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Behavior of lower-order moments in a dense vibrofluidized granular material
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The behavior of the lower-order moments of the velocity distribution function for a system of inelastic
granular disks driven by vertical vibrations is studied using simulations and kinetic theory. A kinetic theory is
developed on the lines of the Enskog correction to dense gases to account for the high-density corrections in
granular materials. Using a perturbative expansion for the distribution function, a numerical solution to the
lower-order moments is obtained for the high-density case. Event driven simulations are carried out on a
system of granular disks, driven by a vibrating wall, to investigate the profiles of the moments. An approximate
and simple method to deal with a vibrating wall in an event driven algorithm is presented. Theoretical
predictions of the lower-order moments of the velocity distribution function from low- and high-density kinetic
theory of vibrofluidized granular materials are compared with the simulation data. In both dilute and dense
cases the theory shows a good agreement with the simulation results.
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I. INTRODUCTION

The dynamics of vibrated granular materials, which e
hibit stationary states as well as waves and complex patte
have been of some interest in recent years as demonst
by the experiments@1#. In order to describe these divers
states of the material, it is necessary to derive macrosc
descriptions by averaging over the microscopic details of
motion and interactions between individual grains. The t
oretical description of such systems is complicated by
fact that they are driven dissipative systems characterize
highly inelastic collisions and hence the validity of the equ
tions of hydrodynamics is not clear at present@2#. However,
it is possible to describe one idealized situation, where
dissipation due to inelastic collisions is small compared
the energy of a particle and the amplitude of wall oscillatio
is small compared to the mean free path, as was shown in
kinetic theories@3,4#. Such a description might be one sta
ing point where we can ascertain with some confidence
rigor of the approach used. The present work is a contin
tion of such an approach.

An experimental study of a vibrated fluidized bed w
carried out by Warret al. @5#. A theoretical calculation of the
distribution function in a vibrofluidized bed was carried o
by Kumaran@3,6# in the limit of low dissipation, where the
coefficient of restitutione is close to 1. In this limit, a per-
turbation approximation was used, where the energy diss
tion is neglected in the leading order approximation to
Boltzmann equation, and the system resembles a gas at
librium in a gravitational field. The velocity distribution
function is a homogeneous Maxwell-Boltzmann distributio
and the density decreases exponentially from the vibra
surface. The first order correction to the distribution due
dissipative effects was calculated using the moment exp
sion method, and the results were found to be in qualita
agreement with the experiments of Warret al. @5#. The aim
of the present work is twofold—to compare the predictio
of the dilute bed~low-density! kinetic theory with numerical
simulations and to develop a similar theory to include hig
density effects.
1063-651X/2000/63~1!/011508~11!/$15.00 63 0115
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Hard sphere molecular dynamics~MD! simulation, which
has come to be known also as event driven~ED! simulation,
is a useful technique for validating the theoretical predictio
in detail. Similar previous simulation studies, such as@7#,
have not reported measurements of the lower-order
ments. We have performed ED simulations to obtain the v
ues of the lower-order moments and compare them with
kinetic theories in different density regimes.

The kinetic theory@3# was derived only in a dilute bed o
granular materials. At higher densities this theory predi
unphysical values for densities and other moments of
distribution function. This is because for high densities th
is a correction to the Boltzmann equation itself, which is w
described by the approximate theory of Enskog for de
hard spheres. Using this, the leading order temperature
density profile were determined in a dense bed@4#. The scal-
ing found using this theory compared well with that from t
simulations of@8#. In the present work, a perturbation expa
sion about this leading order solution is carried out to inclu
the effects of dissipation in the Enskog equation, as was d
for the Boltzmann equation in@3#. The set of equations in the
present theory reduce to that of@3# in the appropriate limit of
low densities. We also make comparisons with the data fr
the ED simulations of dense beds.

In Sec. II we first develop the perturbative theory for hig
densities~dense bed!. We will also indicate briefly the physi-
cal meanings of the assumptions made in this theory, str
ing the limits of its validity. In Sec. III, we briefly describe
the simulation methodology used, particularly a simplifi
algorithm that is used to describe the vibrating bottom w
A comparison of the predictions of the lower-order mome
from both the dilute bed and dense bed theories follows
Sec. IV, before we conclude with the limits of validity of th
perturbative theory.

II. PERTURBATIVE THEORY FOR DENSE BEDS

The system consists of a bed of circular disks of diame
s colliding inelastically with each other in a gravitation
field g, driven by a vibrating surface at the bottom. Th
©2000 The American Physical Society08-1
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vibrating surface has a periodic amplitude function with a
plitude a0, frequencyv0, and the characteristic velocityU0.
The total mass of the bed is characterized by a parameteN,
which is the total number of disks per unit width of the be
The system is infinite in the horizontal directionx, and semi-
infinite in the vertical directionz. There is a source of energ
at the vibrating surface due to particle collisions with t
surface, and the dissipation is due to inelastic collisions
tween the particles, which is modeled by a constant coe
cient of restitutione.

Before we go on to develop the perturbative kine
theory for dense beds, we first discuss briefly a few k
assumptions that have led to the leading order solution
vibrated beds in@3,4#. We identify a small parameter in th
process and use it for the perturbation expansion. It is p
sible to obtain a homogeneous solution to the velocity dis
bution function in the Boltzmann equation in the limit of lo
dissipation under the following self-consistent assumptio
The constancy of the temperatureT0 is obtained by requiring
that the source and dissipation of energy during a collis
are small compared to the temperature~mean kinetic energy
of the particles!. The increase in energy of a particle due to
collision with the wall moving with a velocityU0 is O(U0

2).
Therefore, we require thatU0

2!T0 or in terms of a small
parameter

e[
U0

2

T0
!1. ~1!

The dissipation of energy due to particle-particle collisio
varies as;T0(12e2) and hence

~12e2!!1. ~2!

In this limit the system resembles a gas of hard disks
equilibrium in a gravitational field and the velocity distribu
tion is a Maxwell-Boltzmann distribution,

f 0~u!5
1

2pT0
e2u2/2T0, ~3!

whereT0 is the leading order temperature, which is obtain
by a macroscopic balance of the source and total dissipa
In the dilute case the density decays exponentially with
vertical coordinate. At higher densities the distribution fun
tion is the same Maxwellian but the density variation do
not have a simple analytic form and has to be obtained
merically by an iterative scheme as given in@4#.

Kumaran @3# obtained a correction to the leading ord
distribution function at low densities. It was found from o
simulations~results presented in Sec. IV A! that this theory
gives a good description for the low densities but pred
unphysical values for the moments in the high-density ca
This is primarily due to the fact that the high-density corre
tions to the collision integral were not accounted for. In t
following section we derive the first order correction to t
leading order distribution function obtained in@4# in the
dense limit.
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Due to the inelastic nature of the collisions, the veloc
distribution function is inhomogeneous in the vertical dire
tion. A first correction to the leading order distribution ca
be obtained by expanding it in powers of a parametere,
which was shown to be small and which is a measure of
inhomogeneity in the system. The corrections to the lead
order density and temperature can be written as

r (1)~z!5r0~z!@11er1~z!#, ~4!

T(1)~z!5T0@11eT1~z!#, ~5!

where r0 and T0 are the leading order density profile an
temperature, respectively, in the high-density limit as o
tained in@4#. The first correction to the distribution functio
is written as

f ~z,u!5 f 0~u!@11ef~z,u!#, ~6!

in which the spatial variation is contained in the perturbatio
Kumaran@3# suggested a form for the perturbation as a fun
tion of the lower-order powers of the velocities. We use t
same for the perturbation expansion:

f~z,u!5S T1~z!

2T0
~ux

21uy
222T0!1

A1~z!

T0
1/2

uz

1
A2~z!

T0
~uz

22ux
2!1

A3~z!

T0
3/2

uz
3

2
A1~z!13A3~z!

T0
3/2

ux
2uzD . ~7!

The term proportional toT1 in the above expression repre
sents the variation in the distribution function due to t
variation in the temperature, while the other terms do
alter the temperature. This form is the most general one w
ten in terms of velocity moments up to third order satisfyi
the criteria for~1! normalization,*duf 51; ~2! mean veloci-
ties, ^ux&505^uz&; ~3! temperature,12 ^ux

21uz
2&5T(1), and,

in general, possessing anisotropy^ux
2&Þ^uz

2&; and ~4! third
moment̂ ux

3&50. In addition, every term in the expression
suitably scaled by different powers of the temperatureT0 so
that T1 , A1 , A2, andA3 are dimensionless. The presence
anisotropy is an important feature of this model, which
absent in earlier treatments of granular materials@9#. A de-
scription up to the third order was chosen because this
minimum required to capture the asymmetry of the distrib
tion function. A general methodology to handle such m
ment expansions up to an arbitary order for vibrated gran
materials is given in@10#, in which an analytical solution for
the moments is also obtained up to the third order.

The five unknown functionsr1 , T1 , A1 , A2, andA3 are
determined by the moment expansion method. Conserva
equations for the moments of the velocity distribution fun
tion are determined by multiplying the Boltzmann equati
by products of the components of the particle velocity a
integrating over the velocity space. The steady state con
vation equation for any moment^c i(u)& is
8-2
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]r^uzc i&
]z

1gK r
]c i

]uz
L 5

]cr^c i&
]t

. ~8!

The first term on the left is the convective transport of p
ticles in real space, while the second term represents
transport in velocity space due to the acceleration of the
ticles. The term on the right represents the rate of chang
the distribution function due to the collisional transport
particles in velocity space. Any moment^c i(x)& of a func-
tion c i(u) is defined as

^c i~x!&5E duc i~u! f ~x,u!. ~9!

The high-density corrections to the Boltzmann equat
that we wish to capture come primarily because of the c
rections to the collision integral. The rate of change o
momentc i(u) due to particle collision is obtained by con
sidering a collision between two particles with velociti
u1 ,u2 at positionsx1 ,x2 that results in postcollisional veloci
tiesu18 ,u28 , and integrating over allu1 ,u2 ~see@3# for details
of this calculation!. In @3#, the collisional change of the mo
ments at first order was obtained by setting the pair distri
tion function to unity and considering the effect of variatio
of density over distance compared to the particle diam
through a perturbation of the leading order density profi
While this was shown to correctly predict the dilute system
behavior, in a dense system these approximations do
hold good because of the strong dependence of the pair
tribution function on the density.

The Enskog theory for hard spheres@11# provides a useful
approximation to the Boltzmann equation to describe the
havior of dense systems. Here we derive the Enskog cor
tion for inelastic disks for the moments~see also@12#!. The
total change of a property due to collisions is given by

]cr^c i&
]t

5sg0~z11 1
2 sk!r~z1!r~z2!E du1du2dk~w•k!

3 f ~x1 ,u1! f ~x2 ,u2!@c i~u18!2c i~u1!#, ~10!

whereu1 andu2 are the velocities of the particles centered
x1 and x2, respectively, andk is the unit vector of the line
joining the centers,g0 is the pair distribution function evalu
ated at the point of contact of the two particles, andz is the
vertical component ofx. In the above equation, the center
the second particle is atx25x11sk. The above integral can
then be expanded in a Taylor series aboutx1, and retaining
terms up to first order we get

]cr^c i&
]t

5sE du1du2dk~w•k!Fg0r1r2f 1f 2

1g0r1f 1f 2S sk•
]r2

]r D1g0r1r2f 1S sk•
] f 2

]r D
1r1r2f 1f 2S s

k

2
•

]g0

]r D G@c i~u18!2c i~u1!#,

~11!
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where all the quantities are evaluated atz5z1.
We now examine the four major expressions in the rig

hand side of Eq.~11!. Inserting the expansion of the distr
bution function Eq.~6! in the above equation, the first term
on the right hand side of Eq.~11! correct up to the first orde
quantities ine is

sE du1du2dk~w•k!g0r1r2f 1
0f 2

0@~c i82c i !ue

1e~f11f2!~c i82c i !ue1~c i82c i !u i#, ~12!

where the subscripts e and i denote a consideration of ela
and inelastic collisions, respectively, for the primed va
ables. Since the remaining terms in Eq.~11! areO(e) quan-
tities, each of the distribution functionsf in these terms can
be replaced by the leading order distribution functionf 0. The
third term in Eq.~11! is identically zero, since the leadin
order velocity distribution function is spatially uniform. Th
second and the fourth terms of Eq.~11! should be ignored
here, since these were considered while calculating the le
ing order density distribution function@4#. ~We note that
these two terms were considered in the first order correct
in @3#. It can be shown that these terms are equivalent to
collisional contribution to the fluxes of transport propertie
present in the Enskog theory of dense gases@13#. The virial
correction, included in the derivation of the leading ord
density profile@4#, which is the collisional contribution to
pressure, already incorporates both these terms and h
they have to be omitted here.! The first term in Eq.~12! is
O(1) and the final expression for theO(e) collisional
change is given by

]cr^c i&
]t

5sE du1du2dk~w•k!g0r1r2f 1
0f 2

0

3@1e~f11f2!~c i82c i !ue1~c i82c i !u i#.

~13!

Equations for five functions of the velocitiesuz , uz
2 , ux

2 ,
uz

3 , andux
2uz are considered for the moment generating fun

tions c i . The moments of these functions can be expres
in terms of the functionsT1 , A1 , A2, andA3 as given in Eqs.
~2.22!–~2.26! in @3#.

The terms in the conservation equations Eq.~8! can now
be evaluated. It is convenient to express the resulting eq
tions in terms of a scaled lengthz* 5zg/T0, a scaled velocity
ui* 5ui /AT0, and a scaled densityr0* 5r0(z)T0 /Ng. Here
r0(z) is the leading order density profile obtained from t
high-density solution of@4#. The differential equations for
the unknown variables after some rearrangements are

r0* dz* A11A1dz* r0* 52g0A2

p
r0*

2 , ~14a!

r0* dz* A21A2dz* r0* 52
3

2
Apg0~A114A3!Nsr0*

22r0* A2 ,

~14b!
8-3
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r0* dz* A31A3dz* r0* 52g0S 2

3
ApA2Ns1

1

3
A2

p D r0*
2 ,

~14c!

r0* ~dz* r11dz* T112dz* A2!1~T112A21r1!dz* r0*

52r0* r1 , ~14d!

r0* ~dz* T112dz* A2!1~T112A2!dz* r0*

52Apg0~A116A3!Nsr0*
22r0* ~T112A2!.

~14e!

One important difference in the calculation of the corre
tions to the collisional integral term between the present
the previous analysis@3# is the following. In the previous
analysis, while calculating the various first order correctio
to this term, corrections due to variations in the density a
pair correlation function over distances comparable to
particle diameter were described by using a small param
eG . But, as already discussed above, this correction is es
tially equivalent to the high-density correction to the leadi
order density profile; therefore there are no terms ofO(eG)
appearing in the above equations.

Boundary conditions

The boundary conditions for the five unknown functio
are specified as follows. The local dissipation of energy v
ies asr2, which goes to zero at large distances from the w
Therefore, the local source of energy must go to zero at la
distances. In other words, this means that the vertical flux
energy or both the third order moments go to zero. These
represented by the functionsA1 and A3 which behave
asymptotically as

lim
z→`

A1~z!→0, ~15!

lim
z→`

A3~z!→0. ~16!

The anisotropy in the second moment is given by the fu
tion A2. In the presence of nonvanishing second moments
expect that the collisions between the particles tend to red
this anisotropy. But there is noa priori reason to believe tha
the anisotropy too would go to zero at large distances,
cause the frequency of collisions also goes to zero and h
such an asymptotic condition cannot be imposed on the fu
tion A2 in general.

The total mass condition implies that for the first ord
correction to the density we have

E
0

`

dz* r0* r150. ~17!

In the leading order solution for dense beds@4#, the leading
order source was balanced with the leading order dissipa
The balance of the first order corrections to the source
the dissipation provides one condition:
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S15D1 . ~18!

This source is obtained by computing the average chang
the energy of a particle with the perturbed velocity distrib
tion on colliding with the wall with a sinusoidal velocity
distribution @3#. The first order correction to the source
given ~in a normalized form! by

S1* 5
S1

NgT0
1/2

5
1

8
A2

p
e2g0r0* ~4T118A218r113!uz50 .

~19!

The first order correction to the dissipation is obtained
integrating the local dissipation obtained from the perturb
distribution function over the height of the bed. The norm
ized total dissipation is

D1* 5
D1

NsNgT0
1/2

5Ape~12e2!E
0

`

dz* g0r0*
2S 3

2
T112r1D .

~20!

In the above expressionr0* is the numerically obtained lead
ing order normalized density distribution. Apart from the
conditions we can also obtain a boundary value for the th
moments~in other words, the vertical fluxes of the secon
moments! from the source term at the bottom of the wa
and equate it to the moment of the perturbed distribut
function. Since the wall is smooth there is no change in
tangential velocity of the particle; hence we have for the fl
of ^ux

2& at z50

^ux
2uz&50, ~21!

and the flux of̂ uz
2& at z50 is obtained in the way we cal

culated the leading order source term@4#:

^uz
3&52A2

p
eT0

3/2g0 . ~22!

It is to be noted here that this expression is identical to t
for the leading order source in@4#. This is because in the
leading order the source and dissipation were both ofO(e);
in the first order correction we have anO(e2) balance of
energy in Eq.~18!. The source is equated here to theO(e)
terms in the perturbed distribution function. Therefore w
have

A1~0!52A2

p
g0U

z50

, ~23!

and

A3~0!5
1

3
A2

p
g0U

z50

. ~24!

We observe from first order differential equation Eq.~14a!
that A1 depends only on the functionr0* , whereas we actu-
ally have two boundary conditions for it, viz., those given
Eqs.~15! and~23!. To resolve this we turn to the dilute be
8-4
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solution of the differential equations. Far away from the b
tom wall the bed is dilute and the differential equation can
approximated as

dz* A15A112A2

p
e2z. ~25!

To disallow the exponentially increasing solutions admit
by Eq. ~25!, we have to choose the boundary conditio
given by Eq.~15!. This way the functionA1 is determined
purely by the functionr0* alone and not by its boundar
value given by Eq.~23!. It turns out that the dilute bed so
lution to A1 obtained in@3# exactly satisfies this boundar
condition too.

Equations ~14! are now a set of completely specifie
coupled ordinary differential equations~ODE’s!, the inho-
mogeneous terms of which are functions ofr0* , the leading
order density profile computed numerically in@4#. A method
for obtaining the solutions to these differential equations
merically is given in Appendix B. The predictions of th
theory are compared with the simulation results in Sec.
after we present the simulation methodology in Sec. III.

Further, it can also be shown that the above formulat
for the moments of the distribution function in the hig
density regime reduces to that of the dilute bed formulat
of @3# when the pair distribution function at contactg0, is set
to 1 and the leading order density profiler0* is replaced by
an exponential decay.

III. SIMULATION METHODOLOGY

The hard sphere MD method, also known as event dri
method, is best suited to studying rapid granular flows@14#.
In the simulation studies of vibrated granular materials
ported so far@7,15# a detailed analysis of the lower-orde
moments was not done. Therefore it is necessary to s
these in detail in order to validate the theories proposed

For the simulation, the system described in Sec. II
bounded in the horizontal direction by periodic boundari
Therefore, it is convenient to set the width of the cell in t
horizontal direction to unity, normalizing it by a factor o
Np /N, whereNp is the number of particles chosen for th
simulation. Accordingly all the lengths are normalized
this factor. Except for the treatment of the bottom wall c
lision, the algorithm is that of the standard ED method. W
describe below two simplifications that may be used
model the particle collisions with the bottom wall.

Treatment of the bottom wall

The calculation of the collision time with a bottom wa
oscillating in a sine wave pattern is not trivial because of
nonlinearity of the equation and multiplicity of roots. W
have used two simplifications to simulate the effects of
bottom wall: ~i! a stationarywall with randomly distributed
velocities and~ii ! a triangular~zigzag! approximation to the
sine wave oscillation.

The rationale behind the first method is as follows. T
theory ~presented in@3#; also see a brief discussion in th
01150
-
e

d
s

-

,

n

n

n

-

dy

s
.

-
e
o

e

e

e

following sections! assumes that the particle and wall veloc
ties are uncorrelated and the mean free path of the particl
large compared to the amplitude of the wall oscillation.
this limit, it was shown in@6# that for symmetric distribu-
tions of the wall velocities the leading order source of ene
is related to only the mean square velocity of the bott
wall, irrespective of the form of the distribution. This effe
can be easily captured by assuming that the wall is station
~i.e., fixed at one location! while calculating the collision
time of the particle with the wall, thereby making the calc
lation simpler. While calculating the velocity of the partic
after the collision, a random velocity is assigned to the w
such that the average energy transferred is identical to
for a wall with periodic oscillation. The average source
energy from a wall with a velocity distributionP(U) can
easily be obtained in leading order at low densities@3#. The
average energy input from thestationary bottom wall is
given by

S5E
2Us

Us
dUP~U !E

2`

0

duzE
2`

`

duxr~0! f ~0,u!

32U~U2uz!~2uz!. ~26!

Here r(0) is the particle number density atz50, f is the
velocity distribution of the disks evaluated at the botto
wall, andUs is the characteristic velocity of the static wa
This equation is the same as Eq.~2.9! of @3#, except that the
frequency-of-collision term is just2uz instead ofU2uz ,
because the wall is assumed to be stationary, and the
gration overuz is only up to 0. In the leading order, th
distribution functionf is a Maxwellian,f 0, and the integral
can easily be evaluated in the limite[U0

2/T0!1:

S05A2

p
r~0!AT0

Us
2

2
. ~27!

This is exactly half the source from anoscillatingwall @3#. In
order to simulate an oscillating wall by a stationary wall, w
setUs5A2U0, i.e., the stationary wall is assigned a rando
velocity U5A2 U0 sin(t) whereU0 is the characteristic ve
locity of the oscillating wall andt is a uniformly distributed
random variable in the range@0,2p#. For a collision to occur,
U is chosen such thatU.uz , the particle’s vertical velocity
at the instant of collision.

The second method allows for the effects of the amplitu
of the bottom wall in an approximate way. In this the vertic
position of the wall is replaced by a triangular wave inste
of a sine wave, as shown in Fig. 1, which oscillates with t
same amplitudea0 and frequencyv0 as the sine wave. Suc
an approximation to the vertical position simplifies the c
culation of the collision time of the particle with the wal
But while calculating the postcollision velocity of the pa
ticle the wall assumes the velocity as given by the sine w
at that instant, thereby transferring energy correspondin
that of a sine wave, on the average. In essence, a triang
wave approximation is used only for the position of the w
but a sine wave is used for its velocity. This introduces
small error during the calculation of the collision time of th
8-5
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particle—the possibility of the actual wall velocity~sine! be-
ing smaller than the particle velocity. In such cases, wh
were observed to be rare for most simulations, a rand
velocity is assigned to the wall as was done in the fi
method. It was observed that both these methods gave
same results when the amplitude was small compared to
mean free path.

IV. COMPARISON WITH SIMULATIONS AND
DISCUSSION

It was shown in@3# that a correction to the leading orde
distribution function due to the inelastic collisions resulted
a negative correction to the density at the bottom of the
and a negative correction to the leading order temperatur
was also shown that the second moment in the vertical
rection is greater than that in the horizontal direction. T
experiments of@5# showed the variation of density and th
second moments~horizontal and vertical temperature! along
the height of the bed. But the kinetic theory proposed
Kumaran @3# captured only the qualitative features of th
experiment. This could be due to the fact that the partic
collided inelastically with the side walls as well as with th
bottom wall and these features were not accounted for in
theory. In order to make a meaningful comparison we h
used an ED simulation of a vibrated bed and generated
required profiles of the various lower-order moments.

In this section we first compare the predictions of m
ments from the kinetic theory of vibrated granular materi
for the dilute bed presented in@3#, and then those for the
dense bed theory developed here, with the simulations
have carried out.

A. Low-density „dilute bed… solution

The various limits of validity of the kinetic theory wer
discussed in Sec. II. We choose a parameter set~see Appen-
dix A! that conforms to these limits and also in such a w
that the inhomogeneity in the vertical direction is broug
out. One such suitable parameter set is, for example,Ns
53, e50.57,eG50.02 corresponding to the actual values
$N53, s51, g50.06,e50.91,U051%. This set also gives
a maximum leading order packing fraction of around 0.

FIG. 1. Triangular wave approximation to a sine curve. T
vertical position of the bottom wall is approximated by a triangu
wave with the same amplitude and frequency as the sine wav
shown above. But, while calculating the postcollision velocity
the particle, the wall does not assume a constant velocity but
one given by the corresponding sine wave at that instant.
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which is suitable for the dilute system theory of@3#. The
profiles of the moments are obtained by calculating the
efficients of the series solution suggested in@3#.

The solution to the first order equations predicts a ne
tive correction to the density at the bottom of the bed as
Fig. 2, and a negative correction to the temperature, wh
asymptotically reaches a constant value. This decreas
density is because of the higher kinetic energy of partic
due to the energy source at the bottom of the bed. After
initial increase the density decays exponentially to zero
cause of the action of gravity. Both these effects are captu
by the theory as can be seen in the figure.

The theory also predicts that the mean square velocit
the vertical direction is more than that in the horizontal
rection. This is due to the fact that the bottom wall is smoo
and momentum is transferred to the particle only in the v
tical direction during a collision. From Fig. 3 we observe th
the temperatures in the two directions as well as the ani
ropy from the kinetic theory agree well with the simulation
According to the theory the temperature saturates asymp
cally to a constant value. In the simulations it is observ
that there is a slight increase in the temperature. An incre
in temperature was also reported in@16# in deep bed simula-
tions. This effect is essentially a higher-order correction
the solution considered here. Such an increase in the t
perature can be described just by the equations of hydro
namics, where a temperature dependent conductivity is c
sidered, and terms ofO(e2) are retained in the energ
equations. We have observed from our simulations that s
an increase occurs only in very dilute beds, and whene is
large. This agrees with the balances in hydrodynamic the
when theO(e2) terms in the energy equation become co
parable to the dissipation term.

r
as

f
e

FIG. 2. First order~dilute!: Packing fraction plotted against nor
malized height for Ns53, e50.57, eG50.02. Line—theory,
points—simulation. Theory corresponds to the first order series
lution @3#.
8-6
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There is also an anisotropy in the third moments, wh
represent the flux of energy, as can be seen in Fig. 4, S
the energy is transferred only in the vertical direction, t
flux of energy corresponding to the second moment in
horizontal direction,̂ ux

2uz&, is zero at the bottom as can b
seen in the figure, whereas the moment^uz

3& has a finite
value at the bottom. Due to collision between the partic

FIG. 3. First order~dilute!; anisotropy in the temperature: Th
plot shows both vertical and horizontal temperatures correspon
to Fig. 2. The top curves are the vertical temperature and the bo
ones are the horizontal temperature. Theory corresponds to the
order series solution@3#.

FIG. 4. First order~dilute!; anisotropy in the third moment: Th
plot shows botĥ ux

2uz& ~bottom curves! and^uz
3& ~top curves! cor-

responding to Fig. 2. Theory corresponds to the first order se
solution @3#.
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the energy is transferred from the vertical to the horizon
direction, which can be seen as an increase in the for
while the latter decreases. In addition to this, because of
dissipation of energy in the bed, both these moments t
asymptotically to zero at large distances from the bottom

The oscillations in the temperature and the third mome
at large heights are due to the dilute bed of particles
therefore insufficient number of realizations for calculati
averages. The differences in the predictions of the theory
the simulations are within the errors of the approximation
the asymptotic analysis. The differences in these sets of
ures seem very prominent because of the choice of a h
value of e50.57. It should be noted that no fitting param
eters were used to obtain the predictions.

B. High-density „dense bed… solution

As mentioned before, the dilute bed solution predicts u
physical values for the moments and it is necessary to c
sider the corrections derived in this paper. Equations~14! are
a set of completely specified coupled ODE’s, the inhomo
neous terms of which are functions ofr0* , the leading order
density profile obtained numerically in@4#. Therefore, the
solution to the differential equations can be obtained only
a numerical method. One such method that we have use
given in Appendix B, where we have used a series expan
to obtain the solution. The nature of the profiles predicted
the dense bed theory is qualitatively similar to those obtai
in the dilute bed.

For the simulation, we chose a parameter set that yie
the following set of nondimensional numbers in the lead
order: Ns53, e50.2, and a maximum packing fractio
around 0.5 where the high-density effects become import
the actual parameter set being$N53, s51, g51, e50.97,
a050.1,v059.7% ~see Appendix A for a note on the choic
of parameters!.

The leading order density profile for this system is o
tained with the method given in@4#. The correction to the
leading order density in terms of packing fractionn (1) ob-
tained in the present analysis is shown in Fig. 5. The va
tions of the density far away from the bottom have be
captured quite well by the theory. Near the bottom wa
there is a slight deviation from the simulation results due
the limits of the perturbation expansion. It can also be s
that the profile from the dilute bed theory is incorrect ne
the bottom wall. Whereas the dilute bed theory predi
nearly negative values for the density, the values of the d
sity from the dense bed theory are reasonably close to
actual values.

The second moments of the distribution function a
shown in Fig. 6, which also shows the anisotropy in t
horizontal and vertical directions, as observed in the dil
bed cases. In comparison with the profiles obtained from
dilute bed theory those from the dense bed theory do bette
predicting the actual values. The profiles, however, show
decrease at moderate bed heights before reaching the
stant value. But since even this offset is within the errors
the perturbation expansion, it is difficult to associate a
physical implications with this behavior.
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It was mentioned in the subsection of Sec. II that there
no compelling reason to impose a condition of vanish
anisotropy for a nonvanishing second moment. It is also
served from the simulations that the anisotropy does not v
ish at large distances from the bottom wall and such a fea
is captured by the theory as well. However, in the cases
deep beds, characterized by a higher value of the param

FIG. 5. First order ~dense!: Density profile for Ns53, e
50.26 compared with simulation data and with the profile obtain
from the dilute bed theory@3#. The dilute bed theory predicts value
close to zero, much lower than the actual density profile.

FIG. 6. First order~dense!: Second moments of the distributio
function ~temperature! profiles forNs53, e50.26 compared with
simulation data. The vertical temperature is greater than the h
zontal and there is a finite anisotropy even at large distances
the bottom wall.
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Ns, the regions higher up in the bed no longer ‘‘see’’ th
bottom wall anisotropy due to the higher frequency of int
particle collisions compared to particle-wall collisions. Th
can be seen in the simulation data forNs515 shown in Fig.
8 below.

The third moments of the distribution function, whic
correspond to a vertical flux of the energy are shown in F
7, which also captures the anisotropy in the two directio
The predicted third moments from the dilute bed theory
this case do not turn out to be very different from those
the dense bed theory as was the case with the density an
second moments, and they are therefore omitted in this fig
for the sake of clarity.

From the above comparisons we observe that the theo
ical analysis of the correction to the distribution function
high densities presented here gives reasonable prediction
the lower-order moments of the distribution function. B
there is an important limitation of this theory which we di
cuss below.

The correction to the distribution function as presented
@3# and this paper is ofO(e). The correction also includes
parameterNs that arises in some of the terms in the collisio
integral, as can be seen in Eq.~14!. In the dense bed theor
this parameter is modified by an additional factor, givi
finally g0Ns, which can be seen in the matrix representat
of the integral in Eq.~B4!. These quantities are assumed
be of O(1) in the O(e) first order balance and henc
g0Ns;O(1). In a dense and deep bed case, therefore,
theoretical predictions for the first order corrections could
large becauseg0Ns could beO(1). Theeffect of this can be
seen in Fig. 8, where the second moments for one such
are shown to poorly predict the simulation values. We ha
also plotted the relative correction to the second mom
obtained from the theory againstNs in Fig. 9. We infer from
this figure that the theory is valid only for high densities a

d

ri-
m

FIG. 7. First order~dense!: Third moments of the distribution
function ~flux of energy! profiles for Ns53, e50.26 compared
with simulation data. The anisotropy is significant near the botto
8-8
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BEHAVIOR OF LOWER-ORDER MOMENTS IN A DENSE . . . PHYSICAL REVIEW E 63 011508
for low values ofNs. We recall that the theory is also lim
ited by a lower value ofNs, as mentioned in Sec. II.

V. CONCLUSIONS

A kinetic theory to describe the behavior of dense
brated granular materials was developed. The homogen
Maxwell velocity distribution was expanded in a small p
rameter to account for the dissipative effects. In this per
bation expansion, the high-density effects are accounted
in the leading order density distribution as well as in t
collision integral to first order. The lower-order moments
the velocity distribution function up to third order were d
termined using the moment expansion method.

An approximate and simple method to deal with a vibr
ing wall in an event driven simulation was presented. T
behavior of lower-order moments of the distribution functi
in a vibrated granular bed were studied using this meth
Theoretical predictions of the moments from a dilute b
theory of @3# were compared with the simulation data a
were found to be in good agreement with it. The main co
clusions from the simulation and the dilute and dense
kinetic theories are as follows.~a! The moments of the dis
tribution function show an anisotropy in the temperatu
~second moment! and flux of energy~third moment! due to
the anisotropic nature of the source of energy.~b! The an-
isotropy exists at higher densities also, although for dee
beds it becomes much smaller.~c! The kinetic theory cap-
tures the anisotropy and gives a fairly good quantitat
agreement with the simulation results. It should be noted
insofar as the theory does not rely on any data from

FIG. 8. First order~dense!, high Ns: Second moments of the
distribution function in a deeper bed corresponding toNs515 and
e50.2 compared with simulation. The anisotropy is negligible
can be seen from the simulation data. The predictions from
theory are poor due to the fact that for high values ofNs the
corrections to the distribution function are no longer small~see Fig.
9 below!.
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simulation, such as boundary conditions for the fluxes, a
has no adjustable parameters, the prediction from first p
ciples leads to a better understanding of some principal
tures of the underlying physics. It should also be noted th
because the theory is perturbative and approximate onl
the lower-order moments~i.e., ignoring coupling with the
higher-order moments!, the comparison with simulation is
not exact.~d! The theory of expanding the distribution func
tion in velocities up to third order holds good only in
limited range ofNs; in particular it becomes invalid for dee
and dense beds. A point of distinction to be noted here is
a deep bed need not necessarily be dense, i.e., there can
parameter set for which the density is low even whileNs is
large; such a case can still be handled by the theories of@3#.

Anisotropies were also observed by us in deep bed si
lations of disks that displayed wavelike surface patterns,
though the nature of the anisotropy was more pronoun
even in the shape of the distribution function itself—the v
tical distribution was bimodal and the horizontal distributio
had a single peak and exponential tails. Could the prese
of anisotropy be an important feature giving rise to an ins
bility in one direction? A stability analysis of the solutio
from the present analysis might help resolve this quest
The usual models based on hydrodynamic equations do
take this anisotropy into account.

APPENDIX A: A NOTE ON COMPARISON WITH
SIMULATION DATA

The theories presented in@3# and the one developed her
clearly bring out a few nondimensional numbers which a
the only relevant quantities in the physical description of
system. To compare the predictions of the theory with sim
lations, we choose these parameters such that they con

s
e

FIG. 9. Relative error in the correction to the second mome
plotted againstNs. This figure clearly shows that the theory
limited to Ns;O(1), above which the corrections to the distribu
tion function itself becomeO(1).
8-9
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to the limits of validity of the theory. The theory is valid i
the following limits.

Collision frequency.A spatially uniform temperature, fo
the leading order, can be obtained in two limits, one in wh
the ratio of frequencies of particle-particle and particle-w
collisions is very large@3# and one in which it is very smal
@17#. Here we consider the former case, where the parti
particle collision frequency per unit width of the bed
Nsr0ApT0 and the frequency of particle-wall collision pe
unit width is r0AT0 /2p. For their ratio to be large we hav

Ns@
1

A2p
. ~A1!

Length scales.While obtaining the leading order solutio
it was assumed that the length scale of variation of proper
is very large compared to the particle diameter, orT0 /g
@s. A small parameter was defined such that

eG[
gs

2T0
!1. ~A2!

We also have from Eq.~1!

e[
U0

2

T0
5

pNs~12e2!

2A2
!1. ~A3!

In addition, the amplitude of bottom wall vibrations is a
sumed to be small compared to the mean free path, so
the particle effectively experiences a randomly oscillat
wall, i.e., when considering the second method~triangular
wave! of simulating the bottom wall, the amplitude of vibra
tion a0 is chosen so as to be much less than the mean
path near the wall. The characteristic velocity of the bott
wall would then beU05a0 v0, wherev0 is the frequency of
vibration. Two free parameters out of the five physical p
rameters relevant to the theory are set to unity in the ab
equations and the rest are set according to the above e
tions in different ranges as required.

APPENDIX B: NUMERICAL SOLUTION FOR DENSE
BEDS

Here we outline a numerical method to solve Eqs.~14!,
which are a set of coupled linear first order inhomogene
ODE’s. Kumaran@3# obtained a series solution to these equ
tions in the low-density limit. Since the functionr0* is not
known analytically, numerical methods have to be used
solve for r0* in the leading order and then this solution
used to solve the equations for the variables in the first o
correction. One such method that was tried is the shoo
method in which the equations are integrated using
asymptotic values atz→` from the dilute bed solution. This
procedure was unstable to integration at high densities
the bottom of the bed. We therefore used a series solutio
obtain the solution numerically.

For convenience Eqs.~14! can be rearranged in the form

Mv8~z!1Av~z!5b, ~B1!
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where,

v5@A1 ,A2 ,A3 ,r1 ,T1#T ~B2!

are the unknown functions,

M5F 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 2 0 1 1

0 2 0 0 1

G , ~B3!

A5F t1 0 0 0 0
3
2 t3 t111 6t3 0 0

0 2
3 t3 t1 0 0

0 2t1 0 t111 t1

t3 2t112 6t3 0 t111

G , ~B4!

and

b5F2A2

p
t2 ,0,2

1

3
A2

p
t2 ,0,0GT

, ~B5!

with the simplifications

t1[
dz* r0*

r0*
, t2[g0r0* , t3[ApNst2 . ~B6!

In the above expressionst1 and t2 give rise to inhomoge-
neous terms that depend only on the leading order den
profile. The leading order density profile is first obtain
numerically in the high-density limit using the procedu
outlined in @4#. The numerical data points are then repr
sented in a convenient approximate functional form, such
in an orthogonal set of polynomials, to simplify the calcul
tion shown below. Since the functionst1 andt2 are exponen-
tially decaying, Laguerre polynomials were found to rep
sent the data well. The unknown functionsAj are expanded
in the series

Ai5 (
m50

M

Aimxm, i 51, . . . ,5, ~B7!

wherex5e2z and i 54,5 represent the variablesr1 andT1,
respectively.~A Laguerre polynomial expansion for thes
functions was not suitable because each function decays
ferently.! With these it is straightforward to obtain the sol
tion for the variables, along with the boundary condition
using the weighted residual method.

The moments of the distribution function obtained usi
this method for one case are given in Sec. IV. For the c
we have considered in this paper, i.e.,Ns53 ande50.2, a
tenth order approximation,M510, gives convergent values
8-10
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