoughts of RVB crossed his subconscious
mind. Like many cases in physics, a key experimental result was
necessary to open the doors and revive and flourish an old and
fertile idea such as resonating valence bond. Discovery of high
Tc superconductivity in an unexpected oxide La–xBaxCuO4 by
Bednorz and Muller catalysed a revolution in the RVB theory
front. As mentioned earlier, it was Anderson, who was, alert and
sensitive to the new oxide and the challenge from experiments.

He proposed the RVB mechanism of superconductivity. His
collaborators gave flesh to his proposal and offered new insights.
Two key many body approaches were developed: (i) RVB mean
field theory[6] (BZA theory) and (ii) a gauge theory [7, 17] (BA
theory), to go beyond RVB mean fleld theory. The currently
popular experimental phase diagram for cuprates was part of the
RVB theory conjecture[8], before the experimental phase diagram
emerged.

The RVB character of the ground state of 1D Heisenberg
Chain (Bethe Ansatz wave function) was well recognised in the
BZA paper. A new impetus was given by Haldane and Shastry,
who showed that the Gutzwiller projected BZA mean field
solution in 1D is indeed the ground state of a non-trivial 1D
Heisenberg model, which has become the celebrated Haldane-
Shastry model[18]. The BZA and BA theory showed a deep
connection between RVB states and gauge theories; quantum
number fractionization came out as a rather natural possibility.
A gauge structure and dynamically generated gauge fields in a
quantum spin problem was rather unexpected and opened a
new field of activity. Using these insights a new mean field
solution by Affleck and Marston[19] and a chiral spin liquid
wave function by Kalmayer and Laughlin[20] appeared in the
scene. They contained a nonzero ground state condensates of
the BA gauge fields. Gauge field condensation, flux tube
attachment and a consequent statistics transmutation eventually
lead to Laughlin’s proposal[21] of anyon superconductivity in
2 dimensions. Wen, Wilczek and Zee[22] made a key
identification of the ‘magnetic flux’ of RVB gauge field with spin

chirality, S S Si j k× ´( ) . Large N theories[23] that followed

Affleck-Marston’s work studied valence bond solid phases.

Kotliar’s d-wave RVB meanfield solution [24], based on slave
boson approach, adapted to t – J model by Zou and
Anderson[25], explained the d-wave symmetry of cuprate
superconductors successfully; Fukuyama[26] school and others
did extensive study on this front.

Kivelson, Sethna and Rokhsar [27] used short range RVB
wave function to study cuprates and introduced the notion of
‘holon’, a topological excitation for charge. Other authors,
including Sutherland[28] and Reed and Chakraborty[29] pursued
the study of short range RVB states and the nature of spinon
and holon excitations. Quantum dimer models introduced by
Rokhsar and Kivelson [30], to understand short range RVB
states have brought out novel topological ground state
degeneracies, and some non-trivial gapless spin liquid phases;
this has been developed further by Moessnerasedand Sondhi
Mesmer[31], and others. The idea of topological degeneracy,
that also unifies RVB states with fractional quantum Hall states,
has been elevated to an interesting notion of ‘quantum order’
by Wen[32] and several insights have been offered.
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Statistics other than fermion and boson were suggested to
be possible in a 2D world by Leinaas, Myrlheim, Wilczek and
Zee[33]. RVB phases and quantum Hall systems became play
grounds for particles with non standard statistics. Dzyaloshinski,
Polyakov and Wiegman [34], suggested interesting statistics
transmutation properties for spinons, through a topological Hopf

term, for the 2D spin-12  Heisenberg antiferromagnet. Some

attempts[35, 36] to organize the sum of single spin Berry phase
terms did not lead to the anticipated Hopf term. However, in a
recent work[37] the present author has shown that a proper
summation of the Berry phase terms leads effectively to a
statistics transmutation. The Berry phase does get organized
and behave like a nontrivial topological term; however, it does
not have a local continuum Hopf like analytic form.

Affleck, Zou, Hsu and Anderson [38] and also Dagotto and
Fradkin Moreo [39] found a SU(2) description of the BA theory.
However, it was realized soon that owing to the limited
dimensionality of Hilbert space of our spin system, only a
subgroup, the center Z2 of the SU(2) group is really necessary
to describe the thermodynamic phases and dynamics, rather
than the full SU(2) or U(1) group. This was nicely shown by an
identity due to Marston[40], which showed how the dynamically
generated RVB flux gets restricted to integer or half integer flux
quanta rather than an arbitrary value. That is at the level of a
classical action, SU(2) or U(1) fields exists formally. However,
the quantum dynamics chooses only a limited set of the field
degrees of freedom. Marston[40] incorporated the quantum
kinematic restriction through a Chern-Simons term in the action,
by hand. What is important is that within the subspace of zero
and half flux, the Chern-Simons term retains the PT symmetry.
This was soon taken further and a Z2 gauge theory of spin
system was formulated by Tosatti, Yu Lu and the present
author[41]. In another work, using a similar identity due to Wen,
Wilczek and Zee[22], the present author[42] reduced the famous
triangular lattice problem to a Z2 gauge theory. Zou in an
insightful paper[43] discussed how Chern Simon terms could
arise as a quantum anomaly in an SU(2) gauge theory for spin-
1
2 Heisenberg antiferromagnet in 2D. Wen[44] and Read and
Sachdev[45] also developed the Z2 gauge theory ideas and
connection to topological degeneracies etc.

Systematic way of going beyond BZA theory for insulating
and conducting spin systems using Gutzwiller approximation
has become very useful for quantitative progress, in the hands
of Gros, Zhang, Rice[46, 47], Ogata, Shiba, and recently
Paramekanti, Randeria and Trivedi, [48], Fukhshima [49] and
others. The BA gauge theory, on the other hand has been very
useful in giving new qualitative insights; its full potential as a
quantitative tool has not been realized, in spite of notable
efforts[50] by Ioffe, Larkin, Nakamura, Matsui, Patrick Lee,
Nagaosa, Wen, Dung-Hai Lee, Ng and recently Tesanovic, Franz
and others.

Hsu[51], showed that the antiferromagnetic order existing in
the ground state of 2D Heisenberg model on the square lattice
can be viewed as a spinon density wave in an underlying
quantum spin liquid. A ‘bosonic’ variational RVB wave function
(similar to Gutzwiller projection of Arovas and Auerbach’s
Schwinger boson[52] type wave function) introduced by Liang,
Doucot and Anderson[53] exhibited a spontaneous
antiferromagnetic order in the ground state for a range of
variational parameter. Outside this range, the spin correlation
function decayed exponentially. However, the energy
expectation value changed very little with the variational
parameter, even though sub lattice magnetisation changed
substantially from zero to a large value. This analysis
substantiated the fact that long range antiferromagnetic order
is a minor modification in an otherwise robust spin liquid state.
Some of these ideas have been summarised by a principle of
valence bond amplitude maximisation (VBAM)[54] by the
present author.

In the recent past, quantum number fractionization and
spinon deconfinement has been studied by Senthil et al [55]. A
Z2 gauge symmetry has been very prominent in the discussion.
Possibilities of classifying RVB states into Z2, U(1) and non-
abelian spin liquids have been discussed.

A recent work by the present author shows[37] a surprising
result that quantum number fractionization occurs, above a finite
energy gap, even in the ordered Heisenberg antiferromagnet in
2D ! That is, in addition to gapless spin wave excitations we
have deconfined, freely propagating spinons above a finite
energy gap. I showed that a (scale free) finite energy quantum
skyrmions is made of two unbound ‘chiral spinons’. Chiral
spinons carry non vanishing condensed RVB magnetic flux or

chiral density S S Si j k× ´( )  distributed specially in a broad
fashion. This result confirms and sharpens an early conjectured
connection of meron with spinon by Anderson et al [56] and
John and Berciu [57]. It will be interesting to make connection of
our formally exact result with recent works of Ho et al [58] and
others [59] on spinons.

An elegant construction by Affleck, Kennedy, Lieb and
Tasaki[61] has given models with valence bond like ground states
with higher spins and higher dimensions. In the process it has
given a new meaning to the Haldane gap phenomenon.

On numerical front, RVB wave functions have been analysed
by several authors for frustrated and nonfrustrated spin systems
in great detail. Highly frustrated spin systems such as Kagome
lattice has given some surprises[62].

RVB excitations, because of their topological and ‘abelian’
or ‘non-abelian anyon’ character, arising from topological
degeneracy in the ground state, could have a special immunity
against decoherence. They also have fascinating quantum
entanglement and braiding properties. Consequently, they have
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been considered as serious q-bit candidates in quantum
computers by Kitaev [63] and others. RVB theory and fractional
quantized Hall effects have indirectly given a new impetus to
theoretical studies in quantum computers, with envisaged experi-
mental potential [64].

This is a brief history of RVB theory, without going to the
fascinating superconductivity or antiferromagnetism aspects.

3. RVB wave function, topological degeneracy and excitations

Above TN , thermal fluctuations destroy long range
antiferromagnetic order in quantum spin systems. At very high
temperature the thermal state is a structureless ‘classical’
paramagnetic phase. What is the state we reach, when we destroy
long range antiferromagnetic order, by frustrating it through
additional interactions, at T = 0 or kBT << J ? The ‘spin crystal’
quantum melts and we get a quantum spin liquid. In this quantum
spin liquid, the antiferromagnetic order decays in a power law or
exponential fashion. This phase, where spins are seemingly
disordered, have some special quantum coherence properties,
which is what makes it a resonating valence bond state. This
paramagnetic state has a special pair coherence among spins
and also topological degeneracy. The special pair coherence
has a natural and suggestive representation as a general RVB
state, written down first by Anderson[2]. It turns out that this
state has a rather natural representation, not in the standard S z

basis, but in terms of underlying electron operators c’s that
makeup a spin half moment:

RV B P bG ij ij
ij

N

; †f fº
F

H
G

I

K
Jå

2

0 , (1)

where, b c c c cij i j i j
† † † † † .º -A B B A

1

2
e j  P n nG i i iº Õ - A B1c h , is

the Gutzwiller projection, which ensures that the effective low
energy electron occupancy of any site in a Mott insulator is
one. Therefore, total number of electrons N in eq. (1) is the same

as the number sites. The pair function fij  characterises the RVB
state. The RVB wave function (eq. 1) is identical to, except for
the Gutzwiller projection, an N particle projected BCS wave

function, with fij  playing the role of a Cooper pair function.
This is what made Andersons proposal of a (Mott) insulating
RVB state becoming a superconductor, on moving away from
half filling (doping), so natural and appealing.

In a 2D square lattice, the standard short range RVB

corresponds to fij  non zero only for nearest neighbour sites

and a special relation between signs of f ’s between
neighbouring bonds, so as to satisfy Marshall sign convention.

In general, for various choices of fij , we get (i) the BZA state

with a pseudo fermi surface, (ii) Affleck-Marston p -flux state
with nodal excitations, (iii) gapful Kalmayer Laughlin’s chiral
spin liquid state, (iv) antiferromagnetically ordered state, (v) d,
d + id and s-wave superconducting state, (vi) ground state of
Haldane Shastry Hamiltonian in 1D, (vii) states with charge and
spin stripe correlations etc. The physically motivated Gutzwiller
projection does wonders - it enhances antiferromagnetic
correlations and even introduces strong chiral correlations, in
the process of reducing the double occupancy fluctuations.

Anderson’s RVB wave function and the corresponding
Hilbert space of states for strongly correlated electron systems
is as basic and similar to Laughlin wave function and the
corresponding Hilbert space of states for quantum Hall physics.
It is very different from effectively slater determinant type ‘Fermi
liquid Hilbert space’.

Kivelson and Rokhsar introduced and studied a quantum
dimer model on a square lattice, with a view to understand short
range RVB physics. This non-trivial model has given many
insights. For example, the idea of  topological degeneracy in the
ground state was manifest. If we consider a square lattice with
periodic boundary condition (torus of genus g) all dimer
coverings break into 4g distinct classes, such that they are super
selected with respect to local moves of the valence bonds. In
the RVB mean field theory the topological degeneracy appeared
as a (PT symmetric) half flux quanta of magnetiflux of RVB gauge
field, that can be thread through various holes in the torus of
genus g. In this sense, there is a close connection of this
topological degeneracy with corresponding one in fractional
quantised Hall states, giving the possibility of non-abelian
character to spinons, in some RVB states.

Figure 1. Schematic pictures of topological excitations, (i) spinon, (ii)
holon and (iii) a Z2 vortex (vison). The valence bonds in the background
should resonate in the readers mind.

vison (Z2 -vortex)

holon

spinon
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The valence bond character of the RVB wave function
suggests presence of certain type of topological excitations
(Figure 1) : (i) spinon: an unpaired spin in the back-ground of
resonating singlets and (ii) holon or doublon: an empty site or a
doubly occupied site in the background of resonating singlets
and (iii) Z2 vortices, carrying a p -flux, dubbed as ‘vison’ in
recent works[55].

A simple way to imagine a spinon is to freeze a singlet bond
and convert it into a triplet and localise one up spin at a given
site and move the other upspin to the boundary. What we get is
a localised spinon, an unpaired upspin in the background of
resonating singlets. For some RVB systems such an unpaired
spin may become freely propagating spinon excitation; ex-
amples are 1D Heisenberg chain, 2D chiral spin liquid, BZA
phase with a spinon pseudo fermi surface, Affleck-Marston
phase with nodal spinons etc. If this be the case we have
quantum number fractionization and spinon deconfinement. In
some cases two spinons may be bound and we may get a spin-
1 low energy excitation branch. In the case of short range RVB
system in 2D and 3D (without any chiral symmetry breaking) we
expect spinons to be confined; however the spin-1 branch is a
well defined excitation of the underlying quantum spin liquid.
The Z2 vortices are best understood as a `local defect' in the
Marshal sign convention, which carries a phase string. The
phase string excitation have been studied in detail by Weng
and collaborators[59]. Energetic considerations and some deep
issues related to confinement may force either a spinon or holon
to be bound to a Z2 excitation.

In the valence bond basis, creating a spinon at a site is a
complicated non local operation, as outlined. The nonlocal and
global rearrangement needed to create an isolated spinon or
holon make them topological excitations. BZA theory give a
simple and straightforward method to construct spinons and
holons. In this approach, it is done by a local operation of creating
in the mean field RVB state (that lives in an enlarged Hilbert
space) a particle-hole pair excitation followed by a Gutzwiller
projection:

z zs s s si i G i jRV B P c c mRV B† † †
¢ - ¢º , (2)

where mRV B bij ij ij

N

= å f †e j 2 0  is the unprojected RVB

mean field solution. Here, z si  is a spinon operator. We note
that the order of operation is important: Gutzwiller projection
should be done after the creation of particle-hole pair. We can
construct holon or doublon in a similar fashion.

Using the above construction, non-trivial excitations such
as the spinon of the Haldane Shastry model in 1D and the
Kalmayer-Laughlin model in 2D can be easily constructed.
Somen Bhattacharjee's pfaffian representation[60] of RVB wave
function may be useful in the study of RVB states; it remains to
be explored.

4. New examples of 2 and 3D RVB states

In what follows we will summarise our recent results for certain
non-cuprate systems, for which we have suggested RVB phases
as the suitable reference vacuum state. We will not go to details
of the theory, but will only outline the physics behind. The
systems are: (i) quasi 2D organic conductors (ii) boron doped
diamond, (iii) NaxCoO2:yH2O and (iv) a 2D graphene sheet.

Superconductivity in organic solids :

Superconductivity in organic molecular conductors is a well
developed field[65]. From a modest 1 K in Bechgard salt, the
superconducting Tc has increased to a value 13 K in ET salt
family. This is remarkable, considering the low carrier density, n
~ 1020 =cm 3 in organics. Various ideas including spin fluctuation
mechanism of superconductivity has been discussed to explain
superconductivity in 2D organics. In my opinion, they were
unsatisfactory. One generic property of this system is that after
taking care of crystallographic doubling of unit cell, it is well
described[66, 67] as half filled single band system; i.e., one
electron per Wannier orbital. Often these systems exhibit Mott
insulator to superconductivity transitions, either under external
pressure or chemical pressures.

What is the physics behind these Mott insulator to a
superconductor transition ? Firstly, it is a strong first order
transition. A large Mott gap (comparable to band width)
collapses to zero value. Long range coulomb interaction drives
the transition first order. This is missing in the standard Hubbard
model; consequently it predicts a continuous vanishing of the
Mott Hubbard gap, across the Mott-Hubbard transition. I
observed[68] that, in experiments, the optical conductivity

s w( )  retains the upper Hubbard band feature nearly intact

across the transition. The only change is the emergence of a

Figure 2. (a) Energy of a half filled band above and below the critical
pressure Pc, as a function of x N e N e Nd e= +- +( ) ( ) . Here Nd(e

–) = Ne(e+)
are the number of doubly occupied (e–) and number of empty sites (e+);
total number of lattice sites N = total number of electrons. Optimal

carrier density x N N0 02º  is determined by long range part of coulomb

interaction and superexchange energy. (b) and (c) Schematic picture of
the real part of the frequency dependent conductivity on the insulating
and metallic side close to the Mott transition point in a real system. W is
the band width.

(b)

(c)
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Drude peak at low frequencies; the weight of the Drude peak
indicates a small density of mobile carriers (often as low as 5 to
10 %).

Based on the above observation, I suggested that across
the Mott transition, the Mott insulator retains its integrity, in
the sense of survival of super exchange on the conducting side
(Figure 2). The only new aspect is that a small and equal density
of mobile positive and negative charge carriers (doublons and
holons) have been spontaneously generated. These carrier
density are individually conserved (Figure 3) and governed by
the physics of long range coulomb interaction. In other words,
I gave a new interpretation of Mott transition in theses systems
as a process of self doping a Mott insulator.

Figure  3. Forbidden hoping process, i.e., absence of annihilation of e+
and e– at low energies in our strong coupling metal. Double line represents
a spin singlet (valence) bond.

These suggestions implied immediately a close connection
of the mechanism of superconductivity to that in cuprates, where
the doping is external. I developed this idea further and
introduced a 2 species t–J model and discussed how
superconductivity arises there. My conclusion[68] is that
superconductivity in organics is based on RVB mechanism. The
new feature is that preexisting neutral singlets get charged across
the Mott transition and produce superconductivity, through a
process of self doping rather than external doping. The
superconducting Tc is determined by, apart from other factors
such as superexchange, the density of self doping. As self doping
increases beyond the optimal value (achieved by increasing
pressure) superconductivity quickly disappears, as seen in the
experiment. Recent theoretical works[69–71] essentially
corroborate my view point, albeit with some minor differences.

In a very recent work, Kanoda[72] group have reported
interesting results, in my opinion offering a direct support to
RVB physics in one of the members of the ET salt family in the
Mott insulating phase. They find evidence for a pseudo fermi
surface like excitations from magnetic and specific heat
measurements. This is likely to be a first example of realization
of spinon pseudo fermi surface in 2D, suggested by Anderson
and realized in BZA theory. This ET salt is a Mott insulator with
enhanced near neighbour multi spin couplings, in view of smaller
Mott-Hubbard gap. These couplings seem to frustrate
antiferromagnetic order and really stabilise a quantum spin liquid
with a pseudo fermi surface for spinons.

Boron doped diamond :

Diamond is known to be one of the best insulators. It has a large
band gap of 5.6 eV. In a remarkable recent work Ekimov and

collaborators[73] have managed to convert diamond to a
superconductor by doping with boron; i.e., diamond:B. It is
well known that small traces of boron impurities is responsible
for the captivating blue colour of diamond; however, heavy
doping makes it dark and superconducting! The
superconducting Tc has steadily increased from about 4 K to
nearly 12 K, with increasing doping and improved material
characteristics using MOCVD preparation methods[74, 75].

I have developed a theory[76], based on phenomenological
and microscopic grounds that superconductivity takes place in
the impurity band introduced by boron substitution, across the
insulator to metal transition. Briefly, a substituted boron has a
nice sp3 tetrahedral bonding with neighbouring carbon atoms,
except that there is a missing electron, i.e. a hole. This hole re-
sides in one of the 3-fold degenerate impurity states, at about
0.37 eV above the top of the valence band. When the boron
density is low, the holes are localised in their respective
hydrogenic type of impurity states and well isolated. Holes,
instead of getting delocalized into extended states, remain in
their home site, because of an effective U (hole affinity - hole

Figure 5. Schematic phase diagram as a function of dopant density in
Diamond:B, an uncompensated case.

Figure 4. Hole density of states (schematic) in boron doped diamond, an
uncompensated p-type semiconductor. Holes of acceptors form a strongly
correlated and impurity band at commensurate filling. Anderson-Mott
insulator to superconductor transition is suggested to take place in the
impurity band as we increase boron density (Figure 5).
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binding energy) > impurity band width W; i.e., it costs energy
to ionise and delocalized a hole. It is a Mott insulator formed of
impurity states (Figures 4, 5). The holes stay in their impurity
states and virtual fluctuations to neighbouring impurity sites
leads to antiferromagnetic superexchange interaction. This leads
to spin singlet coupling. Since the impurity states are randomly
distributed in space, a spin finds its closest neighbour and forms
a valence bond; this leads to valence bond solid (glass) phase,
very similar to what has been studied for the case of Si:P. The
spin half character of the hole in the impurity state and the
orbital degeneracies stabilise a valence band glass phase rather
than a spin glass phase.

As we increase boron concentration, we expect a Mott
insulator to metal transition, in the impurity band subsystem.
Since we have an uncompensated doping, randomness and
Anderson localisation issues are only secondary. We can imagine
the impurity state subsystem as a lattice of hydrogen atoms
whose lattice parameter is decreased as increasing dopant
density. As we approach Anderson-Mott transition point, the
impurity state wave functions strongly overlap; i.e., the inter
impurity distance is comparable to the size of the impurity state

wave function (effective Bohr radius aB
*  ). Valence bond

resonance increases and valence bond glass melts. We get a
quantum spin liquid in a disordered lattice (Figure 5).

The resonating singlets are the preformed pairs. They are
neutral. Across the first order Mott transition, the Mott-Hubbard
gap collapses from a finite value to zero, by a process of self
doping of the Mott insulator. That is, the Mott insulator
continues to be a Mott insulator with valence bond resonance,
except for a spontaneous creation of a small density of delocalized
B+ and B– species. This mechanism of superconductivity is very
similar to our mechanism for the organics, outlined in the previous
section. In fact the carrier density and the size of the molecular
orbital in organics and the impurity wave functions in diamond:B
are similar in size leading to a similar value of Tc.

In the literature, at least three different phonon mechanism,
which put the doped holes at the top of the valence band, in
extended states have been proposed[77]. Even liberal estimates
of Tc give a value small compared to experiments. Various
phenomenology, particularly large value of low temperature
intrinsic resistivity and recent ARPES results[78] indicate that
the carrier mean free path are comparable to nearest boron-boron
distance. There are also other experimental evidence[79] for the
exsistence of an impurity band in the superconducting state,
suggesting that the origin of short mean free path of carriers is
not necessarily due to randomness. It is likely to be the effect of
strong correlation within the impurity band.

Na
x
CoO

2
 . yH

2
O, an icy superconductor :

New superconductors and novel materials continue to be
discovered by Japanese groups, thanks to their concerted efforts

in materials science with an eye not only on technology but
also basic science. Historically, many systems exhibiting RVB
physics have been discovered by the Japanese groups, including
a Shastry Sutherland compound SrCU2 (BO3)2, alluded to earlier.
Quickly following the footstep of discovery of superconductivity
in MgB2 by Akimitsu group, a Tsukuba group synthesized[80]
a layered NaxCoO2 that becomes superconducting only when it
is intercalated with water: NaxCoO2:yH2O (Figure 6).

Figure 6. A triangular network of edge sharing oxygen octahedra. Co
atoms are at the center of the oxygen octahedra. Each Nax.yH2O layer is
sandwitched by two CoO2 layers.

Sitting in Chennai and I got a news of this icy superconductor
by email, through a superconductivity e-group. It became clear
that it is a doped spin half orbitally non-degenerate Mott insulator
on a triangular lattice (Figure 7). It is indeed a long sought after,

doped spin- 12  triangular lattice system ! Absence of orbital

degeneracy in NaxCoO2:yH2O was my conjecture based on
simple estimates: that is, the small fermi surface pockets that
appeared in David Singh’s electronic structure calculation[81]
should infact disappear due to correlation effects, leaving a
hole like band around the G  point. It worked ! Later ARPES
experiments showed[82] a single circular fermi surface, validating
my single band model hypothesis and a non standard sign of
the hopping integral.

Figure 7. Crystal field split 3d levels of cobalt.

I worked out an RVB theory quickly[83]. What was novel
was, the possibility of an important chiral RVB state as the
reference Mott insulator. In an earlier work, Lee and Feng[84],
inspired by Kalmayer-Laughlin’s chiral spin liquid state[20], had

oxygen

cobalt

CoO2 layer
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in fact found a PT violating RVB mean field solution, where

every triangular plaquette contained a 
p

2
 RVB magnetic flux. I

showed that on doping, the insulating chiral spin liquid will
continue into a PT violating chiral singlet superconductor, having

a d id
x y xy2 2-

+  (or briefly, d + id) order parameter symmetry
(Figure 8).

Figure 8. Relative phases of cooper pair amplitudes (Dij ¹ 0  on dark
bonds) in PT violating d1 ± id2 states.

Subsequent theoretical analysis by Kumar-Shastry[85],
Wang et al [86] have supported the above RVB scenario. Within
the RVB scenario, there is a possibility of chiral p-wave
superconductivity at high doping end (Figure 9). There are also
other proposals of spin triplet superconductivity[87]. On the
experimental front, there is an intense effort, using magnetic
resonance studies, to find the order parameter symmetry by
Nagoya and Kyoto and other groups. Recent results from
Nagoya group[88], confirm their earlier findings and give strong
evidence for spin singlet pairing. The issue of gap is still not
settled. Earlier m SR studies[89] did not see any parity violating
orbital magnetic field, making a PT violating state suspect.
However, this result should be carefully analyzed, because of a
possible invasive character of muon, through polarization of
the H2O dipoles. I have suggested [90] that a local polarization
of H2O molecules might destabilize superconductivity and
stabilize a competing charge order locally.

Figure 9. The schematic x - T phase diagram.

I had also suggested[83] that, in between the PT symmetric
metallic state and PT violating superconducting state, an
intermediate PT violating metallic (a chiral metal) phase should
be present , over a finite temperature interval (Figure 9). Increase
sample quality should enable one to search for this PT violating
metallic state experimentally.

Heavily doped Na0:5CoO2 , has an interesting metallic state,
which exhibits a coherent charge transport, like a good metal;

however spins are incoherent as seen by a non-Pauli, Curie
magnetic susceptibility ! This phase has been called a Curie
metal by the Princeton group[91]. Combining the above with
some possible signatures of Luttinger volume anomaly seen in
ARPES[82], I have suggested[92] a phase called ‘Quantum
Charge Liquid’. This is a natural generalization of RVB phase to
heavily doped Mott insulators.

RVB and spin-1 collective mode in single graphene layer :

Graphite was a play ground for RVB ideas in the hands of Pauling.
One should have expected some unique signature in low energy
physical properties from RVB physics. Surprisingly no one seems
to have looked for possible consequences of RVB phenomenon
in graphite. Historically, with the advancement of electronic
structure calculations and a variety of magnetic field dependent
measurements, such as de Haas van Alfven effect, the single
electron theories have been reigning supreme. One possible
reason behind is that the subtle RVB effects of a 2D graphene
sheet, at low energy, are being masked by the finite interlayer

electron tunnelling matrix element (t^ ~  : 2eV ), which gives
rise to small cylindrical fermi surfaces around the K and K’ points
in the BZ.

In a recent paper[93], I and Jafari investigated effects of
electron electron interaction in a single graphene sheet, using a
simple Hubbard model. Graphene is a semi metal, where valence
and conduction bands meet at K and K’  points in the BZ. That
is the fermi surface is shrunk to two points. Around these two
points the band structure locally resembles a Dirac cone. This
leads to an interesting gapless particle-hole continuum, that is
very different from the standard 2D particle-hole continuum
(Figure 10). In fact, the graphene particle-hole continuum (Figure
11) has a big window. It resembles particle-hole continuum of a
1D fermi gas rather than a 2D fermi gas.

Figure 10. (a) Particle-hole continuum without a ‘window’ for a 2d
fermi gas. (b) S( , )q w  for q <2kF.

One effect of electron electron interaction is to modify the
excitation spectrum. We studied the particle-hole excitation
spectrum by a straight forward RPA analysis, looking for spin-

e e
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1 collective mode or triplet exciton. Based on what happens in
molecules such as benzene, anthracene etc., which are finite
pieces of graphene, we expected a spin-1 collective mode to
emerge in some region of the window. To our pleasant surprise
we found that a gapless spin-1 branch emerged in the full
window, that is, all over the BZ. Thus a new spin-1 collective
mode branch has been predicted for a single graphene sheet. Its
energy ranged from zero to about 2 eV. In real graphite, inter
layer coupling modifies the spectrum somewhat,particularly
below about 0.2 eV.

Figure 11. (a) Particle-hole continuum with a ‘window’ for graphite. (b)

S( , )q w  for q q
a

c>
F
HG

I
KJ~
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50

p
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What is the spin-1 spectrum to do with RVB ? If electrons in
a graphene sheet are non interacting, singlet correlation exists
in the ground state only because of kinematics imposed by
Pauli principle. That is, a Bloch state is occupied by two electrons
with opposite spin, to make a spin singlet in k-space. This minimal
singlet correlation is kinematic in origin. However, when one
introduces finite U, repeated collisions in the spin singlet channel
enforce spin singlet correlations in the ground state. If U were
large compared to the band width, we would have had a Mott
insulator and these collision processes would have been called
superexchange processes. But graphene is not a Mott insulator.
Still some kind of kinetic exchange processes continue to exist,
which give an enhanced near neighbor singlet correlations in
the ground state, compared to the free fermi gas.

In other words, the emergence of spin-1 collective mode
indicates a coherent modification of the free fermi gas state, into
an RVB state or a quantum spin liquid state. If there is an RVB
physics and if it is a metal, why a finite temperature
superconductivity is absent in graphite ? I have found, in a
recent work[94] that the development of RVB correlation (pre
existing singlet pairs) in a graphene sheet fail to make it a
superconductor, because of vanishing of the single particle
density of states at the fermi level.

Recently, single graphene states have been isolated and
studied, from quantum Hall effect point of view[95], yielding

spectacular integer quantization of Hall conductance. It will be
interesting to study single graphene sheet and look for
consequences of RVB correlations, including large
superconducting fluctuations, spin-1 collective modes and its
effects.

It is a pleasure to recall important contributions from the
Chanchal Majumdar group on quantum theory of magnetism,
including the Majumdar-Ghosh model, that is being celebrated
in this meeting.
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