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The stability of shape fluctuations of a flat charged membrane immersed in a fluid is analyzed using a linear
stability analysis. A displacement of the membrane surface causes a fluctuation in the conterion density at the
surface. This in turn causes an additional contribution to the force density in the momentum equation for the
fluid, which results in a normal stress at the surface which is opposite in direction to the stress caused by
surface tension. This electrohydrodynamic effect destabilizes fluctuations when the surface potential exceeds a
critical value.
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I. INTRODUCTION

Two of the salient features of surfaces encountered
biological systems, such as cell membranes and organe
are that they are soft and they can undergo shape chan
and they have adsorbed charges. It is well known@1# that
significant variations in the charge distribution and the tra
membrane potential of membranes coincide with sh
changes. There has also been experimental evidence to
cate that the variation in charge densities could be impor
in influencing the shapes of vesicles made of lipid bilaye
Vesicles are usually made under nonequilibrium conditio
because the bending energy for the formation of a vesicl
micron size is large compared to the thermal energy. Ho
ever, some interesting experimental results@2# have revealed
that stable vesicles could be made at equilibrium if a mixt
of lipids with surface charges of opposite signs are used

Previous studies have examined the shape changes o
logical membranes due to forces exerted by ion transpo
proteins, due to the asymmetry of inclusions in the me
brane and their phase separation on the surface, and d
other nonequilibrium processes@3#. Though most of the stud
ies on biological membranes have examined fluctuation
thermal equilibrium@4#, it has recently been realized that th
forces generated on membranes by inclusions could pla
crucial role in the structure and dynamics of membran
These could be in the form of proteins with head-tail asy
metry, which induce a spontaneous growth of fluctuations
the membrane@5#. In addition, phase separation of the com
ponents of a membrane could also alter the shape@6,7#.
However, it is expected that effects like head-tail asymme
would lead to structures with characteristic lengths of
same magnitude as the domains on the surface, whereas
cal sizes of vesicles could be two to three orders of mag
tude larger than the membrane thickness. Since sh
changes in biological membranes are accompanied
changes in the transmembrane potential, it is useful to ex
ine whether shape changes of flexible charged surfaces c
be caused by changes in the surface potential. As a first
the present study examines the stability of fluctuations o
charged surface as a function of the surface potential.

Ion transport processes in cells are fairly complicated,
simple models of these processes@8–10# have shown that
there is an electro-osmotic instability. However, this requi
in
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the active transport of ions by ion pumps such as protein
order to generate an ion current. The transport of ions ac
the cell membrane also exerts a force on the fluid, the res
of which could destabilize fluctuations if the ion pumps a
permitted to diffuse on the surface@5#. A redistribution of
charges occurs on charged vesicles under externally app
fields @11#, and this surface redistribution has a significa
effect on the mobility of the vesicles, and could even caus
to change sign. In addition, a spatial variation of charges
a surface could result in a net force in the presence of
electric field @12#. There has also been recent work on t
interaction between macroscopically neutral surfaces du
charge fluctuations@13#, though these do not incorporate th
fluid velocity field or the deformability of the membrane
The interfacial instability between two immiscible fluids du
to an electric field has also been studied@14#.

The effect of charges on the elasticity of membranes
been studied by many authors. The early studies of Win
halter and Helfrich@15# and Lekkerkerker@16#, as well as the
subsequent studies@17,18#, found that there is an increase
the elasticity due to adsorbed charges. These studies s
that there is a change in the modulus for the mean curva
and the Gaussian curvature due to adsorbed charges, an
change in the Gaussian curvature could favor the spont
ous formation of vesicles. In these studies the change in
electrostatic energy due to the curvature of the membran
determined, and the corrections to the elasticity moduli
calculated from the free energy change. The correction
the elastic moduli are manifested as additional contributi
to the curvature energy when a net curvature is imposed
the membrane. In the present analysis, we are intereste
the dynamical stability of the flat state of the membrane, a
the perturbations are in the form of Fourier modes. The
fect of the electrostatic stress on the perturbations in
membrane surface is determined. The connection betw
the two approaches was demonstrated in Winterhalter
Helfrich @15#, where the Gaussian curvature was related
the second moment of the stress profile in a flat membran
was shown that within the Debye-Huckel approximation, t
two approaches provide the same result for the Gaussian
vature. In the present analysis also, we verify that the sa
result for the Gaussian curvature is obtained in the Deb
Huckel approximation to show consistency with previo
results.
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It has been shown@19# that a difference in the charg
densities in the two lipid layers forming a bilayer could s
bilize a vesicle, because there is a reduction in electros
energy when the higher charge density is on the outsid
the vesicle. This could compensate for the increase in
curvature energy. The effect of charge density-curvature c
pling on the dynamics of fluctuations on a charged surf
were analyzed@20#. The analysis showed that when th
charges are permitted to move on the membrane surf
there is an instability of the flat state of the membrane du
a correlated variation in the charge density and the curvat
However, this analysis assumed that the thickness of
counterion layer at the surface is small compared to
wavelength of the perturbations, and variations in the co
terion density parallel to the surface were neglected.

It is important to note that the wavelength of perturbatio
in this case is of the same magnitude as the thickness o
counterion layer near the surface. The counterion layer th
ness under physiological conditions is about 1 nm@10#,
which is small compared to the length scale of structu
such as vesicles. The present analysis predicts that the
unstable mode for a flat membrane has zero wave num
indicating that the most unstable mode for a system of fin
size is likely to be the size of the system itself. However,
selection of the most unstable mode is likely to depend v
sensitively on the surface potential when the size of
structure is large compared to the thickness of the coute
layer. There are other situations where the thickness of
counterion layer could increase to 1mm when the salt con-
centration is decreased, and the results of the present ana
would be directly applicable in those cases.

In the present analysis, the variation in the counter
density parallel to the surface is incorporated by solving
diffusion equation for the counterions. A linear stabili
analysis is used, where the parameter values for the trans
from stable to unstable modes is determined. The linear
bility analysis only provides the transition from damped
growing modes, and does not provide information about
nonlinear stabilization of the growing modes. First, the lim
of zero Peclet number and zero Reynolds number is con
ered, where the diffusion of counterions is fast compared
convective transport, and the inertial terms in the momen
conservation equation are neglected. However, it is su
quently shown that the analysis is valid even at finite R
nolds and Peclet numbers, because the inertial and con
tive terms in the equations for the charge density and fl
momentum are zero for the unstable modes. The limit of l
Reynolds number is appropriate for micron scale structu
in biological systems. The validity of the zero Peclet numb
limit can be estimated as follows. The diffusion of a sm
molecule in a liquid isO(1029 m2/s), and the Peclet num
ber (UL/D) is small for structures of micron scalesL
;1026 m if the velocity scale is smaller than 1023 m/s.
For membranes with surface tension and in the absenc
fluid inertia, a characteristic velocity scale can be estima
as (G/m), whereG is the surface tension andm is the vis-
cosity. The viscosity of water isO(1023 kg/m/s), and
therefore the velocity is small compared to 1023 m/s for
G,1026 kg/m/s2. This is about three orders of magnitud
-
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less than the surface tension of an air-water interface,
therefore the present analysis is likely to be applicable o
for membranes with very low tension.

In the analysis, we assume that the charge densities on
two sides of the membrane are decoupled. This is valid w
the dielectric constant of the hydrophobic tails in the lip
layer is small compared to the dielectric constant of the s
rounding water. In practical situations, the ratio is abo
(1/40), so the approximation is valid for distances about
times the bilayer thickness@15#. Though this is not strictly
true in cases where the dielectric constants are compara
we use this as a first approximation to make the probl
analytically tractable.

II. BASE STATE CHARGE DISTRIBUTION

In the following analysis, dimensional variables are d
noted with a superscript *, while dimensionless variables
written without the superscript in order to simplify the not
tion. The potential and charge distribution in the base s
are determined by solving the conservation equation for
two charged species with number densitiesn1* andn2* ,

dtn1* 1v* •“* n1* 5“* •DF“* n1* 1
zen1*

T
“* c* G , ~1!

dtn2* 1v* •“* n2* 5“* •DF“* n2* 2
zen2*

T
“* c* G , ~2!

where the potentialc* is given by

“* 2c* 52S zen1*

e
2

zen2*

e D , ~3!

where “* is the dimensional gradient operator,e is the
charge on an electron, ande is the dielectric constant. The
equations are simplified by defining the nondimensional v
ablesn15(n1* /N*̀ ), n25(n2* /N*̀ ), c5(zec* /T), andx
5kx* . Here,N*̀ is the concentration of the electrolyte at
large distance from the surface, and the inverse of the De
screening lengthk is (2N*̀ z2e2/eT)1/2. With these scalings
the equations reduce to

Pe~dtn11v•“n1!5“•@“n11n1“c#, ~4!

Pe~dtn21v•“n2!5“•@“n22n2“c# ~5!

and the potentialc is given by

¹2c52S n12n2

2 D . ~6!

In the above equations, the velocity has been scaled b
characteristic velocity scalev5(v* /V), and the Peclet num
ber is given byPe5(V/kD). In the present analysis, w
consider the limitPe!1, and neglect the terms on the lef
hand side of Eqs.~4! and ~5!. The extension to the finite
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Peclet number case is briefly discussed at the end. With
assumption, the dimensionless equations for the charge
centrations become

“•@“n11n1“c#50, ~7!

“•@“n22n2“c#50, ~8!

“

2c52S n12n2

2 D . ~9!

In the base state, there are concentration and pote
variations only in they direction perpendicular to the surfac
of the membrane. The equations for the charge concentra
and potential in the base state,N1 , N2 , andC, are

dyN11N1dyC50, ~10!

dyN22N2dyC50, ~11!

dy
2C52S N12N2

2 D . ~12!

The above equations can be easily simplified to provide
Poisson-Boltzmann equation for the potential

dy
2C52

exp~2C!2exp~C!

2
. ~13!

It is difficult to obtain an analytical solution for this equatio
but a series solution of the following form can be eas
obtained:

C5(
i 50

`

C i exp~2 iy !, ~14!

where the coefficientsC i are determined by inserting th
above expansion into the Poisson-Boltzmann equation~14!
and evaluating the coefficients for each value ofi. The coef-
ficient C0 can be set equal to zero without loss of general
since the charge dynamics is affected only by the gradie
of the potential. With this, it is easily verified thatC i50 for
all even values ofi. In the Debye-Huckel approximation
only the first term~corresponding toi 51) is retained in the
above expansion~14!. In the present analysis, higher-ord
terms are also retained in the expansion, typically up ti
55. There is a difference of about 2% wheni is increased
from 1 to 5 for Cs51, and a difference of about 15% a
Cs52, whereCs is the scaled surface potential.

The charge densities are easily determined from Eqs.~10!
and ~11! once the potential is known. It is convenient
represent the charge densities in terms ofR5(N11N2)/2
and Q5(N12N2)/2, where Q is determined from the
Poisson-Boltzmann equation

Q5(
i 50

`

Qi exp~2 iy !, ~15!

where
is
n-
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e

,
ts

Qi52 i 2C i . ~16!

It can easily be verified that all coefficientsQi for even val-
ues ofi are zero, sinceC i50 for even values ofi. The total
charge is determined from the relation

dyR1QdyC50. ~17!

Using Eq.~13! for C and Eq.~16! for Q, the equation for the
total charge is

R5R`1(
i

Ri exp~2 iy !, ~18!

whereR` , the scaled ion concentration at a large distan
from the surface, is 1,R05R150, and

Ri52(
j 50

i
~ i 2 j !QjC i 2 j

i
~19!

for i>2. In the Debye-Huckel approximation, where th
right side of Eq.~13! is linearized in the potentialC, the
solutions for the scaled charge densities and potential ar

C5Cs exp~2y!,

Q52Cs exp~2y!, ~20!

R51,

whereCs is the potential at the surface of the membrane
At this point, it is useful to compare the present resu

with those of Winterhalter and Helfrich@15# for the Debye-
Huckel approximation. Expressions~20! are identical to
those obtained by Winterhalter and Helfrich for the Deb
approximation. The normal pressure due to electrical effe
can be determined from the static momentum balance e
tion for the liquid

2dyP2QdyC50, ~21!

whereP is the mean pressure. The above equation is ea
solved to get

P5 1
2 C2 ~22!

for the Debye-Huckel approximation, which is the scal
form of Eq.~18! of Winterhalter and Helfrich for the osmoti
pressure at the surface. This can be used to recover
Gaussian curvature obtained by Winterhalter and Helfric

III. CHARGE FLUCTUATIONS

In the linear analysis, small perturbations are placed
the concentration and potential fields

n15N11ñ1~y!exp~ ıkx1st!,

n25N21ñ2~y!exp~ ıkx1st!, ~23!

c5C1c̃~y!exp~ ıkx1st!,
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wheres is the growth rate andk is the wave number of the
perturbations. These are inserted into Eqs.~7!, ~8!, and ~9!,
and linearized in order to obtain the following equations
the perturbations to the concentration and potential fields

~dy
22k2! r̃ 22q̃Q1~dyQ!~dyc̃ !1~dyq̃!~dyC!50,

~24!

~dy
22k2!q̃2 r̃Q2q̃R1~dyR!~dyc̃ !1~dyr̃ !~dyC!50,

~25!

~dy
22k2!c̃52q̃, ~26!

where r̃ 5(ñ11ñ2)/2 andq̃5(ñ12ñ2)/2. Equations~24!,
~25!, and ~26! are the governing equations for the perturb
tion fields r̃ , q̃ and c̃.

Solutions for Eqs.~24!, ~25!, and~26! are difficult to ob-
tain analytically, but it is possible to obtain series solutio
similar to Eqs.~14!, ~15!, and~18!,

c̃5(
i 50

`

c̃ i
(1)exp~2~k1 i !y#1(

i 50

`

c̃ i
(2)exp@2~ l 1 i !y#,

c̃0
(1)5c̃0 ,

c̃0
(2)52q̃0 ,

r̃ 5 r̃ 0 exp~2ky!1(
i 51

`

r̃ i
(1)exp@2~k1 i !y# ~27!

1(
i 51

`

r̃ i
(2) exp@2~ l 1 i !y#,

q̃5q̃0 exp~2 ly !1(
i 51

`

q̃i
(1)exp@2~k1 i !y#

1(
i 51

`

q̃i
(2)exp@2~ l 1 i !y#,

where l 5(k211)1/2. The coefficientsc̃0 , r̃ 0, and q̃0 are
determined using the boundary conditions, while the ot
coefficients are determined using Eqs.~24!, ~25!, and ~26!.
The coefficients in the equations forc̃ and q̃ are easily re-
lated from Eq.~26!,

c̃ i
(1)52

q̃i
(1)

~k1 i !22k2
,

~28!

c̃ i
(2)52

q̃i
(2)

~ l 1 i !22k2
.

The relations for the coefficients in the relations forq̃ and r̃
are obtained by inserting the expansions into Eqs.~24! and
~25!,
r

-

s

r

q̃i
(1)5

1

~ i 1k!22 l 2 F (
j 50

i

@ r̃ j
(1)Qi 2 j1q̃ j

(1)Ri 2 j2~ j 1k!~ i 2 j !

3~ r̃ j
(1)C i 2 j1c̃ j

(1)Ri 2 j !#G ,

q̃i
(2)5

1

~ i 1 l !22 l 2 F (
j 50

i

@ r̃ j
(2)Qi 2 j1q̃ j

(2)Ri 2 j2~ j 1 l !~ i 2 j !

3~ r̃ j
(2)C i 2 j1c̃ j

(2)Ri 2 j !#G ,

~29!

r̃ i
(1)5

1

~ i 1k!22k2 F (
j 50

i

@2q̃ j
(1)Qi 2 j2~ j 1k!~ i 2 j !~ q̃ j

(1)C i 2 j

1c̃ j
(1)Qi 2 j !#G ,

r̃ i
(2)5

1

~ i 1 l !22k2 F (
j 50

i

@2q̃ j
(2)Qi 2 j2~ j 1 l !~ i 2 j !~ q̃ j

(2)C i 2 j

1c̃ j
(2)Qi 2 j !#G .

The recurrence relations can be solved to obtain the co
cients r̃ i

(1) , r̃ i
(2) , q̃i

(1) , and q̃i
(2) as linear functions of the

coefficientsc̃0 , q̃0, and r̃ 0. These coefficients are fixed b
the boundary conditions as discussed below.

The boundary conditions at the membrane surface for
ion concentration fields are the zero flux conditions for t
two ionic species at the perturbed interfacey5uy , whereuy
is the vertical displacement of the membrane

@dyn11n1dyc#uy5uy
50,

~30!
@dyn22n2dyc#uy5uy

50.

In the linear approximation, the boundary conditions at
perturbed interface are expanded in a Taylor series ab
their values at the unperturbed interfacey50. The base state
concentration and potential fields satisfy the zero flux con
tion at the unperturbed interfacey50. The correction to the
boundary conditions due to fluctuations are determined
retaining terms correct to linear order in the perturbat
quantitiesñ1 , ñ2 , andũy ,

ũy@dy~dyN11N1dyC!#uy501@dyñ11ñ1dyC

1N1dyc̃#uy5050,
~31!

ũy@dy~dyN22N2dyC!#uy501@dyñ22ñ2dyC

2N2dyc̃#uy5050,
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whereũy is defined by the relationuy5ũy exp(ikx1st). The
first term on the left sides of the boundary conditions~31! are
proportional to the variations in they direction of the flux in
the base state. Since the base state concentration and p
tial fields satisfy the zero flux conditions~10! and ~11!
throughout the domain, these derivatives are zero, and
boundary conditions reduce to

@dyr̃ 1q̃dyC1Qdyc̃#uy5050,
~32!

@dyq̃1 r̃ dyC1Rdyc̃#uy5050.

This can be used to determine two of the three consta
r̃ 0 , q̃0, and c̃0. It turns out that the coefficient of the con
stant q̃0 in the above equations is zero, and therefore
above equations are satisfied only ifr̃ 050 andc̃050. The
third constantq̃0 is determined from the boundary conditio
for the potential at the interface.

The boundary condition for the potential at the interface
determined by the dynamics of the charges on the surfac
the potential at the surface is maintained at the same valu
that at the unperturbed surface, then the potential boun
condition reduces to

@C1c̃ exp~ ikx1st!#uy5uy
5~C!uy50 . ~33!

Expanding the above equation in a Taylor series about
unperturbed surface, and retaining terms correct to linear
der in the perturbation variablesc̃ and ũy , we get

~ ũydyC1c̃ !uy5050. ~34!

Alternatively, the charge at the perturbed surface could
maintained as a constant. In this case, it is necessary to
a relationship between the surface potential and the sur
charge by examining the change in the counterion den
profile at a curved surface. For a surface with curvat
(1/R), the dimensional surface charge is related to the
mensional surface potential by

s5F2cS 12
c

2RD GU
y5uy

. ~35!

The above expression is correct toO(kR)21 in the limit
(kR)!1. This limit is consistent with the present analys
because it is assumed that the surface is flat in the base
and the perturbations are small compared to the invers
the Debye length. If the surface charge densitys is main-
tained as a constant, the interface condition is

FcS 12
c

2RD GU
y5uy

5Cuy50 . ~36!

Using an expansion in the perturbations to the surface p
tion and the potential, and retaining terms correct to lin
order in the perturbation quantities, the above relation
duces to
ten-
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ũydyC2~c/2!Ck2ũy1c̃uy5050, ~37!

where the curvature (1/R) is given by dx
2uy up to linear

order in the displacementuy .
It should be noted that the membrane displacement aff

the charge distribution only due to the boundary conditio
~34! and ~37!. This is because in the base state, there is
exponential decay of the potential from the membrane s
face. When the membrane is displaced upwards, the m
potential at the displaced position is lower than that in
flat state. However, the boundary condition requires that
potential ~or charge! at the membrane surface should be
constant even when the membrane is displaced. This requ
a fluctuation component which augments the potential at
displaced position, and a simultaneous perturbation in
charge density at the surface.

If the series solutions~27! are cut off ati 51 ~the Debye-
Huckel approximation!, the solutions for the charge densi
and potential fluctuations as a function of the constantq̃0 are

q̃5q̃0 exp~2 ly !,
~38!

c̃52q̃0 exp~2 ly !.

The boundary condition~34!, in the Debye-Huckel approxi-
mation, provides the following relationship between the co
stantq̃0 and the surface potential:

q̃052Csũy , ~39!

while for the boundary condition~37!, the relation between
the constantsq̃0 andCs is

q̃052Csũy~12ck2/2!. ~40!

IV. VELOCITY FLUCTUATIONS

The effect of charge density fluctuations on the dynam
of a charged membrane is considered in the present sec
The membrane consists of two surfaces, the upper sur
~represented with superscriptu) and the lower surface~rep-
resented with superscriptl ). First, the calculations for the
velocity and stress fields are carried out for the upper surf
with a surface potentialCsu , and symmetry arguments ar
used to determine the velocity and stress fields on the lo
surface. The boundary conditions are then applied to de
mine the growth rate of the perturbations.

The perturbations to the velocity fields are calculat
from the Stokes equations in the absence of fluid inertia. T
dimensional equations are

“* "v* 50, ~41!

2“* p* 1m“* 2v* 2~n1* 2n2* !ze“* c* 50, ~42!

wherem is the fluid viscosity. The lengths in the above pro
lem are scaled by the screening lengthk21 as before, since
we are interested in perturbations of the scale of the scre
ing length. For the velocity field, it is convenient to use t
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velocity scale (2N*̀ T/mk), and the pressure is scaled b
(2N*̀ T). With these, the equation for the velocity field b
comes

2¹p1¹2v2q¹c50. ~43!

Since the total charge and the potential are related byq5
2¹2c, the momentum equation can be recast as

2¹p1¹2v1¹•se50, ~44!

where the additional stress due to the Debye layer, whic
a second-order tensor, is given by

se5~¹c!~¹c!2~1/2!I ~¹c!•~¹c!, ~45!

where I is the second-order isotropic tensor. Taking the
vergence of the above equation, it is easily seen that
pressure field is related to the charge density and potentia

2¹2p2¹•~q¹c!50. ~46!

The fluid velocity is zero in the base state, but there is a
pressure gradient due to the charge density in the De
layer given by~21!. This equation is easily solved to provid
the mean pressurePu above the membrane surface is

Pu5(
i 51

`

Pi
u exp~2 iy !, ~47!

where

Pi
u52

1

i (
j 50

i

j C jQi 2 j . ~48!

The velocity and pressure fluctuations are expressed in
form of Fourier modes

vx
u5 ṽx

u~y!exp~ ıkx1st!,

vy
u5 ṽy

u~y!exp~ ıkx1st!, ~49!

pu5 p̃u exp~ ıkx1st!.

These are inserted into the conservation equations~41! and
~42!, and simplified to obtain an equation for the veloc
field

~dy
22k2!~dy

22k2!ṽy
u1k2~ q̃dyC2c̃dyQ!50. ~50!

It can easily be verified that the second term on the left s
of the above equation is identically zero ifr̃ 05c̃050 in Eq.
~27!, and with this simplification the velocity and pressu
fields reduce to
is
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ṽy
u5A1

u exp~2ky!1A2
uky exp~2ky!,

ṽx
u52ıA1

u exp~2ky!1ıA2
u~12ky!exp~2ky!, ~51!

p̃u52A2
uk exp~2ky!1(

i 50

`

~ p̃i
(1)u exp@2~ i 1k!y#

1 p̃i
(2)u exp@2~ i 1 l !y#,

where

p̃i
(1)u52(

j 51

i

Qj
uc̃ i 2 j

(1)u ,

p̃i
(2)u52(

j 51

i

Qj
uc̃ i 2 j

(2)u . ~52!

Similar relations can be derived for the velocity and stre
fields at the lower surface of the membrane

vx
l 5 ṽx

l ~y!exp~ ıkx1st!,

vy
l 5 ṽy

l ~y!exp~ ıkx1st!, ~53!

pl5 p̃l exp~ ıkx1st!,

ṽy
l 5A1

l exp~ky!1A2
l ky exp~ky!,

ṽx
l 52ıA1

l exp~ky!1ıA2
l ~12ky!exp~ky!, ~54!

p̃l52A2
l k exp~ky!1(

i 50

`

p̃i
(1)l exp@~ i 1k!y#1 p̃i

(2)l exp@~ i

1 l !y#,

where

p̃i
(1)l52(

j 51

i

Qj
l c̃ i 2 j

(1)l ,

p̃i
(2)52(

j 51

i

Qj
l c̃ i 2 j

(2)l , ~55!

where the coefficientsQi
l , c̃ i

(1)l , andc̃ i
(2)l are calculated in

a manner similar toQi
u , c̃ i

(1)u , andc̃ i
(2)u .

The dispersion relation is obtained using the bound
conditions at the membrane surface. When the amplitud
fluctuations is large compared to the thickness of the me
brane, it is appropriate to set the tangential velocityvx equal
to zero at the surface. With this, the boundary conditions
the linearized problem are

ṽx
u50,

ṽx
l 50,

~56!
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ṽy
l 5 ṽy

u5sũy ,

t̃yy
u 2 t̃yy

l 5Gk2ũy ,

where the normal stressest̃yy
u at the surface are given by

t̃yy
u 52pu12dyṽy

u1dyc̃
udyC

u2ũydy@Pu2~1/2!~dyC
u!2#,
~57!

t̃yy
l 52pl12dyṽy

l 1dyc̃
ldyC

l2ũydy@Pl2~1/2!~dyC
l !2#,

~58!

and the scaled surface tensionG5(G* k/2N`T), whereG*
is the dimensional surface tension. In Eqs.~57! and~58!, the
last term on the right accounts for the variation in the me
pressure and electrical stress due to membrane displacem
However, it is easily seen that the sum@Pu11/2(dyC

u)2# is
identically zero, and so the variation in the mean stress d
not enter into the normal stress balance at the interface.
above equations are solved to provide an expression for
growth rate of fluctuations of the form

s52kS G2(
i 51

`

~Csu
2i 1Csl

2i !Fi~k!D , ~59!

where the functionsFi(k) are functions of the scaled wav
vector.

It is useful to first study the stability characteristics of t
system using the Debye-Huckel approximation, which cor
sponds to retaining just the first term in the series on the r
side of Eq.~59!. The first function in the seriesF1(k)5@(1
1k2)1/221#/k2 for a surface with constant surface potenti
and the expression for the growth rate reduces to

s52k@G2~Csu
2 1Csl

2 !~A11k221!/k2#. ~60!

From the above, it is clear that the stresses exerted by
charge distribution at the surface tends to destabilize the
turbations, and long-wavelength perturbations are unst
for (Csu

2 1Csl
2 ).2G, and long-wavelength perturbation

with k,kc are unstable, wherekc5(122a)/a2, and a
5(Csu

2 1Csl
2 )/G. For a system with constant charge dens

on the surface, the first function in the series isF1(k)5(1
2ck2/2)@(11k2)1/221#/k2 and the expression for th
growth rate is

s52k@G2~Csu
2 1Csl

2 !~12ck2/2!~A11k221!/k2#.
~61!

From the above, it is clear that the fixed charge bound
condition does not affect the stability of the long-waveleng
perturbation, but increases the potential required for dest
lizing finite wavelength perturbations.

The above result can be systematically corrected to
clude higher-order terms in Eq.~59!. Attention is restricted
to the case whereCsl50, so that only one surface of th
membrane is charged, and the surface potential is fix
though the results could be easily extended to other ca
The parameter (Csu

2 /G) at which the perturbations becom
n
ent.
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unstable is plotted as a function of the wave vectork for
different values of the potentialCsu in Fig. 1. The solid line
shows the result for the Debye-Huckel approximation wh
only one term in the series is retained. It is observed that
neutral stability curve tends to a finite value on the limitk
→0, and increases proportional tok in the limit k@1. The
broken lines show the results obtained by retaining five te
in the series~59! for Csu51 andCsu52. It is observed that
the Debye-Huckel approximation overestimates the surf
potential for neutrally stable modes.

Finally, it can be shown that even though the above
pressions were derived for zero Peclet and Reynolds num
they are valid for nonzero Reynolds and Peclet numbers
well. As can be seen from the above expressions, the real
imaginary parts of the growth rate are simultaneously eq
to zero for the neutral modes. Since the velocity is the ti
derivative of the normal displacement at the surface, the n
mal velocity is also zero for the neutral modes. Con
quently, the inertial and convective terms in the ion cons
vation and momentum equations are zero, and the ab
neutral stability curves are valid even for nonzero Reyno
and Peclet numbers.

V. CONCLUSIONS

The stability of surface fluctuations of a charged me
brane immersed in a fluid were considered using a lin
stability analysis. The wavelength of the perturbations
considered to be of the same order of magnitude as the
bye screening length. In previous calculations where
variation to the counterion density parallel to the surface
neglected, the surface fluctuations were found to be stab
the charge or potential at the surface is fixed. The pres
analysis differs from previous studies because the varia

FIG. 1. Transition values for (Csu
2 /G) as a function of wave

numberk. The solid line shows the result from the Debye-Huck
approximation; the broken line with circles and triangles shows
results of the series solution with five terms forCsu51 andCsu

52, respectively.
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in the counterion density due to surface perturbations is
plicitly taken into consideration by solving the diffusio
equation for the counterions. The results of the pres
analysis are qualitatively different, and indicate that a c
pling between the shape fluctuations and the concentra
fluctuations of the counterion density is necessary for
instability. This mechanism could be of importance in ge
erating shape changes in biological systems, such as
membranes and organelles, since it has been observed
there are significant changes in the surface potentials
membranes when a shape change occurs.

The physical reason for the instability is as follows. The
is an exponential decay of the potential as a function of d
tance from the surface in the base state. When the memb
is displaced upwards, the mean potential at the displa
.
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nt
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e
-
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-
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position is lower than that at the original position. Howev
to maintain the constant potential condition at the interfa
the perturbation to the potential has to be positive. This
quires a depletion of the charges. There are two contributi
to the normal stress at the surface, one due to the additi
pressure in Eqs.~52! and~55!, and the other due to the elec
trical stress in Eqs.~57! and ~58!. The pressure contribution
tends to exert a downward force on a membrane curved
wards, while the electrical contribution to the normal stre
exerts a larger upward force. When tangential variations
the charge density are neglected, the two are equal in m
nitude and opposite in direction and provide no net for
When the tangential variations are included, there is a
upward force which tends to destabilize fluctuations wh
the potential is increased beyond a critical value.
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