Velocity distribution for a two-dimensional sheared granular flow
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The velocity distribution for a two-dimensional collection of disks of number demsiper unit area and
radiusa in a channel of width_ is studied. The particle-particle collisions are considered to be inelastic with
a coefficient of restitutior, while the particle-wall coefficients of restitution are inelastic with a tangential and
normal coefficients of restitutiorg, and e,, respectively. The Knudsen number, which is the ratio of the
channel width and the mean free path of the particles, is varied frors Kto Kn>1. In the limit of high
Knudsen number, the distribution function for the streamwise velocity is bimodal, as predicted by [Meory
Kumaran, J. Fluid Mech.340, 319 (1997)], and the scalings of the moments of the velocity distribution with
the Knudsen number are in agreement with the theory. In the low Knudsen number limit, the distribution
function for the streamwise velocity is a Gaussian if the coefficient of restitution is close to 1, but assumes the
form of a “composite Gaussian” if the coefficient of restitution is not close to 1. The distribution function has
a complex structure in the intermediate regime, where there are three maxima in the distribution function near
the wall, while the distribution function is bimodal at the center. The granular temperature is accurately
predicted by kinetic theory at the center of the channel, but there is dissipation at the wall due to inelastic
particle-wall collisions, which results in a significant decrease in the temperature even when the coefficient of
restitution is 0.9; this finding is in agreement with previous results with bumpy wall boundary conditions and
with specular reflection conditions. The slip velocity at the wall has a power law dependence on the Knudsen
number, and the exponent in this power law depends on the coefficients of restitution.

I. INTRODUCTION lar temperature is not an equilibrium thermodynamic prop-

The shear flow of a granular material has been an exterf"- Since a net energy flux is required to sustain the motion
sively studied problem in the field of granular flows, and of the particles, there could be gradients of density and tem-
many unusual phenomena, such as the formation of dengi€rature at steady state.
clusters and inhomogeneiti¢s], have been observed. Two  The kinetic theory description of a granular material re-
distinct types of approaches have been involved in studyingluires a solution of the Boltzmann equation, which expresses
these systems, the continuum theories for slow flows, anthe conservation of the number of particles in phase space. It
kinetic theories for rapid flows. In slow flows, the particles is difficult to solve this equation, because the collisional term
are in extended contact with each other, and a transfer of th@ the equation is nonlinear in the distribution function and
momentum and energy occurs due to rubbing friction, whilenonlocal in the velocity coordinates. It can, however, be
in rapid flows momentum and energy are transported due tshown that, for an ideal gas in equilibrium, the solution to
instantaneous collisions between the particles. The plandis equation is a Gaussian distribution. For systems near
Couette flow of a granular material driven by the motion ofequilibrium, an asymptotic analysis can be employed with
parallel walls is a commonly studied example of a rapid flow.the equilibrium distribution as the leading approximation.
The kinetic theories for rapid flows exploit the analogy be-Most previous studies on rapid shear flows have used this
tween the collisional dynamics of the molecules in a gas anghethod, but this approach is applicable only in parameter
that of the particles in a granular flow, and an assumption ofegimes where the coefficient of restitutiens close to 1,
molecular chaos is made while formulating the Boltzmann

equation for the particle velocity distribution. However, the VvV

dynamics of a granular flow could be significantly different —

from that of a molecule of gas for a variety of reasons. The ) ) 7
particles in a granular medium are macroscopic, and the o o o

length scale of the flow is typically of the same magnitude as oo o oo X
the mean free path. Moreover, the collisions between the o o °

particles in a granular medium are inelastic, and do not con- 00 o 00

serve energy. Therefore, a continuous source of energy is o o o o

required to sustain the flow. In a shear flow, the walls act as

the source of energy, and the “granular temperature,” which
is a measure of the fluctuating energy of the particles, is —\{v

determined from the balance between the source of energy

due to the mean shear and the dissipation of energy due to FIG. 1. Schematic of a two-dimensional bounded plane shear
inelastic collisions. In contrast to a molecular gas, the granuflow.
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FIG. 2. Distribution function for the stream-
wise velocity for different coefficients of restitu-
tions at the center of the channé) e,=e,=0.3,
(b) .=€,=0.5, and(c) e=¢,=0.7. (H)e=0.005,
(X)e=0.05, and—) Theory[11]. In the first two
cases only one half of the distribution is shown
for clarity. It is symmetric about zero velocity.

FIG. 3. Distribution function for the stream-
wise velocity for different coefficients of restitu-
tions atz/L=-0.9 in the channelia) e,=€,=0.3,
(b) =€,=0.5, and(c) e=€,=0.7. (°)e=0.005,
(*)e=0.001, and ®)e=0.05.
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FIG. 5. Variation of the scaled velocity moments along the channel height fa,=0.5, e=1. (+) €=0.0005,(X) €=0.005, (*) €
=0.01,(00) €=0.03,and(M) €=0.05.
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FIG. 6. Distribution of streamwisf(@) and(c)] and cross-strearf(b) and (d)] velocities near the bottom wall{a) and (b)] and at the
center[(c) and(d)] of the channel for different values @efande=0.9. () €¢=0.01,(H) ¢=0.1, and(c) e=1.0.

the time between successive collisions is small compared temooth walls do not transfer momentum in the flow direc-
the inverse strain rate, and the distance between walls ton. The thickness required to obtain a steady flow in a
large compared to the mean free pglitw Knudsen num-  channel of finite thickness has been examined by Hahak
ben. It is of interest to determine the form of the distribution [7]. Numerical simulations of flows with bumpy walls have
when these conditions are not satisfied, and the form of thbeen carried out by Luf8], and these simulations incorpo-
distribution function for a specific boundary configuration is rated the tangential and rotational velocities of the particles.
determined using event driven simulations in the presenParticular attention was paid to the slip velocity at the walls
analysis. for different arrangements of the hemispheres on the wall
Constitutive equations for a rapid flow of granular mate-surface. Babi¢9] examined unsteady startup and oscillatory
rials under shear, based on the Chapman-Enskog method fflows using discrete element method simulations, and found
inelastic spheres and circular disks, were proposed bydtun that the granular material behaves as a nearly incompressible
al. [2] and Jenkins and Richmd8]. Boundary conditions non-Newtonian fluid when the energy relaxation time is long
for a specific wall geometry, based on a detailed microscopicompared to the momentum diffusion time. All of the above
model for wall-particle interaction, were obtain¢d,5]. A approaches have used continuum theories, which are valid in
constitutive relation incorporating both the collisional andthe limit of a low Knudsen number, where the frequency of
frictional transport of momentum for simpler specularity binary collisions is large compared to that of particle-wall
boundary conditions was proposed by Johnson and Jacksawllisions. In addition, balance equations are only written for
[6]. Bounded shear flows have also been studied, usuallthe hydrodynamic mass, momentum, and energy fields, and
with the ‘bumpy wall’ boundary conditions, where the walls not the velocity distribution function itself. The velocity dis-
of the channel are decorated with hemispheres in order ttribution function in a channel was evaluated by &tj al.
effect momentum and energy transport to the particles, sincglQO] using the linearized Bhatnagar-Gross-Krook equation.
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FIG. 7. Distribution of streamwisf(@) and(c)] and cross-strearf(b) and (d)] velocities near the bottom wall{a) and (b)] and at the
center(c) and(d)] of the channel for different values efand ¢=0.3.(*) e=0.4,(C]) e=0.6, (M) e=0.8, and(c) e=0.9.

The linearization approximation assumed a collision relaxparticle-wall collisions are considered to be inelastic and are
ation to a Maxwell-Boltzmann distribution, and this consid- described by simple relations which include coefficients of
erably simplified the calculation procedure. In addition, ide-restitution in the tangential and normal directigesande,),
alized boundary conditions, such as the zero temperatunespectively. Both elastic and inelastic binary collisions be-
conditions at the wall, were assumed. This calculation wasween particles were considered. This study indicated that
also carried out in the low Knudsen number limit, andthe distribution function is very different from a Maxwell-
boundary layers were observed for the hydrodynamic fieldBoltzmann distribution in this limit. In the present study, the
near the walls where there were sharp variations in the tenpredictions of this analysis are compared to the results of
perature. event driven simulations in the high Knudsen number limit
The above theories usually assume that the distributiomvhere the coefficient of restitution is not close to 1, and the
function is close to a Maxwell-Boltzmann distribution, or is frequency of binary collisions is small compared to the fre-
collisionally relaxed to a Maxwell-Boltzmann distribution. quency of particle-wall collisions. The objective of the
This assumption is valid only when the coefficient of resti-present simulations is to determine the particle velocity dis-
tution is close to 1, and in the low Knudsen number limittribution in the low and high Knudsen limits, and to compare
where the mean free path is small compared to the chann#hem with theoretical predictions in both limits. A realistic
width. In contrast, the velocity distribution function was de- wall boundary condition with normal and tangential coeffi-
termined analyticallyj11] in the high Knudsen number limit, cients of restitution is assumed, and the present boundary
where the mean free path is of the same magnitude as thenditions differ from the bumpy wall conditions used in
channel width, using an asymptotic analysis in the small paearlier studies in the low Knudsen number limit. Thus, these
rametere, wheree=noL, n is the number densityy is the  provide some indication of the effect of boundary conditions

diameter of the particles, and is the channel width. The on the profiles in this limit.
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FIG. 8. Distribution of the cross-stream velocity fef=e,
=0.9,e=1.0, ande=0.01 near the wall plotted on a log-linear scale. portant to determine the detailed velocity distribution

Molecular dynamics methods are a valuable tool for Simu_through the particle level simulation and experiment. There

lating granular flows, and there have been many such studie82ve been several studies available in literature that examine
While Campbell and co-worker§12—14 used the hard the distribution of particle velocities in different granular
sphere molecular dynamics, the soft particle contact model igystems like shaken granular media and particles in a homo-
which the overlap between particles is interpreted as a defogeneously cooling statgiCS) [22]. Non-Gaussian distribu-
mation that generates a restoring force proportional to botlion functions of the vertical component of particle velocities
the amount of overlap and relative velocity of the particles akubjected to vertical shaking have been repof&j24, and
contact was adapted in Refl5]. These models study the the distribution of the horizontal component of particle ve-
behavior of idealized granular systems by calculating th§qgities in a shaken circular cylinder have been observed

motion of individual particles as they interact with each other[za The velocity i :

X | : . y in a heated granular medium has been
and the walls. The effects of different kinds of boundaries, ; - ; 261
were studied in detaj12,14,16,17, and the stress tensor and found to have a non-Gaussian high velocity behaf. A

SRR . crossover from a non-Gaussian to a Gaussian behavior of the
self-diffusivity in a sheared granular material have been de-

termined[13,1§. There are several other studies in the “t_dIStrIbutIOI’I of the horizontal component of particle velocities

erature(see Refs[19-21 and references thergirfocusing reported[Zj] as the degree of f!uidizatipn is varied in a hori-
on the clustering, interaction between clusters and normaﬁonta"y vibrated granular media. In this work we present the
stress difference in sheared granular system. distribution of both cross stream and streamwise components

The difficulty in an analytical determination of the distri- Of the velocity of particles sheared in a two-dimensional
bution function for a wide range of parameters makes it im-channel.
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FIG. 10. Distribution function plotted in a log-linear scale &%0.99, with the Gaussian fit using no adjustable fitting parameteigyor
€=1.0 and(b) e=22.75.(+) represents the simulation, and tfe) is the Gaussian fit.
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FIG. 11. Distribution of the streamwise velocity at the centere and near the bottom wall of the channel for two diffehentoefficient
of restitution is 0.9 for all the cases shown hg@.and (b) at the centre of the channel fe=9.75 and 26.0, respectively, ang) and (d)

at z/L=-0.95 fore=9.75 and 26.0, respectively.

II. SIMULATION TECHNIQUE

The system consists of a two-dimensional channel o
width L which contains disks of radius, andn is the num-

particles by the walls results in a gradient in the mean veloc-

ber density per unit width of the disks. The channel is

bounded by moving walls with velocities\, at z=+L, as

shown in Fig. 1, while periodic boundary conditions are used

in the flow (x) direction. The momentum imparted to the
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ity in the gradient(z) direction. The change in the particle
(/elocity due to a collision with the wall is given by

>,< =eUt (1 - et)VW! (1)
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FIG. 12. The distribution of the streamwise velocity near the bottom wall plotted on a log linear scaefeefere,=0.7 and two different
number densities of particles.
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FIG. 13. Distribution of the cross-stream velocity at the ce@@rand near the wal{b) of the channel fore=0.7. (+) e=1.0,(X) €
=13.0, and(*) €=26.0.

u, = - enly, (2) sions as well in the present case while calculating the time
required for the next collision. The collision rules for the
Whereu)’( and Ué are the pOSt collisional velocities of a par- partic|e-wa|| collisions are given by Eqsl) and (2), while
ticle with initial velocity u, andu,, ande; ande, are tangen-  the collision rules for particle-particle collisions are the stan-
tial and normal coefficient of restitution respectively. The dard ones where the velocity of the center of mass is un-

velocities of the particles before and after a binary collisionchanged, while the relative velocity after collision is related
are related as follows. The velocity of the center of massio that before collision by Eq(3).

V=u,+U, remains unchanged, while the velocity difference
w’=u;-u, after the collision is related to the velocity
=u,—U, before the collision by IIl. HIGH KNUDSEN NUMBER LIMIT

W =[1-(1+ekk] -w, 3) _ '_I'he velocity Qistribution in Fhe high Knudsen_ _number
limit for the flow in a channel with boundary conditio(¥)
where e the coefficient of restitution for binary collisions, and(2) for particle-wall collisions was calculated by Kuma-
andk is directed along the line joining the centers of two ran[11] in the limit where the frequency of particle-particle
colliding particles. collisions is small compared to the frequency of wall-particle
The event driven simulation consists of a streaming stegollisions. The frequency of wall-particle collisions per unit
and a collision step. In the streaming step, the time requiredidth is proportional tonu, wheren is the number of par-
for the next collision is calculated based on the current particles per unit area and is the magnitude of the particle
ticle positions and velocities, and the positions are advancedelocity, whereas the frequency of wall-particle collisions
along a straight line up to the next collision. In the collision per unit width of the channel is proportional téoulL, since
step, the velocity of the colliding particles is updated accordn?uc is the frequency of binary collisions per unit area.
ing to Eq. (3). Unlike in studies on infinite systems, it is Therefore, the ratio of the frequencies of particle-particle and
necessary to consider the possibility of particle-wall colli- wall-particle collisions is given by the dimensionless param-
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FIG. 14. Distribution ofu, on log-linear scale at the cent@) and near the wallb) of the channel for a system witk=0.7 ande
=13.0. The solid line is a Gaussian fit with no adjustable parameter and the points are obtained from simulation.



o U = elu,. (5)
0.09 k
008 | | A steady state is achieved if the particle returns to its original
value after two collisions, ou;=u, andu,=u,. It is easy to
0T see, from Eqs(4) and(5), that the particle velocity returns to
o~ 006r its original value after two collisions only if the velocities are
:_:j 0.05 |
S~ _ _ - (1 - et)vw
004 | 1 k=~ V= T,
003 | et
002
(1-e)V,
oot | 1 U;(:V:&, (6)
1+e
0-8 1.5 -7 6.5 6 -5.5 -5 -4.5 -4
ut u,=u,=0.

Further, an analytical expression can be obtained for the ve-

FIG. 15. Distribution of the streamwise velocity fer0.7 and . M Y aft . llisi ith th lls if
€=13.0, i.e., Kn=0.077, at the center of the channel. The curve is filOCIty (ux U ) aftern ?&)JCC(%)?SIVG collisions with the walls |
u,”):
z

by a “composite Gaussian” with two Gaussian distributions withthe initial velocity is(u, ",

different variances patched at their maxima. The straight line shows o) n (N=1) M/ — ()
the mean value. W+ (= DU+ (=D V)V =gty

etere=nol, which is small compared to 1 in this limit. An uy = (- 1)"efuy”. (7)

asymptotic analysis is used where binary collisions are netpys, if the particle velocities are initially random, with

glected in the Igading approximation, and Fhe situation COrpqual numbers of particles having positive and negative

responds to a single particle in a channel with boundary conge|ocities, then the particle velocities after a large number of

ditions (1) and (2). If a particle has velocity(uy,u;) and  collisions converge to the velocitiésV,0). In this case, the

collides with the top wall, the post-collisional velocities are gjstribution function for the particle velocities consists of
two delta functions atxV,0).

U, = g+ (1 — )V, However, as the particle velocity in t_hzadirection re-
duces to zero, the frequency of the particle-wall collisions,
which is proportional tal,, also reduces, and it is necessary

U, = — el (4) to include the effect of binary collisions. This is incorporated
by assuming that binary collisions occur between particles
This particle now has a negativg, and subsequently col- with velocity (£V, 0). The reason for only considering binary

lides with the bottom wall. The velocities after the secondCO"'S'qns between particles with vgloqhe{sV,O). IS Fhe
collisions are following. For particles whose velocity, is O(V), there is a

significant error in the calculation of the post-collisional ve-
locities if we assume that the particle velocities &%, 0).

— ’ — A2 2 . . .
U = ey — (L —e)Vy = gfUy — (1 —€)*Vy, However, for these particles, the frequency of binary colli-
14
o1t )
b
o (=]
g 0.01 gs
- £
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loa3| log;o(luz))
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FIG. 16. Distribution function for streamwise velocity fex 0.7 ande=26.0 at the wall of the channel plotted on a log-linear s¢ale
The two distinct lines indicate two variances below and above the maxirfiyrahows the fit of the distribution function to E(L.0) in the
log scale.



there is only a small error d®(e) in the calculation of the
distribution function due to the assumption that the particles
have velocitieg+V,0). Thus, this approximation regarding
the velocities of the particles before a binary collision incurs
only a small error throughout the domain.

An elastic binary collision between two particles at
(xV,0) scatters these particles onto a circle in velocity space
with a center at the origin and a radis These particles
undergo collisions with the wall, since they have a nonzero
velocity in the z directions. These particle-wall collisions
transport the particles onto a series of discrete contours in
velocity space, until their velocity returns to a region of size
. O(eV) about(xV,0). The flux of particles entering and leav-

b ing a differential segment along a contour is determined us-
(@) e=26.0 ing the Boltzmann collision operator for binary collisions,
and the distribution function along these contours at steady
state is determined by balancing the flux of particles entering
the contour with the flux leaving. The normal and shear
stresses are calculated from the distribution function. Details
are provided in the earlier papgtl].

It is easy to see that, in the leading approximation, which
corresponds to two delta functions @tV,0), the second
moment of the velocity distributiowhich is proportional to
the strespis highly anisotropic:

(UDy=\V2,

0.1

%)

Sflu

0.001 |

0.0001

0 0.5 1 L5 2

0.1

fw)

0.01 |

0.001 ¢

0.0001 5 03 I 15 2 (=0, (8)

|26l
(b) € = 30.0 (ueuy) =0.
- — However, when the velocities of particles scattered due to

binary collisions are included, the second moments of the
velocity distribution are found to scale as follows:

(U3 - V2~ ¢,

01}

f@)

001 + (U ~ e, 9

(U, ~ € log(e).

It should be noted that the logarithmic dependencéugi,)
is difficult to discern in simulations, since it is necessary to
go to very small values of to recover this, but the depen-
3l dence ore in the high Knudsen number limit can be verified.
(c) e =340 The simulation has been carried out for three setg,of
ande, while the coefficient of restitution for particle particle
FIG. 17. Distribution of the streamwise velocity on a log-linear collisions e has been set equal to 1. The simulation can be
scale with a corresponding Gaussian fit with no adjustable parameasily extended to cases whexre 1. Figures 2 and 3 show
eters fore=0.9 near wall. The two distinct segments indicate thethe distribution functions for different sets of values of the
presence of two variances below and above maxirerepresents  coefficient of restitution in normal and tangential direction,
the variance above the maxima afi) represents the variance as a function ofe at two different points across the channel
below the maxima. width. The distribution function is very different from
Maxwell-Boltzmann distribution, but converges to the pre-
sions isO(e) smaller than that of particle-wall collisions, and dictions of the asymptotic analysj&1] in the limit e— 0.
so the error incurred in the calculation of the distribution It is observed that the distribution function is bimodal
function is O(e). For particles whose velocities af@(eV), (Figs. 2 and } and that the peaks occur aV¥4as predicted
different from (xV,0), the frequency of binary collisions is by the asymptotic analysis, whe¥&=V,,(1-¢)/(1+e) and
of the same magnitude as that of particle-wall collisions, butv,, is the wall velocity. It is also seen from the figure that the
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FIG. 18. Distribution of the cross-stream velocity on a log-linear scale with a corresponding Gaussian fit with no adjustable parameters

for e=0.9 near the wall. The two distinct segments indicate the presence of two variances below and above the(iadprasents the
variance above the maxima af®) represents the variance below the maxima.

height of the peak decreases and the width increases asinferred from the relation between the wall velocity and post
increases. However, the bimodal nature of the distributiorcollisional particle velocity, and this difference decreases as

function persists foe up to 0.05.

Different moments of scaled velocity(u*) were deter-

mined in the simulation, whera*=(u/V) is the

velocity

scaled byV. Figure 4 shows the scaling ¢f.?) and(u,?)
-1 as a function ok. The theory predicts that lign o({u;?)
-1)xe and lim_q(u,?) €; these scaling laws are in agree- IN €.
ment with the simulation results. The moments of the distri-

bution function are shown as a function of position in Fig. 5.

e increases, because a particle undergoes multiple binary col-
lisions before reaching the wall, and the mean velocity
equilibrates to the wall velocity. It is also observed in Fig. 5
that the second momentéu?) and(u2)) are anisotropic in
this limit and that the anisotropy decreases with an increase

IV. LOW KNUDSEN NUMBER LIMIT

It is observed that the difference between the wall and par-

ticle velocities at the wall increases @sncreases, as can be

It has been observed that the bimodal nature of the distri-
bution function for the streamwise velocity changeseds

TABLE I. Temperature obtained from simulation compared with increased, or Kn is decreased. In this section, the particle

that obtained using the theory of RE8].

o Viw/L Trich Tsim
v e (m) 1/9 (m2/s?) (m2/9)
0.103 0.99 0.02 0.7 0.0848 0.0856
0.46 0.99 0.045 1.25 0.089 0.088
0.0975 0.9 0.02 4.0 0.292 0.291
0.4355 0.9 0.045 5.67 0.181 0.183
0.094 0.7 0.02 6.0 0.2217 0.218
0.445 0.7 0.045 7.0 0.0769 0.08

velocity distribution in the low Kn limit will be discussed.
For all the results presented here, the tangential and normal
coefficient of restitution for wall particle collisions are as-
sumed to be equal to the restitution coefficient for the binary
collisions. Figure 6 shows the distribution function for both
the streamwise and cross-stream velocities of particles for
different values ofe for a fixed coefficient of restitution at
two different points in the channel, and Fig. 7 shows the
velocity distribution functions for a fixe@ but a different
coefficient of restitution at two different points in the chan-
nel. It is observed that the distribution function for the
streamwise velocity changes from a bimodal to a unimodal
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FIG. 19. (a) Density,(b) mean velocity, andc) temperature foe=0.9 ande=13.0.(—) represents the temperature obtained in Rf.
for the given density and the strain rate.

distribution ase is increased. It is also observed that in the In the limit where the Knudsen number is small compared
high Knudsen number limit, the distribution of the stream-to 1, the distribution is Gaussian for a system with a restitu-
wise velocity of particles is bimodal for any restitution coef- tion coefficient close to 1. The distribution of the cross-
ficient and at any point across the channel. However thistream velocity of particles remains Gaussian at the center of
bimodal nature disappears as thepproaches 1. There ex- the channel for a small coefficient of restitution, but assumes
ists a transition zone where the distribution of streamwisahe form of a composite Gaussian near the wall, with differ-
velocity is bimodal at the center of the channel, and has threent variances above and below the maximum velocity. The
maxima near the wallFig. 7). The third peak in the distri- details of the scaling of the distribution functions and the
bution function appears at a velocityscaled(1-e,)/ anisotropy are discussed a little later. The regions ine¢he
(1+e)]V,,} beyond =1 near the top and bottom walls of the —e parameter space where the distributions for the streain-
channel. In this regime, the nature of the streamwise velocityvise velocity are bimodal, composte Gaussian, and transition
distribution depends on the coefficient of restitution, as seetype with more than one maximum are shown in Fig. 9.
in Fig. 7. Fore=1 the velocity distribution is unimodal, but ~ In the low Knudsen number limite>1) for (1-e)<1,
for e<1 the velocity distribution could be unimodal or bi- the distribution function is Gaussian, as shown in Fig. 10. In
modal depending on the coefficients of restitution. Furtherthis limit the velocities in the streamwise direction have been
the nature of the distribution also depends on the position imondimensionalized with the wall velociti&4,. There is no
the channel. As the coefficient of restitution decreases, thadjustable parameter used in the fit, and there is good agree-
distribution of u, deviates from the Gaussian distribution ment for five decades. There is a significant departure from
near the wall and exhibits skewness. At the center of théhe Gaussian distribution when the coefficient of restitution
channel, however, the distribution function continues to bds not close to 1. Figure 11 shows the distribution function
Gaussian. for both the streamwise and cross-stream components of the
Next, the cross-stream velocity distribution for the par-velocity at two different positions in the gradient direction at
ticle is studied. The distribution of the cross-stream velocitye=0.9 in the low Knudsen number regime. It is observed that
is a delta function in the high Knudsen limit and is unimodalthe distribution is symmetric at the center of the channel
in the moderate to low Knudsen number regime. The crosswhereas there is skewness in the distribution function near
stream velocity distribution is non-Gaussian for systems witithe wall. It is apparent from Fig. 11 that the skewness is
moderately high Knudsen number, and variek&xp(-u,)  stronger as the Knudsen number is increased, ariasde-
(Fig. 8). creased, and from Fig. 12 that the skewness is stronger when
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e is decreased at constaatA similar trend is observed for TABLE II. Source and dissipation near wall as determined from
the cross-stream component of velodiBig. 13). the simulations.

The results obtained from the simulations in the low
Knudsen number high inelasticity limit are further studied to T v V,/L  So Do
obtain a quantitative description of the scaling of the distri- (m) e e (MY (1/9 (1/s%) (1/S)
bution function at high velocitieg=ig. 14). Fig.15 shows the
distribution of the streamwise velocity of particles near the0.01 099 1.0 0.06  0.004 0.143 0.14 0.0134
bottom wall of the channel. The distribution has a form 0.01 09 1.0 0645 0.004 1.0 21.09 452

(U Uy 001 07 10 168 00045 50 74542 66.06
f(Ux):kleXpikz : (10 0035 099 2275 0.0861 0324 225 2218 353

, - . 003 09 2275 0125 0.36 575 176.74 72.93
whereu, is the position of the maximum of the distribution o35 07 2075 0054 0375 75 16159 60313

function, andk; andn is determined from the intercept of the
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FIG. 21. Flux of energy for different coefficients of restitution in the low Knudsen number regime) <ufuz>, (—) (ui’).

function plotted in a log linear scale. It should be noted thatu, > u,,, andk,=Kk,, for u,<u,,, This indicates that there are
Eq. (10) is just a fit to the observed form of the distribution two distinct velocity variances for the distribution function,
function, which incorporates the possibility of different ve- one for velocities above,,, and the other for velocities be-
locity variances in the limitsl, =+ andu,=-c. It is as- low u,,. The mean of this distribution is

sumed here that the behavior of the function in the limit of

large u, is similar to that foru, near the maximum of the ()= U+ kap = Kom (11)
distribution. To validate this assumption, the distribution X (ko + VK )
Var(Vkam + VKym)

function is plotted against on a log-linear scale. The linear

relationship of this plot ensures the validity of the obtainedFigure 17 shows the distribution of the streamwise velocity
value ofn. Figure 16 shows the distribution function plotted and Fig. 18 the cross-stream velocity distribution on a log-
in a log scale along with the linear fit. No adjustable paramdinear scale for different values ef The two distinct curves
eter is used in the fit. It is observed that thedefined in Eq.  indicate that there exist two variances below and above the
(100 has a form 2{m(Vkom+ \s’kzp), where ky=ky, for  maximum value, as discussed above. Thus the simulation
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results indicate that the nature of the velocity distribution T
near the wall differs drastically from that at the center of the p' = B—r[l +vg(v)(3r = 2)r],
channel for sheared inelastic granular materials at the low Kn S ONG
limit.
Next, the macroscopic properties obtained from the simu- _(1+e)
lations, such as the temperature, stress and heat flux, are r= 2

examined. The temperature obtained from the simulation is

compared with the temperature predicted in R8&f.for the

steady, homogeneous flow between two material planes sepa- B=(5-3),
rated by a distance moving with a relative velocity o¥. It . i
was assumed that the density is a constant and the me&fd9(v) is given in Ref[28]. The temperature at the center

velocity varies linearly between these two plates, and ob®f the channel is determined using the formulation, and is
tained the granular temperature by a balance between tﬁé)mpared with j[he simulation resultg in Table I. .The simula-
source of fluctuating energy due to the mean shear and tHion results are in good agreement with the prediction of Ref.

dissipation due to inelastic collisions. For smooth particles[3] at the center of the channel, but a spatial variation in the
the granular temperature is temperature and density is not predicted, since the flow is

assumed to be homogeneous. This variation could be signifi-

I cant in the low Knudsen number limit, as observed in
T= da(l-0) (12 Fig. 19.
It is also observed that the second moments of the distri-
wherey is the strain rate and bution ((u2) and(u2)) are anisotropic(Fig. 20, and the dif-

ference in energy between the streamwise and cross-stream
o, 1 directions decreases asincreases. It is useful to note that
= p' (L+vgQ)r) + 2% the difference in temperatures is about 209%&a0.9, and as
much as 50% a&=0.7. In the simulation results, there is a
5 = decrease in the temperature near the walls, due to the inelas-
_ 8mu’g(v)rvT tic nature of the particle collisions with the walls. To exam-

- e ine this further, the local shear production of the energy and



the local dissipation due to inelastic binary collisions arefunction is observed to be close to Gaussian if the coefficient
determined and listed in Table II. It is observed that theof restitution is close to 1 in the streamwise and cross-stream
source due to the mean shear is larger than the dissipatiafirections. However, if the coefficient of restitution is not
due to binary collisions in all cases, and so there is a nonzerglose to 1, the streamwise distribution is a “composite
flux of energy towards the wall. The energy flux obtainedGaussian,” which consists of two Gaussian distributions
from simulations is shown in Fig. 21. This figure indicates patched together at the location of the maximum velocity,
that the flux is positive near the top wall and negative neajyith one variance for velocities above the maximum velocity
the bottom wall, indicating that there is a transfer of fluctu-5ng another for velocities below the maximum velocity.
ating energy from the particle to the wall. The transition in the streamwise velocity distribution from

_The slip velocity at the wall has been calculated as they,q pimgqal form fore<1 to the composite Gaussian form
difference between the wall velocity and the mean veloCity, - .~ 1 gccurs in a complicated fashion, and the distribu-

pf system near wall, and IS shown n F'g' 2.2' The slip veIOC_tign near the wall has three maxima at intermediate values of
ity decreases as the coefficient of restitution decreases, an

decreases as increases, though there is a significant slipe’ while .the distributiop at the center unc.iergoeg a trans_ition
velocity even aie=0.5. from a bimodal to a unimodal form. The distribution function
for the cross-stream velocity undergoes a transition from a

delta function near zero velocity far<1 to a Gaussian for
e>1.

The velocity distribution of a sheared granular material in  The predictions for the temperature of a sheared granular
a bounded channel is studied using an event driven simuldlow are accurate for determining the temperature at the cen-
tion for a wide variation in the coefficients of restitution and ter of the channel for higl, but do not capture the tempera-
the Knudsen number. In the limit of high Knudsen number,ture and density variation near the wall of the channel even
the distribution function for the streamwise velocity is bimo- whene is between 10 and 25. In particular, the flux of energy
dal, and the simulation results are found to be in good agredewards the wall of the channel due to the inelastic nature of
ment with theoretical predictions in the limit—0, wheree,  the particle-wall collisions is not recovered in this limit.
the ratio of the channel width and the distance between inteFhis, coupled with the complicated nature of the distribution
particle collisions, is inversely proportional to the Knudsenfunction in the channel, indicates that the predictions of ki-
number. The scaling of the moments of the velocity distribu-netic theories based on a Gaussian distribution may not ac-
tion with e are also in agreement with theoretical predictions,curately capture the dynamics of the flow when the coeffi-
and the distribution function is nearly uniform across thecient of restitution is 0.9 or less even when the Knudsen
channel. In the limit of low Knudsen number, the distribution number is between 10 and 25.

V. CONCLUSION
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