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Temperature scaling in a dense vibro-fluidised granular material
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The leading order “temperature” of a dense two dimensional gran-
ular material fluidised by external vibrations is determined. The grain
interactions are characterised by inelastic collisions, but the coeffi-
cient of restitution is considered to be close to1, so that the dissi-
pation of energy during a collision is small compared to the average
energy of a particle. An asymptotic solution is obtained where the
particles are considered to be elastic in the leading approximation.
The velocity distribution is a Maxwell-Boltzmann distribution in the
leading approximation. The density profile is determined bysolving
the momentum balance equation in the vertical direction, where the
relation between the pressure and density is provided by thevirial
equation of state. The temperature is determined by relating the
source of energy due to the vibrating surface and the energy dis-
sipation due to inelastic collisions. The predictions of the present
analysis show good agreement with simulation results at higher den-
sities where theories for a dilute vibrated granular material, with the
pressure-density relation provided by the ideal gas law, are in error.

I. INTRODUCTION

Recent developments in the physics of granular matter [1]
have illustrated that the dissipative nature of the interactions
between grains can result in a variety of different phenomena.
Of particular interest in recent years has been the dynamics
of vibrated granular materials [2,3], which exhibit stationary
states as well as waves and complex patterns. In order to de-
scribe these diverse states of the material, it is necessaryto
derive macroscopic descriptions by averaging over the micro-
scopic details of the motion and interactions between individ-
ual grains. This goal has proved elusive, however, because a
vibrated granular material is a driven dissipative system,and
the interactions between the particles are characterised by a
loss of energy due to inelastic collisions. The statisticalme-
chanics framework developed for equilibrium or near equilib-
rium systems cannot be used in this case. Consequently, phe-
nomenological models [4–6] have been used to describe the
dynamics of granular materials. The kinetic theories devel-
oped for granular flows [7,8] usually assume that the system
is close to “equilibrium” and the velocity distribution function
is close to the Maxwell-Boltzmann distribution.

Experimental studies and computer simulations have re-
ported the presence of a uniformly fluidised state in a vibrated
bed of granular material. Luding, Herrmann and Blumen [9]
carried out ‘Event Driven’ (ED) simulations of a two dimen-
sional system of inelastic disks in a gravitational field vibrated
from below, and obtained scaling laws for the density varia-
tions in the bed. An experimental study of a vibrated fluidised
bed was carried out by Warr, Huntley and Jacques [2]. Their
experimental set up consisted of steel spheres confined be-

tween two glass plates that are separated by a distance slightly
larger than the diameter of the spheres. The particles were flu-
idised by a vibrating surface at the bottom of the bed, and the
statistics of the velocity distribution of the particles were ob-
tained using visualisation techniques. Profiles for the density
and the mean square velocity were obtained, and the parti-
cle velocity distributions were also determined at certainpo-
sitions in the bed. Both of these studies reported that thereis
an exponential dependence of the density on the height near
the top of the bed, similar to the Boltzmann distribution forthe
density of a gas in a gravitational field. However, the depen-
dence of the density deviates from the exponential behaviour
near the bottom. The dependence of the mean square veloc-
ity on the vibration frequency and amplitude were found to be
different in the two studies.

A theoretical calculation of the distribution function in a
vibro-fluidised bed was carried out by Kumaran [8,10]. The
limit of low dissipation, where the coefficient of restitution e
is close to1 was considered. In this limit, the mean square
velocity of the particles is large compared to the mean square
of the velocity of the vibrating surface, and the dissipation
of energy during a binary collision is small compared to the
energy of a particle. A perturbation approximation is used,
where the energy dissipation is neglected in the leading order
approximation, and the system resembles a gas at equilibrium
in a gravitational field. The velocity distribution function is
a Maxwell-Boltzmann distribution, and the density decreases
exponentially from the vibrating surface. The first order cor-
rection to the distribution due to dissipative effects was cal-
culated using the moment expansion method, and the results
were found to be in qualitative agreement with the experi-
ments of Warr et. al. [2].

The theoretical predictions [8,10] were compared with pre-
vious experimental and simulation studies by McNamara and
Luding [11]. They found that the theory was in good agree-
ment with experiments for dilute beds, where the area fraction
of the particles is low, but there were systematic deviations
from the theoretical predictions as the area fraction increases.
This is to be expected, since the analysis assumed that the den-
sity is small and the pair distribution function was set equal to
1 and therefore the pressure is related to the density by the
ideal gas law. These assumptions become inaccurate as the
area fraction of the bed increases. An approximate method
for including the correction to the pair distribution function
was suggested by Huntley [12].

In the present analysis, the correction to the low density the-
ory of Kumaran [8,10] is determined for a vibro-fluidised bed
where the coefficient of restitution is close to1. An asymp-
totic analysis is used, where the dissipation is neglected in the
leading approximation. The leading order density and veloc-
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ity profiles are determined using the momentum balance equa-
tion in the vertical direction. In contrast to the earlier theory
[8,10], the virial equation of state for a non-ideal two dimen-
sional gas is used to determine the leading order density pro-
file. The density profile differs from the Boltzmann distribu-
tion, but the velocity distribution function is still a Maxwell-
Boltzmann distribution. The leading order temperature is de-
termined by a balance between the source and dissipation of
energy as before. The complete equilibrium pair distribution
function is used to determine the rate of dissipation of energy
due to inelastic collisions. The results are compared with hard
sphere MD simulations, and also with earlier theoretical and
simulation studies.

II. ANALYSIS

The system consists of a bed of circular disks (of diameter
σ) in a gravitational field driven by a vibrating surface. The
vibrating surface has a periodic amplitude function but no as-
sumption is made regarding the form of the function. There is
a source of energy at the vibrating surface due to particle col-
lisions with the surface, and the dissipation is due to inelastic
collisions. A balance between the two determines the “tem-
perature”, which is the mean square velocity of the particles.

The limit of low dissipation, where the coefficient of resti-
tution e is close to1, is considered. In this limit, it can be
shown that the mean square velocity of the particles is large
compared to the mean square velocity of the vibrating sur-
face. An asymptotic expansion in the parameterǫ ≡ U2

0
/T0 is

used [8]. If the source and dissipation of energy are neglected
in the leading approximation, the system resembles a gas of
hard disks at equilibrium in a gravitational field. The velocity
distribution function is a Maxwell-Boltzmann distribution at
equilibrium

F (u) =
1

2πT0

exp

(

−
u2

2T0

)

, (1)

whereT0 is the leading order temperature. The density profile
is determined by solving the momentum balance equation in
the vertical direction

∂p

∂z
− ρg = 0, (2)

wherep is the pressure,ρ is the density (number of particles
per area) andg is the acceleration due to gravity. For a gas at
equilibrium, the pressure is related to the density by the virial
equation of state, which in the case of inelastic circular disks
is

p = ρT0

[

1 + e

2
+ (1 + e)g0(ν) ν

]

, (3)

whereg0(ν) is the pair distribution function at contact, which
for circular disks is given by [13]

g0(ν) =
1

16(1 − ν)2

[

16 − 7ν −
ν3

4(1 − ν)2

]

, (4)

andν is the area fraction corresponding toρ. If the coefficient
of restitution is set equal to1 in the leading approximation, the
equation for the pressure reduces to the standard virial equa-
tion of state

p = ρT0 [1 + 2g0(ν) ν] . (5)

The resulting equation from Eq. (2) for the density profile isa
first order ordinary differential equation, which can be solved
using the mass conservation condition

∞
∫

0

dz ρ = N, (6)

whereN is the number of particles per unit width of the bed.
Note that the leading order temperatureT0 is still unknown
at this stage. This is determined using a balance between the
source and dissipation of energy. The source of energy due
to particle collisions with the vibrating surface is determined
using an equilibrium average over the increase in energy due
to particle collisions with the vibrating surface [8,10]

S0 = 2

√

2

π
T

1/2

0

〈

U2
〉

g0(ν) ρ
∣

∣

∣

z=0

. (7)

Here
〈

U2
〉

represents the mean square velocity of the vibrat-
ing surface. The rate of dissipation of energy per unit widthis
calculated by averaging over the energy loss over all the colli-
sions between particles and integrating over the height of the
bed [8]

D0 =
√

π σ(1 − e2)T
3/2

0

∞
∫

0

dz g0(ν) ρ2. (8)

Note that theg0 appearing inS0 andD0 is the Enskog factor
which accounts for the increase in the frequency of collision
for hard disks at high densities. The temperatureT0 can now
be determined from the relation

S0 = D0 (9)

An analytical solution to the density variation Eq. (2) can be
determined in the low density limit using the equation of state
for an ideal gas for the pressure [8].

ρ =
Ng

T0

exp

(

−
gz

T0

)

(10)

where the leading order temperature is given by,

T0 =
4
√

2

π

〈

U2
〉

Nσ(1 − e2)
. (11)

In the low-density limit the density decays exponentially from
the bottom of the bed. At higher densities the solution to the
density variation is no longer exponential throughout, andhas
to be obtained numerically by an iterative scheme. However,
at large distances from the bottom, the bed is dilute and the
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ideal gas law holds good, hence the decay is exponential, even
though near the bottom it is not. This gives a convenient start-
ing point for the numerical integration from afinite height,
above which we assume the asymptotic solution (z → ∞) to
be given by an exponential decay known to within two unde-
termined constants. A value for the density and the tempera-
ture is assumed at this height and the integration is carriedout
up to the vibrating plate (z = 0). The complete density profile
is obtained by combining the numerical and the asymptotic so-
lutions. If the conditions Eq. (6) and Eq. (9) are not satisfied
after one such integration, a new value is determined for the
density and temperature using the Newton-Raphson method,
and the iteration is repeated till convergence. In cases where
the convergence is poor, the solution is obtained bycontinuing
a low density solution in a parameter such asNσ or U0.

Viscous dissipation:The above analysis can be easily ex-
tended to the case of dissipation purely due to viscous drag.
The expression for the source of energy remains the same as
given by Eq. (7). A drag law given byai = −µui is assumed.
The total leading order rate of dissipation per unit width will
then be

DD0 = µ

∞
∫

0

dz ρ

∫

du F (u) u · u

= 2µNT0 (12)

Unlike Eq. (8), the leading order dissipation is the same for
the low density and the high density cases. Nevertheless, the
density profile has to be obtained numerically in the manner
outlined above, with Eq. (12) substituted for Eq. (8) in Eq. (9).

III. SIMULATION AND RESULTS

The hard sphere molecular dynamics (MD), also known as
event driven (ED) method [9] is used for the simulations of the
vibro-fluidised bed. Periodic boundary conditions are usedin
the horizontal direction and the vibrating surface at the bottom
has a sawtooth form for the amplitude function. The simula-
tions are carried out only for the case of inelastic collisions,
since the viscous drag requires a different treatment than the
ED method.

The density profiles obtained using the present analysis, as
well as the earlier low density approximations of Kumaran
[8], are compared with the simulation results in Figs. 1 and 2.
It is seen that the density profiles of the present analysis are
in good agreement with the simulation results even when the
density near the bottom of the bed becomes large, while the
profiles from the low density approximation have significant
errors. Fig. 3 shows the nature of the density profile in the
high density limit in the case of dissipation due to viscous
drag. Here too the present analysis gives reasonable values
for packing fraction near the bottom, while the low density
theory predicts physically incorrect values.

In a recent work, McNamara and Luding [11] reported the
scaling of dissipation with the center of mass obtained from
simulations. The results agreed with the low density theoryof
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FIG. 1. Exponential decay of packing fraction (ν) with a nor-

malised height (z/σ) at low densities. The predictions of the present
analysis (solid line) and the low density theory (dotted line) of [8] is
compared with simulation (points). Both the predictions are nearly
identical. Here,ǫ = 0.3, Nσ = 3, g = 1, andU0 = 6.

[10] but a systematic deviation was observed at high densities
in all the cases. This deviation is captured in the present anal-
ysis. The leading order dissipation at low densities in the bed
is given by [8]

D0 =

√
π

2
(1 − e2)N2σg

√

T0. (13)

In [11] the total dissipation obtained from the simulation was
normalised by a factor taken out from this leading order dissi-
pation and a non dimensional number was defined as

Cpp ≡
D0

(1 − e)N2σg
√

T0/2
. (14)

The scaling of this factor with the height of the center of mass
(h) above the position at rest (h0) was studied. This factor
was found out for different parameter sets by varying the bot-
tom wall velocityU0 over several decades such that the bed
is taken from a densely packed regime to a very low density
regime. They chose a central data set and varied the parame-
ters one at a time. It was found that in all the cases considered,
the scaling relation collapsed to a single curve. The central pa-
rameter set has the following valuesN = 3.2, σ = 1, g = 1,
e = 0.95.

The present analysis is valid whenǫ ≡ U2

0
/T0 ≪ 1

and when the frequency of particle-particle collision is much
greater than the frequency of particle-wall collisions. Itcan
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FIG. 2. Deviation of the density profile from the exponentialde-
cay at high densities in the case of dissipation due to inelastic colli-
sions. The simulation result (points) is captured by the present anal-
ysis (solid line) which is lower than the exponential decay (dotted
line) of the low density theory of [8] near the bottom of the bed.
Hereǫ = 0.3, Nσ = 3, g = 1, andU0 = 1.

be shown that in the leading order the ratio of the frequency
of particle-particle collisions to the frequency particle-wall
collisions is

√
2π Nσ. Hence the present analysis will hold

good whenNσ ≫ 1/
√

2π. The central set corresponds to
ǫ = 0.35, Nσ = 3.2 and therefore we expect the present anal-
ysis to hold good for this case. Most of the parameter sets
used in [11] also fall within the limits of the theory derived
here.

Fig. 4 shows the theoretical predictions of the total dissipa-
tion for the different cases reported in Fig. 2 in [11]. It is com-
pared with the results of two simulations in Fig. 5. It is seen
that the present analysis correctly predicts the lowering of the
coefficientCpp at high densities. This reduction in the dissi-
pation from the constant value at low densities is the net result
of two opposing factors: (i) decrease in the density from the
exponential behaviour near the vibrating bottom (see Fig. 2),
hence reducing the total value of the dissipation, and (ii) in-
crease in frequency of collisions at high densities, increasing
the dissipation.

It is also seen that not all the theoretical predictions collapse
on to a curve as is the case with the data from the simulation.
In two of the cases the theory does not agree with the simula-
tions because (i) in one the value of the perturbation parameter
is high (ǫ = 1.73) and the leading order theory is valid only
for low ǫ, and (ii) in the other case the value ofNσ = 0.65 is
low.
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FIG. 3. Deviation of the density profile from the exponentialde-

cay at high densities in the case of dissipation due to viscous drag.
The present analysis (solid line) gives physically plausible values for
the packing fraction near the bottom, while the low density theory
(dotted line) of [8] predicts values higher than the maximumclosed
packing. Hereǫ = 0.2, Nσ = 20, g = 20, µ = 0.1, andU0 = 5.

In Fig. 4, the apparent mismatch with ‘e-’ is not a discrep-
ancy with the model, but has got to do with the formula cho-
sen used in [11] for the normalisation of the dissipation factor
Cpp. They had chosen to normalise the dissipation by a fac-
tor (1 − e). While this might have given a better fit for high
densities (low center of mass), the correct factor for very low
densities is(1 − e2) as given by Eq. (13). The difference is
more pronounced in the case ofe ≪ 1, which, here, has a
valuee = 0.75. A close inspection of the curves ‘e-’ in Fig. 4
and Fig. 5 show that the theory and simulation do indeed agree
with each other.

We also note here that the data taken from the reported sim-
ulation [11] is for asymmetric sawtooth vibration, whereasour
simulation is for the symmetric sawtooth. Both these give
similar results for the scaling ofCpp. Also the theoretical pre-
dictions for the symmetric and the asymmetric sawtooth are
identical, indicating that the form of the bottom wall vibration
does not affect the scaling of the dissipation with the center of
mass.

IV. CONCLUSION

In summary, a theory to describe the state of a vibro-
fluidised bed in the dense limit was derived. This is different
from the earlier theory of Kumaran [8,10], which is valid for
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FIG. 4. Theoretical scaling of the normalised dissipation (Cpp)
against the center of mass (h) above the position at rest (h0) for the
different cases reported in [11]. All except two—(N+) withǫ = 1.73
and (N–) withNσ = 0.65 collapse on to a single curve in the lin-
ear region. The parameters indicated correspond toN = 16 (N+),
N = 0.65 (N–), g = 25 (g+), g = 0.04 (g–), e = 0.99 (e+),
e = 0.75 (e–), rest of the parameters being same as the one in the
central set, which has the following valuesN = 3.2, σ = 1, g = 1,
e = 0.95.

low densities where the ideal gas equation was used and the
pair distribution function was set equal to1. We have made
use of the virial equation of state to obtain a correction to the
exponential density profile obtained in low densities and the
pair distribution function is used to calculate the increased fre-
quency of collisions in the source and the dissipation of en-
ergy. The theoretical predictions of density and temperature
were compared with the results obtained from MD simula-
tion of two dimensional disks. The theory correctly predicts
the lowering of the density from the exponential value at high
densities near the bottom. The theory also predicts the scaling
relations of the total dissipation in the bed reported in [11].
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