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Behavior of lower-order moments in a dense vibrofluidized granular material
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The behavior of the lower-order moments of the velocity distribution function for a system of inelastic
granular disks driven by vertical vibrations is studied using simulations and kinetic theory. A kinetic theory is
developed on the lines of the Enskog correction to dense gases to account for the high-density corrections in
granular materials. Using a perturbative expansion for the distribution function, a numerical solution to the
lower-order moments is obtained for the high-density case. Event driven simulations are carried out on a
system of granular disks, driven by a vibrating wall, to investigate the profiles of the moments. An approximate
and simple method to deal with a vibrating wall in an event driven algorithm is presented. Theoretical
predictions of the lower-order moments of the velocity distribution function from low- and high-density kinetic
theory of vibrofluidized granular materials are compared with the simulation data. In both dilute and dense
cases the theory shows a good agreement with the simulation results.
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[. INTRODUCTION Hard sphere molecular dynami@gD) simulation, which
has come to be known also as event driVED) simulation,
The dynamics of vibrated granular materials, which ex-is a useful technique for validating the theoretical predictions
hibit stationary states as well as waves and complex patterni) detail. Similar previous simulation studies, such[@
have been of some interest in recent years as demonstratBgve not reported measurements of the lower-order mo-
by the experiment$l]. In order to describe these diverse ments. We have performed ED simulations to obtain the val-
states of the material, it is necessary to derive macroscopiées of the lower-order moments and compare them with the
descriptions by averaging over the microscopic details of th&inetic theories in different density regimes.
motion and interactions between individual grains. The the- The kinetic theory[3] was derived only in a dilute bed of
oretical description of such systems is complicated by théranular materials. At higher densities this theory predicts
fact that they are driven dissipative systems characterized bynphysical values for densities and other moments of the
highly inelastic collisions and hence the validity of the equa-distribution function. This is because for high densities there
tions of hydrodynamics is not clear at pres&]]t However, is a correction to the Boltzmann equation itself, which is well
it is possible to describe one idealized situation, where théescribed by the approximate theory of Enskog for dense
dissipation due to inelastic collisions is small compared tdhard spheres. Using this, the leading order temperature and
the energy of a particle and the amplitude of wall oscillationsdensity profile were determined in a dense p#ld The scal-
is small compared to the mean free path, as was shown in tH&g found using this theory compared well with that from the
kinetic theorieg3,4]. Such a description might be one start- Simulations of 8]. In the present work, a perturbation expan-
ing point where we can ascertain with some confidence th&ion about this leading order solution is carried out to include
rigor of the approach used. The present work is a continuathe effects of dissipation in the Enskog equation, as was done
tion of such an approach. for the Boltzmann equation i{8]. The set of equations in the
An experimental study of a vibrated fluidized bed waspresent theory reduce to that[@f in the appropriate limit of
carried out by Warket al.[5]. A theoretical calculation of the low densities. We also make comparisons with the data from
distribution function in a vibrofluidized bed was carried out the ED simulations of dense beds.
by Kumaran[3,6] in the limit of low dissipation, where the ~ In Sec. Il we first develop the perturbative theory for high
coefficient of restitutiore is close to 1. In this limit, a per- densitiesdense bed We will also indicate briefly the physi-
turbation approximation was used, where the energy dissip&al meanings of the assumptions made in this theory, stress-
tion is neglected in the leading order approximation to theng the limits of its validity. In Sec. Ill, we briefly describe
Boltzmann equation, and the system resembles a gas at eqtfte simulation methodology used, particularly a simplified
librium in a gravitational field. The velocity distribution algorithm that is used to describe the vibrating bottom wall.
function is a homogeneous Maxwell-Boltzmann distribution,A comparison of the predictions of the lower-order moments
and the density decreases exponentially from the vibratinfom both the dilute bed and dense bed theories follows in
surface. The first order correction to the distribution due toSec. IV, before we conclude with the limits of validity of the
dissipative effects was calculated using the moment exparierturbative theory.
sion method, and the results were found to be in qualitative
agreement with the experiments of Watral. [5]. The aim

. L Il. PERTURBATIVE THEORY FOR DENSE BEDS
of the present work is twofold—to compare the predictions

of the dilute bedlow-density kinetic theory with numerical The system consists of a bed of circular disks of diameter
simulations and to develop a similar theory to include high-o colliding inelastically with each other in a gravitational
density effects. field g, driven by a vibrating surface at the bottom. The
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vibrating surface has a periodic amplitude function with am- Due to the inelastic nature of the collisions, the velocity
plitude a,, frequencywg, and the characteristic velocity,.  distribution function is inhomogeneous in the vertical direc-
The total mass of the bed is characterized by a pararhgter tion. A first correction to the leading order distribution can
which is the total number of disks per unit width of the bed.be obtained by expanding it in powers of a parameter
The system is infinite in the horizontal directimpand semi-  which was shown to be small and which is a measure of the
infinite in the vertical directiorz. There is a source of energy inhomogeneity in the system. The corrections to the leading
at the vibrating surface due to particle collisions with theorder density and temperature can be written as

surface, and the dissipation is due to inelastic collisions be-

tween the particles, which is modeled by a constant coeffi- pM(2)=p"(2)[1+ €ep1(2)], 4
cient of restitutione. o
Before we go on to develop the perturbative kinetic TH(2)=To[1+ €Ty (2)], ®)

theory for dense beds, we first discuss briefly a few key 0 . . '
assumptions that have led to the leading order solution fo¥vherep and T, are the leading order density profile and

; : : : . emperature, respectively, in the high-density limit as ob-
vibrated beds ”[3’.4]' We identify a s_mall param_eter n the tained in[4]. The first correction to the distribution function
process and use it for the perturbation expansion. It is po

sible to obtain a homogeneous solution to the velocity distri-S Written as

bution function in the Boltzmann equation in the limit of low f(z,u)=fo(W)[1+ep(z,u)], (6)
dissipation under the following self-consistent assumptions.
The constancy of the temperatulg is obtained by requiring in which the spatial variation is contained in the perturbation.
that the source and dissipation of energy during a collisiorKumaran[3] suggested a form for the perturbation as a func-
are small compared to the temperat(mean kinetic energy tion of the lower-order powers of the velocities. We use the
of the particles The increase in energy of a particle due to asame for the perturbation expansion:
collision with the wall moving with a velocity is O(Ué). )

Tq(z

Therefore, we require thdl3<T, or in terms of a small Aq(2)

— 2 2_
parameter P(z,u)= 2T, (Uit uy=2To) + TV Uz
U(Z) AZ(Z) 2 2 AS(Z) 3
= —<< + — +
€ TO<1. (1) T (uz—uy) T3 u;
The dissipation of energy due to particle-particle collisions A1(2)+3A3(2) ,
varies as~Ty(1—e?) and hence - 1312 UsUz |- (7)
0
(1-e*)<L1. (2)  The term proportional t@; in the above expression repre-

sents the variation in the distribution function due to the

In this limit the system resembles a gas of hard disks invariation in the temperature, while the other terms do not
equilibrium in a gravitational field and the velocity distribu- alter the temperature. This form is the most general one writ-
tion is a Maxwell-Boltzmann distribution, ten in terms of velocity moments up to third order satisfying
the criteria for(1) normalization,/duf=1; (2) mean veloci-
ties, (u,)=0=(u,); (3) temperature(u2+uZ)=T®, and,
in general, possessing anisotrofy?) #(uZ); and (4) third
momentu2)=0. In addition, every term in the expression is
whereT, is the leading order temperature, which is obtainedsuitably scaled by different powers of the temperafligeso
by a macroscopic balance of the source and total dissipatiothat T;, A;, A,, andA; are dimensionless. The presence of
In the dilute case the density decays exponentially with thenisotropy is an important feature of this model, which is
vertical coordinate. At higher densities the distribution func-absent in earlier treatments of granular materifls A de-
tion is the same Maxwellian but the density variation doesscription up to the third order was chosen because this the
not have a simple analytic form and has to be obtained numinimum required to capture the asymmetry of the distribu-
merically by an iterative scheme as given[4]. tion function. A general methodology to handle such mo-

Kumaran[3] obtained a correction to the leading order ment expansions up to an arbitary order for vibrated granular
distribution function at low densities. It was found from our materials is given ifi10], in which an analytical solution for
simulations(results presented in Sec. IV) Ahat this theory the moments is also obtained up to the third order.
gives a good description for the low densities but predicts The five unknown functiong,, T1, A1, Ay, andA; are
unphysical values for the moments in the high-density caseletermined by the moment expansion method. Conservation
This is primarily due to the fact that the high-density correc-equations for the moments of the velocity distribution func-
tions to the collision integral were not accounted for. In thetion are determined by multiplying the Boltzmann equation
following section we derive the first order correction to the by products of the components of the particle velocity and
leading order distribution function obtained [4] in the integrating over the velocity space. The steady state conser-
dense limit. vation equation for any momexity;(u)) is

fO(u): e_UZ/ZTO, (3)

277T0
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97 — (8 We now examine the four major expressions in the right

ap{uyi) . < a_lpl> _ Aep{ i) where all the quantities are evaluatedzatz;.
ot

p
J . - - S
t hand side of Eq(11). Inserting the expansion of the distri-

The first term on the left is the convective transport of par-bution function Eq.(6) in the above equation, the first term
ticles in real space, while the second term represents th the right hand side of E¢11) correct up to the first order
transport in velocity space due to the acceleration of the paiguantities ine 1s

ticles. The term on the right represents the rate of change of

the distribution function due to the collisional transport of 050 /7 _

particles in velocity space. Any momet;(x)) of a func- Uf dusduzdk(w-k)Gopsp2fafal (4 =¥l

tion ¢;(u) is defined as

+e( it b)) (W —)let (W — ¥ 1], (12

(i(x))= f dug;(u)f(x,u). (9)  where the subscripts e and i denote a consideration of elastic
and inelastic collisions, respectively, for the primed vari-
The high-density corrections to the Boltzmann equatiorables. Since the remaining terms in Efjl) areO(e€) quan-
that we wish to capture come primarily because of the cortities, each of the distribution functiorisn these terms can
rections to the collision integral. The rate of change of abe replaced by the leading order distribution functi8nThe
momenty;(u) due to particle collision is obtained by con- third term in Eq.(11) is identically zero, since the leading
sidering a collision between two particles with velocities order velocity distribution function is spatially uniform. The
u, U, at positionsx; ,x, that results in postcollisional veloci- second and the fourth terms of EG.1) should be ignored
tiesu;,u5, and integrating over all,,u, (see[3] for details here, since these were considered while calculating the lead-

of this calculatio. In [3], the collisional change of the mo- iNg order density distribution functiofd]. (We note that
ments at first order was obtained by setting the pair distribu_these two terms were considered in the first ordgr corrections
tion function to unity and considering the effect of variation in [3]. It can be shown that these terms are equivalent to the
Of density over distance Compared to the partic'e diamete@O”|S|0n.a| Contl’lbutlon to the ﬂUXeS Of transport propertles,
through a perturbation of the leading order density profile Present in the Enskog theory of dense g44&} The virial
While this was shown to correctly predict the dilute system’scorrection, included in the derivation of the leading order
behavior, in a dense system these approximations do n&€nsity profile[4], \_/vhlch is the collisional contribution to
hold good because of the strong dependence of the pair digressure, already incorporates both these terms and hence
tribution function on the density_ they have to be omitted he)'eThe first term in Eq(lZ) is

The Enskog theory for hard sphefdd] provides a useful O(1) and the final expression for th®(e) collisional
approximation to the Boltzmann equation to describe the bechange is given by
havior of dense systems. Here we derive the Enskog correc-

tion for inelastic disks for the momentsee alsd12]). The dep(¥i) _ J . 0.0
total change of a property due to collisions is given by ot o | duyduzdk(w-k)gopsp2fifs
dep(¥i X[+ e(prt d2) (P — )|t (% — )il
L) _ gz, + 2akp(zn(z2) f du dugdk(w-k) sl
at (13
XF(xq,upfxe,u)[di(u) = di(up], (10 Equations for five functions of the velocities, uZ, uz,

ui, anduiuZ are considered for the moment generating func-
x, andx,, respectively, and is the unit vector of the line U1ONS #i. The moments of these functions can be expressed
joining the centersgy, is the pair distribution function evalu- N t€rms of the function3y, A;, Az, andAs as given in Egs.
ated at the point of contact of the two particles, arid the (2.22—(2.26 n [3]. . .

vertical component of. In the above equation, the center of 1€ t€rms in the conservation equations £8).can now

the second particle is ab=x, + k. The above integral can be evaluated. It is convenient to express the resulting equa-

then be expanded in a Taylor series aboytand retaining tions in terms of a scaled lengti fzg/To, a scaled velocity

- u¥=u;/\T,, and a scaled density =p°(z)To/Ng. Here
terms up to first order we get b ' . >I¥o = p o/Ng
p-(2) is the leading order density profile obtained from the

whereu,; andu, are the velocities of the particles centered at

() high-density solution of4]. The differential equations for
0t :Uf du;du,dk(w-K)| gop1p2fifz the unknown variables after some rearrangements are
9p2 afz * * 2 *2
+9opafafa| ok- == +gop1pafa| ok- —= podzx At Ardzpo =290\ —Po (143
Fpspafita] oo | y(ug) )] 3
Pipaiata| 9o gr | [FATT T IR P dox Ao Aoty pl = — 5\ mGo(Ar+ 4Ag)NTp§ 2= pi As,
(11 (14b)
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2 1 /2
5\/;A2N<T+ 5\[;) P57,

(140

* * Sj_: Dl' (18)
podxAs+Azdxps=—0o

This source is obtained by computing the average change in
the energy of a particle with the perturbed velocity distribu-
tion on colliding with the wall with a sinusoidal velocity

* *
P0 (Azeprt dpx Tat 2dx Ag) +(Ty+2A2+ ) dzx pg distribution [3]. The first order correction to the source is

=—pip1, (14d  given(in a normalized formby
PE (A T+ 200 Ag) + (T + 2A5) s o 12,
Sl_w—g € Jops (4T1+8A;+8p1+3) 0.
==V go(Ar+ BAgNopf 2= pf (T1+2Ay). ’ (19
(149

The first order correction to the dissipation is obtained by

One important difference in the calculation of the correc-iNtégrating the local dissipation obtained from the perturbed
tions to the collisional integral term between the present anistribution function over the height of the bed. The normal-
the previous analysig3] is the following. In the previous ized total dissipation is
analysis, while calculating the various first order corrections

to this term, corrections due to variations in the density and~«+ _ Dy _ 2 Jx " *2( 3 )

. a . X =—F—=\7me(l—e dz =T1+2pq].
pair correlation function over distances comparable to the * NoNgT? me( ) 0 YoPo |3 11T 2Pt
particle diameter were described by using a small parameter (20)

€g . But, as already discussed above, this correction is essen- . _ _ _
tially equivalent to the high-density correction to the leading!n the above expressigsf, is the numerically obtained lead-
order density profile; therefore there are no term®¢tg)  ing order normalized density distribution. Apart from these

appearing in the above equations. conditions we can also obtain a boundary value for the third
moments(in other words, the vertical fluxes of the second
Boundary conditions momentg from the source term at the bottom of the wall,

» ] ~and equate it to the moment of the perturbed distribution
The boundary conditions for the five unknown functions fnction. Since the wall is smooth there is no change in the

are spezcified as follows. The local dissipation of energy variangential velocity of the particle; hence we have for the flux
ies asp®, which goes to zero at large distances from the wall ¢ <u2> atz=0
X

Therefore, the local source of energy must go to zero at large

distances. In other words, this means that the vertical flux of (ufuz>=0, (21)
energy or both the third order moments go to zero. These are

represented by the functiond; and A; which behave and the flux of(uZ) atz=0 is obtained in the way we cal-
asymptotically as culated the leading order source tefn:

lim Ay(z)—0, (15) 2
e (U3)=2\/ —€T"0. (22

lim As(z)—0. (16)

Z—®©

It is to be noted here that this expression is identical to that
for the leading order source i#]. This is because in the

The anisotropy in the second moment is given by the funcl€ading order the source and dissipation were bot®(d);

- ; 2
tion A,. In the presence of nonvanishing second moments wi! the first order correction we have @(e) balance of
expect that the collisions between the particles tend to redudg"€roy in Eq.(18). The source is equated here to B¢e)
this anisotropy. But there is rpriori reason to believe that terms in the perturbed distribution function. Therefore we

the anisotropy too would go to zero at large distances, bel@ve

cause the frequency of collisions also goes to zero and hence 5
such an asymptotic condition cannot be imposed on the func- A, (0)=— \ﬁgo , (23
tion A, in general. T 1,20
The total mass condition implies that for the first order
correction to the density we have and
w 1 /2
| azpsni-o i AL0)= 5/ ~0 (24
0 ™ z=0

In the leading order solution for dense bdd$ the leading We observe from first order differential equation Etj4a
order source was balanced with the leading order dissipatiothat A; depends only on the functigsfy , whereas we actu-
The balance of the first order corrections to the source andlly have two boundary conditions for it, viz., those given by
the dissipation provides one condition: Egs.(15) and(23). To resolve this we turn to the dilute bed
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solution of the differential equations. Far away from the bot-following section$ assumes that the particle and wall veloci-
tom wall the bed is dilute and the differential equation can bdies are uncorrelated and the mean free path of the particles is

approximated as large compared to the amplitude of the wall oscillation. In
this limit, it was shown in[6] that for symmetric distribu-

2 tions of the wall velocities the leading order source of energy

dz*AlelJrz\ﬁez (29 s related to only the mean square velocity of the bottom

wall, irrespective of the form of the distribution. This effect

To disallow the exponentially increasing solutions admitted®@n be easily captured by assuming that the wall is stationary
by Eq. (25), we have to choose the boundary conditions('-e-' fixed at one locatignwhile calculating the collision
given by Eq.(15). This way the functiond, is determined time of the particle with the wall, thereby making the calcu-
purely by the functionp® alone and not by its boundary lation simpler. While calculating the velocity of the particle
value given by Eq(23). It turns out that the dilute bed so- after the collision, a random velocity is assigned to the wall

lution to A, obtained in[3] exactly satisfies this boundary such that th? average energy Fransferred Is identical to that
condition t0o. for a wall with periodic oscillation. The average source of

: e from a wall with a velocity distributio®(U) can
Equations(14) are now a set of completely specified energy . ) . :
coupﬂed ordinary differential equatior(@DE’s), t)r/1e ?nho— easily be obtained in leading order at low densifigs The

mogeneous terms of which are functionspdf, the leading ayera%e energy input from thetationary bottom wall is
order density profile computed numerically[#]. A method given by
for obtaining the solutions to these differential equations nu- Us
merically is given in Appendix B. The predictions of this S—f
theory are compared with the simulation results in Sec. IV,
after we present the simulation methodology in Sec. Il X2U(U—u,)(—u,). (26)
Further, it can also be shown that the above formulation
for the moments of the distribution function in the high- Here p(0) is the particle number density at=0, f is the
density regime reduces to that of the dilute bed formulationelocity distribution of the disks evaluated at the bottom
of [3] when the pair distribution function at contag, is set  wall, and U, is the characteristic velocity of the static wall.
to 1 and the leading order density profjig is replaced by  This equation is the same as E8.9) of [3], except that the

-u

dUP(U)ﬁO duzf du,p(0)f(0,u)

an exponential decay. frequency-of-collision term is justu, instead ofU—u,,
because the wall is assumed to be stationary, and the inte-
I. SIMULATION METHODOLOGY gration overu, is only up to 0. In the leading order, the

distribution functionf is a Maxwellian,f°, and the integral

The hard sphere MD method, also known as event driveRan easily be evaluated in the limit= U2/ Ty<1:
method, is best suited to studying rapid granular flo4.
In the simulation studies of vibrated granular materials re- 2 u?
ported so far{7,15] a detailed analysis of the lower-order So= \ﬁp(O)\/T—O =,
moments was not done. Therefore it is necessary to study m 2
these in detall in order to validate the theories proposed. . I

For the simulation, the system described in Sec. Il iSTh|s is exactly half the source from ascillatingwall [3]. In

bounded in the horizontal direction by periodic boundaries.Order to simulate an oscillating wall by a stationary wall, we

Therefore, it is convenient to set the width of the cell in theS&tUs= V2Ug, ie., the stationary wall is assigned a random
horizontal direction to unity, normalizing it by a factor of Velocity U=12Ugsin®) whereUy is the characteristic ve-
N, /N, whereN, is the number of particles chosen for the locity of the oscillating wall and is a uniformly distributed
simulation. Accordingly all the lengths are normalized by'andom variable in the rang®,2m]. For aycolhspn to occur,
this factor. Except for the treatment of the bottom wall col- U iS chosen such thai>u,, the particle’s vertical velocity

lision, the algorithm is that of the standard ED method. Weat the instant of collision. _
describe below two simplifications that may be used to The second method allows for the effects of the amplitude

model the particle collisions with the bottom wall. of the bottom wall in an approximate way. In this the vertical
position of the wall is replaced by a triangular wave instead
of a sine wave, as shown in Fig. 1, which oscillates with the
same amplitude, and frequencyw, as the sine wave. Such
The calculation of the collision time with a bottom wall an approximation to the vertical position simplifies the cal-
oscillating in a sine wave pattern is not trivial because of theculation of the collision time of the particle with the wall.
nonlinearity of the equation and multiplicity of roots. We But while calculating the postcollision velocity of the par-
have used two simplifications to simulate the effects of theicle the wall assumes the velocity as given by the sine wave
bottom wall: (i) a stationarywall with randomly distributed at that instant, thereby transferring energy corresponding to
velocities andii) a triangular(zigzag approximation to the that of a sine wave, on the average. In essence, a triangular
sine wave oscillation. wave approximation is used only for the position of the wall
The rationale behind the first method is as follows. Thebut a sine wave is used for its velocity. This introduces a
theory (presented i 3]; also see a brief discussion in the small error during the calculation of the collision time of the

(27)

Treatment of the bottom wall
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FIG. 1. Triangular wave approximation to a sine curve. The 8,
vertical position of the bottom wall is approximated by a triangular O
wave with the same amplitude and frequency as the sine wave, as 0.02 | -
shown above. But, while calculating the postcollision velocity of °
the particle, the wall does not assume a constant velocity but the 001 b °o i
one given by the corresponding sine wave at that instant. ’ 0\‘5\
b\b\ob\
particle—the possibility of the actual wall velocitgine be- 0 L L . L TPe0anacob
ing smaller than the particle velocity. In such cases, which 0 20 40 60 8 100 120 140
were observed to be rare for most simulations, a random o

velocity is assigned to the wall as was done in the first g5 » gy orde(dilute): Packing fraction plotted against nor-
method. It was observed that both these methods gave thg,izeq height forNo=3, e=0.57, es=0.02. Line—theory

same results when the amplitude was small compared to tr}:ﬁ:)ints—simulation. Theory corresponds to the first order series so-
mean free path. lution [3].

IV. COMPARISON WITH SIMULATIONS AND

DISCUSSION which is suitable for the dilute system theory [&]. The

profiles of the moments are obtained by calculating the co-
It was shown i3] that a correction to the leading order efficients of the series solution suggested3n

distribution function due to the inelastic collisions resulted in  The solution to the first order equations predicts a nega-
a negative correction to the density at the bottom of the betive correction to the density at the bottom of the bed as in

and a negative correction to the leading order temperature. Rig. 2, and a negative correction to the temperature, which
was also shown that the second moment in the vertical diasymptotically reaches a constant value. This decrease in
rection is greater than that in the horizontal direction. Thedensity is because of the higher kinetic energy of particles
experiments of5] showed the variation of density and the due to the energy source at the bottom of the bed. After the
second momentéhorizontal and vertical temperatdralong  injtial increase the density decays exponentially to zero be-
the height of the bed. But the kinetic theory proposed bycayse of the action of gravity. Both these effects are captured
Kumaran[3] captured only the qualitative features of this by the theory as can be seen in the figure.

exp_erimgnt. Th_is Coulql be dug to the fact that the particles The theory also predicts that the mean square velocity in
collided inelastically with the side walls as well as with the the vertical direction is more than that in the horizontal di-

bottom wall and these features were not accounted for in th(Fection. This is due to the fact that the bottom wall is smooth

theory. In order to make a meaningful comparison we have . . .
used an ED simulation of a vibrated bed and generated th%nd momentum is transferred to the particle only in the ver

required profiles of the various lower-order moments. H(]:altdlrectmrtw d””'?g gahcotlhsmél_. Frtc_)m Fig. 3 WIT obs;(ra]rve thatt
In this section we first compare the predictions of mo- € temperalures in the two directions as well as the anisot-

ments from the kinetic theory of vibrated granular materials/PY from the kinetic theory agree well with the simulations.
for the dilute bed presented i8], and then those for the According to the theory the temperature saturates asymptoti-

dense bed theory developed here, with the simulations wg&!ly to @ constant value. In the simulations it is observed
have carried out. that there is a slight increase in the temperature. An increase

in temperature was also reported[ 6] in deep bed simula-
tions. This effect is essentially a higher-order correction to
the solution considered here. Such an increase in the tem-
The various limits of validity of the kinetic theory were perature can be described just by the equations of hydrody-
discussed in Sec. Il. We choose a parametefssst Appen- namics, where a temperature dependent conductivity is con-
dix A) that conforms to these limits and also in such a waysidered, and terms 0D(e?) are retained in the energy
that the inhomogeneity in the vertical direction is broughtequations. We have observed from our simulations that such
out. One such suitable parameter set is, for examgle, an increase occurs only in very dilute beds, and whkas
=3, e=0.57,6e¢=0.02 corresponding to the actual values oflarge. This agrees with the balances in hydrodynamic theory
{N=3, 0=1,9=0.06,e=0.91,U,=1}. This set also gives when theO(€?) terms in the energy equation become com-
a maximum leading order packing fraction of around 0.05parable to the dissipation term.

A. Low-density (dilute bed) solution
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the energy is transferred from the vertical to the horizontal

_ 2) (Simulation) direction, which can be seen as an increase in the former
L . E]S)iifﬁllgag:;hleor ) while the latter decreases. In addition to this, because of the

2 [ - (i) (Dilute bed theorz) 4 dissipation of energy in the bed, both these moments tend
i asymptotically to zero at large distances from the bottom.

The oscillations in the temperature and the third moments
at large heights are due to the dilute bed of particles and
therefore insufficient number of realizations for calculating
averages. The differences in the predictions of the theory and
the simulations are within the errors of the approximation of
the asymptotic analysis. The differences in these sets of fig-
ures seem very prominent because of the choice of a high
value of e=0.57. It should be noted that no fitting param-
05 L _ eters were used to obtain the predictions.

)

) (u

2
X

(u

B. High-density (dense bed solution

0 - - . ) ! - As mentioned before, the dilute bed solution predicts un-
0 20 4 60 8 100 120 140 physical values for the moments and it is necessary to con-
Z/o sider the corrections derived in this paper. Equatidds are
) ) _ _ a set of completely specified coupled ODE’s, the inhomoge-
FIG. 3. First order(dilute); anisotropy in the temperature: The neous terms of which are functionspj the leading order
plot shows both vertical and horizontal temperatures correspondinlaensit rofile obtained numericall ifﬂ] Therefore. the
to Fig. 2. The top curves are the vertical temperature and the botto yp y ) '

ones are the horizontal temperature. Theory corresponds to the fir§9|u“0n _to the differential equations can be obtained only by_
order series solutiofg]. a numerical method. One such method that we have used is

given in Appendix B, where we have used a series expansion
o obtain the solution. The nature of the profiles predicted by

. . . . ot
There is also an anisotropy in the third moments, Wh'_Chthe dense bed theory is qualitatively similar to those obtained
represent the flux of energy, as can be seen in Fig. 4, qu the dilute bed

the energy is transferred only in the vertical direction, the
flux of energy corresponding to the second moment in the[h

horizontal direction{uiu,), is zero at the bottom as can be j,qqr: No=3, €=0.2, and a maximum packing fraction

seen in the figure, whereas the moménf) has a finitt  ar0und 0.5 where the high-density effects become important,
value at the bottom. Due to collision between the particleghe actual parameter set beifj=3, o=1, g=1, e=0.97,

a9=0.1, wy=9.7} (see Appendix A for a note on the choice
w2u;) (Simulation) ' of parameters _ _ _ ,
~~~~~~~~ ) (Simulation) The leading order density profile for this system is ob-
o1 T ugs‘:()sg:]lt‘:gg:%‘:gfr)w ] tained with the method given ip]. The correction to the
" y leading order density in terms of packing fractieft) ob-
tained in the present analysis is shown in Fig. 5. The varia-
i tions of the density far away from the bottom have been
1.5 b4 . captured quite well by the theory. Near the bottom wall,
there is a slight deviation from the simulation results due to
the limits of the perturbation expansion. It can also be seen
that the profile from the dilute bed theory is incorrect near
\ the bottom wall. Whereas the dilute bed theory predicts
i nearly negative values for the density, the values of the den-
Lo sity from the dense bed theory are reasonably close to the
o5k A ] actual values.
S M, The second moments of the distribution function are
ol M . shown in Fig. 6, which also shows the anisotropy in the
g it aay, L %'ii"a ;’i‘ horizontal and vertical directions, as observed in the dilute
0 20 40 60 80 100 120 140 b_ed cases. In comparison with the profiles obtained from the
o dilute bed theory those from the dense bed theory do better at
predicting the actual values. The profiles, however, show a
FIG. 4. First ordexdilute); anisotropy in the third moment: The decrease at moderate bed heights before reaching the con-
plot shows botHuZu,) (bottom curvesand(u?) (top curve cor-  stant value. But since even this offset is within the errors of
responding to Fig. 2. Theory corresponds to the first order seriefhe perturbation expansion, it is difficult to associate any
solution[3]. physical implications with this behavior.

For the simulation, we chose a parameter set that yields
e following set of nondimensional numbers in the leading

2)
-

u); (u

2
(4
T
>
»
1
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0.45 T

o ' Simulation 6 T e .
04 b High density theory i ugst;() S(isr:lrll;lllzlill?gl?)n)
. N e, oy MMM o g
:,’ Low density theory 5 + —— (uu;) (Dense bed theory) 4
035/ - . - (i3) (Dense bed theory)
03 4 -‘*\ i
A
0.25 . 3EY i
- ol S
= i =2 AN i
.= E RN
0.15 n :‘: "
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0.1 f
0.05 |
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(o8
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FIG. 5. First order(densg: Density profile for No=3, e FIG. 7. First order(densé Third moments of the distribution

=0.26 compared with simulation data and with the profile obtainecfynction (flux of energy profiles for No=3, ¢=0.26 compared
from the dilute bed theor8]. The dilute bed theory predicts values with simulation data. The anisotropy is significant near the bottom.
close to zero, much lower than the actual density profile.
No, the regions higher up in the bed no longer “see” the

It was mentioned in the subsection of Sec. Il that there ifottom wall anisotropy due to the higher frequency of inter-
no Compe"ing reason to impose a Condition Of VanishingparUCIe CO||ISIOnS Compared to partlcle-Wall CO||ISIOnS. Th|S
anisotropy for a nonvanishing second moment. It is also obcan be seen in the simulation data ko= 15 shown in Fig.
served from the simulations that the anisotropy does not varf8 below. . o ] )
ish at large distances from the bottom wall and such a feature The third moments of the distribution function, which
is captured by the theory as well. However, in the cases oforrespond to a vertical flux of the energy are shown in Fig.

deep beds, characterized by a higher value of the parametér Which also captures the anisotropy in the two directions.
The predicted third moments from the dilute bed theory in

this case do not turn out to be very different from those of

¢ 1u§ (Simula'tion) ' ' the dense bed theory as was the case with the density and the
Iy ESDl;llgéage();)theory) second moments, and they are therefore omitted in this figure
5 } ---=--- (%} (Dense bed theory) 4 for the sake of clarity.
S Egi}:ﬁ: Ded $Z§§y§ From the above comparisons we observe that the theoret-
[N " Y ical analysis of the correction to the distribution function at
4 * 1 high densities presented here gives reasonable predictions of

the lower-order moments of the distribution function. But
there is an important limitation of this theory which we dis-
cuss below.

The correction to the distribution function as presented in
[3] and this paper is o®(€). The correction also includes a
"N parameteNo that arises in some of the terms in the collision
N integral, as can be seen in E44). In the dense bed theory
L | this parameter is modified by an additional factor, giving
finally goNo, which can be seen in the matrix representation
of the integral in Eq(B4). These quantities are assumed to

0 . - L - be of O(1) in the O(e) first order balance and hence
0 - 5 10 15 20 25 goNo~0(1). In adense and deep bed case, therefore, the
o theoretical predictions for the first order corrections could be
large becausggNo could beO(1). Theeffect of this can be

FIG. 6. First orderdensé Second moments of the distribution Seen in Fig. 8, where the second moments for one such case
function (temperaturgprofiles forNo=3, e=0.26 compared with ~are shown to poorly predict the simulation values. We have
simulation data. The vertical temperature is greater than the horialso plotted the relative correction to the second moment
zontal and there is a finite anisotropy even at large distances frorabtained from the theory againstr in Fig. 9. We infer from
the bottom wall. this figure that the theory is valid only for high densities and

2)

)i {u

2
x
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40 T

uii (Simullation) l 6 T ! ' ! j ' !
T 42} (Simulation)
35 | —=— (u?) (Dense bed theory) T
\ -—--+--- {42} (Dense bed theory) 5t 4
30 f i
25 4+ 4
— 3
N 20 =
= S 3 :
o 15 |
= S
10 2r 1
5
1 - -
0
-5 0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 2 4 6 8 10 12 14 16
o . No

FIG. 8. First order(densg, high No: Second moments of the |G, 9. Relative error in the correction to the second moments
distribution function in a deeper bed correspondindNe= 15 and plotted againstNo-. This figure clearly shows that the theory is
€=0.2 compared with simulation. The anisotropy is negligible asjimjted to No~0O(1), above which the corrections to the distribu-
can be seen from the simulation data. The predictions from thgion function itself become®(1).

theory are poor due to the fact that for high valuesNaof the
corrections to the distribution function are no longer snisdle Fig.

simulation, such as boundary conditions for the fluxes, and
9 below.

has no adjustable parameters, the prediction from first prin-
ciples leads to a better understanding of some principal fea-
for low values ofNo. We recall that the theory is also lim- tures of the underlying physics. It should also be noted that,

ited by a lower value oNo, as mentioned in Sec. Il. because the theory is perturbative and approximate only in
the lower-order moment§.e., ignoring coupling with the
V. CONCLUSIONS higher-order moments the comparison with simulation is

not exact.(d) The theory of expanding the distribution func-

A kinetic theory to describe the behavior of dense Vi-tion in velocities up to third order holds good only in a
brated granular materials was developed. The homogeneoWgited range ofN¢; in particular it becomes invalid for deep
Maxwell velocity distribution was expanded in a small pa- and dense beds. A point of distinction to be noted here is that
rameter to account for the dissipative effects. In this pertura deep bed need not necessarily be dense, i.e., there can be a
bation expansion, the high-density effects are accounted fq§arameter set for which the density is low even wikile is
in the leading order density distribution as well as in thejarge; such a case can still be handled by the theori¢3]of
collision integral to first order. The lower-order moments of Anisotropies were also observed by us in deep bed simu-
the velocity distribution function up to third order were de- |ations of disks that displayed wavelike surface patterns, al-
termined using the moment expansion method. though the nature of the anisotropy was more pronounced

An approximate and simple method to deal with a vibrat-even in the shape of the distribution function itself—the ver-
ing wall in an event driven simulation was presented. Thejcal distribution was bimodal and the horizontal distribution
behavior of lower-order moments of the distribution functionnad a single peak and exponential tails. Could the presence
in a vibrated granular bed were studied using this methodof anisotropy be an important feature giving rise to an insta-
Theoretical predictions of the moments from a dilute bedpjlity in one direction? A stability analysis of the solution
theory of [3] were compared with the simulation data andfrom the present analysis might help resolve this question.

were found to be in good agreement with it. The main con-The usual models based on hydrodynamic equations do not
clusions from the simulation and the dilute and dense be@hke this anisotropy into account.

kinetic theories are as follows$a) The moments of the dis-
tribution function show an anisotropy in the temperature
(second momentand flux of energy(third moment due to
the anisotropic nature of the source of ener@y.The an-
isotropy exists at higher densities also, although for deeper The theories presented [8] and the one developed here
beds it becomes much smalléc) The kinetic theory cap- clearly bring out a few nondimensional numbers which are
tures the anisotropy and gives a fairly good quantitativethe only relevant quantities in the physical description of the
agreement with the simulation results. It should be noted thagystem. To compare the predictions of the theory with simu-
insofar as the theory does not rely on any data from theéations, we choose these parameters such that they conform

APPENDIX A: A NOTE ON COMPARISON WITH
SIMULATION DATA
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to the limits of validity of the theory. The theory is valid in where,
the following limits.
Collision frequencyA spatially uniform temperature, for v=[A;,A;,Az,p1,T,]" (B2
the leading order, can be obtained in two limits, one in which
the ratio of frequencies of particle-particle and particle-wallare the unknown functions,
collisions is very largé3] and one in which it is very small

[17]. Here we consider the former case, where the particle- -1 0 0 0 O
particle collision frequency per unit width of the bed is 0100 0O
Nopoy7To and the frequency of particle-wall collision per
unit width is po\To/27. For their ratio to be large we have M= 0 0 1 0 0O}, (B3)
1 0 2 011
No> . (A1) 0 2 001
V27 - -
Length scaleswhile obtaining the leading order solution [ U 0 0 0 0 7
it was assumed that the length scale of variation of properties %ta t;+1 6t 0 0
is very large compared to the particle diameter,Tgr'g _ )
>¢. A small parameter was defined such that A=l O 3t3 t 0 0 . (B4)
2ty 0 t;+1 ty
go
EGE_<1. (AZ) t3 2t1+2 6t3 0 t1+1
2T, - A
We also have from Eq1) and

U3 @No(1-e€?
o_mNotl=e) _, (A3) b=

Z\Ft 0 1\Ft ooT (B5)
T_O 2\/§ 7T2,, 3 772!1 [l

In addition, the amplitude of bottom wall vibrations is as- with the simplifications
sumed to be small compared to the mean free path, so that

€

the particle effectively experiences a randomly oscillating dje pd
wall, i.e., when considering the second methtrdangular ti=———, t,=gops, tz=\VaNot,.  (B6)
wave of simulating the bottom wall, the amplitude of vibra- Po

tion ay is chosen so as to be much less than the mean free

path near the wall. The characteristic velocity of the bottomin the above expressiortg andt, give rise to inhomoge-
wall would then bdJ ;= a, wq, Wherew, is the frequency of neous terms that depend only on the leading order density
vibration. Two free parameters out of the five physical pa-profile. The leading order density profile is first obtained
rameters relevant to the theory are set to unity in the aboveumerically in the high-density limit using the procedure
equations and the rest are set according to the above equatlined in [4]. The numerical data points are then repre-

tions in different ranges as required. sented in a convenient approximate functional form, such as
in an orthogonal set of polynomials, to simplify the calcula-
APPENDIX B: NUMERICAL SOLUTION FOR DENSE tion shown below. Since the functiobsandt, are exponen-
BEDS tially decaying, Laguerre polynomials were found to repre-
) ) sent the data well. The unknown functioAs are expanded
Here we outline a numerical method to solve E({sl), in the series

which are a set of coupled linear first order inhomogeneous

ODE'’s. Kumarar] 3] obtained a series solution to these equa- M

tions in the low-density limit. Since the functigsfy is not A= AX™ i=1,...,5, (B7)

known analytically, numerical methods have to be used to m=0

solve for p§ in the leading order and then this solution is

used to solve the equations for the variables in the first ordepherex=e™* andi=4,5 represent the variableg and T,

correction. One such method that was tried is the shootingespectively.(A Laguerre polynomial expansion for these

method in which the equations are integrated using thdunctions was not suitable because each function decays dif-

asymptotic values a— o from the dilute bed solution. This ferently) With these it is straightforward to obtain the solu-

procedure was unstable to integration at high densities nedion for the variables, along with the boundary conditions,

the bottom of the bed. We therefore used a series solution tésing the weighted residual method.

obtain the solution numerically. The moments of the distribution function obtained using
For convenience Eq$14) can be rearranged in the form this method for one case are given in Sec. IV. For the case

we have considered in this paper, iNg=3 ande=0.2, a
Mv’(z)+Av(z)=Dh, (B1) tenth order approximatioriM = 10, gives convergent values.
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