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The velocity distribution for a two-dimensional collection of disks of number densityn per unit area and
radiusa in a channel of widthL is studied. The particle-particle collisions are considered to be inelastic with
a coefficient of restitutione, while the particle-wall coefficients of restitution are inelastic with a tangential and
normal coefficients of restitution,et and en, respectively. The Knudsen number, which is the ratio of the
channel width and the mean free path of the particles, is varied from Kn!1 to Kn@1. In the limit of high
Knudsen number, the distribution function for the streamwise velocity is bimodal, as predicted by theory[V.
Kumaran, J. Fluid Mech.,340, 3l9 (1997)], and the scalings of the moments of the velocity distribution with
the Knudsen number are in agreement with the theory. In the low Knudsen number limit, the distribution
function for the streamwise velocity is a Gaussian if the coefficient of restitution is close to 1, but assumes the
form of a “composite Gaussian” if the coefficient of restitution is not close to 1. The distribution function has
a complex structure in the intermediate regime, where there are three maxima in the distribution function near
the wall, while the distribution function is bimodal at the center. The granular temperature is accurately
predicted by kinetic theory at the center of the channel, but there is dissipation at the wall due to inelastic
particle-wall collisions, which results in a significant decrease in the temperature even when the coefficient of
restitution is 0.9; this finding is in agreement with previous results with bumpy wall boundary conditions and
with specular reflection conditions. The slip velocity at the wall has a power law dependence on the Knudsen
number, and the exponent in this power law depends on the coefficients of restitution.

I. INTRODUCTION

The shear flow of a granular material has been an exten-
sively studied problem in the field of granular flows, and
many unusual phenomena, such as the formation of dense
clusters and inhomogeneities[1], have been observed. Two
distinct types of approaches have been involved in studying
these systems, the continuum theories for slow flows, and
kinetic theories for rapid flows. In slow flows, the particles
are in extended contact with each other, and a transfer of the
momentum and energy occurs due to rubbing friction, while
in rapid flows momentum and energy are transported due to
instantaneous collisions between the particles. The plane
Couette flow of a granular material driven by the motion of
parallel walls is a commonly studied example of a rapid flow.
The kinetic theories for rapid flows exploit the analogy be-
tween the collisional dynamics of the molecules in a gas and
that of the particles in a granular flow, and an assumption of
molecular chaos is made while formulating the Boltzmann
equation for the particle velocity distribution. However, the
dynamics of a granular flow could be significantly different
from that of a molecule of gas for a variety of reasons. The
particles in a granular medium are macroscopic, and the
length scale of the flow is typically of the same magnitude as
the mean free path. Moreover, the collisions between the
particles in a granular medium are inelastic, and do not con-
serve energy. Therefore, a continuous source of energy is
required to sustain the flow. In a shear flow, the walls act as
the source of energy, and the “granular temperature,” which
is a measure of the fluctuating energy of the particles, is
determined from the balance between the source of energy
due to the mean shear and the dissipation of energy due to
inelastic collisions. In contrast to a molecular gas, the granu-

lar temperature is not an equilibrium thermodynamic prop-
erty. Since a net energy flux is required to sustain the motion
of the particles, there could be gradients of density and tem-
perature at steady state.

The kinetic theory description of a granular material re-
quires a solution of the Boltzmann equation, which expresses
the conservation of the number of particles in phase space. It
is difficult to solve this equation, because the collisional term
in the equation is nonlinear in the distribution function and
nonlocal in the velocity coordinates. It can, however, be
shown that, for an ideal gas in equilibrium, the solution to
this equation is a Gaussian distribution. For systems near
equilibrium, an asymptotic analysis can be employed with
the equilibrium distribution as the leading approximation.
Most previous studies on rapid shear flows have used this
method, but this approach is applicable only in parameter
regimes where the coefficient of restitutione is close to 1,

FIG. 1. Schematic of a two-dimensional bounded plane shear
flow.



FIG. 2. Distribution function for the stream-
wise velocity for different coefficients of restitu-
tions at the center of the channel.(a) et=en=0.3,
(b) et=en=0.5, and(c) et=en=0.7. sjde=0.005,
s3de=0.05, and(—) Theory[11]. In the first two
cases only one half of the distribution is shown
for clarity. It is symmetric about zero velocity.

FIG. 3. Distribution function for the stream-
wise velocity for different coefficients of restitu-
tions atz/L=−0.9 in the channel.(a) et=en=0.3,
(b) et=en=0.5, and(c) et=en=0.7. s+de=0.005,
s* de=0.001, andsjde=0.05.



FIG. 4. Scaling of different moments of the
velocity distribution function.(a) kuz

*2 −1l, (b)
kux

*2 −1l, and (c) kuz
*ux

*l with e. Points represent
the results obtained from simulation for different
values of et and en, s* d et=en=0.7, s3d et=en

=0.5, ands+d et=en=0.3, and the solid line is a
straight line with slope 1.

FIG. 5. Variation of the scaled velocity moments along the channel height foret=en=0.5, e=1. s+d e=0.0005,s3d e=0.005, s* d e
=0.01,shd e=0.03,andsjd e=0.05.



the time between successive collisions is small compared to
the inverse strain rate, and the distance between walls is
large compared to the mean free path(low Knudsen num-
ber). It is of interest to determine the form of the distribution
when these conditions are not satisfied, and the form of the
distribution function for a specific boundary configuration is
determined using event driven simulations in the present
analysis.

Constitutive equations for a rapid flow of granular mate-
rials under shear, based on the Chapman-Enskog method for
inelastic spheres and circular disks, were proposed by Lunet
al. [2] and Jenkins and Richman[3]. Boundary conditions
for a specific wall geometry, based on a detailed microscopic
model for wall-particle interaction, were obtained[4,5]. A
constitutive relation incorporating both the collisional and
frictional transport of momentum for simpler specularity
boundary conditions was proposed by Johnson and Jackson
[6]. Bounded shear flows have also been studied, usually
with the ‘bumpy wall’ boundary conditions, where the walls
of the channel are decorated with hemispheres in order to
effect momentum and energy transport to the particles, since

smooth walls do not transfer momentum in the flow direc-
tion. The thickness required to obtain a steady flow in a
channel of finite thickness has been examined by Haneset al.
[7]. Numerical simulations of flows with bumpy walls have
been carried out by Lun[8], and these simulations incorpo-
rated the tangential and rotational velocities of the particles.
Particular attention was paid to the slip velocity at the walls
for different arrangements of the hemispheres on the wall
surface. Babic[9] examined unsteady startup and oscillatory
flows using discrete element method simulations, and found
that the granular material behaves as a nearly incompressible
non-Newtonian fluid when the energy relaxation time is long
compared to the momentum diffusion time. All of the above
approaches have used continuum theories, which are valid in
the limit of a low Knudsen number, where the frequency of
binary collisions is large compared to that of particle-wall
collisions. In addition, balance equations are only written for
the hydrodynamic mass, momentum, and energy fields, and
not the velocity distribution function itself. The velocity dis-
tribution function in a channel was evaluated by Tijet al.
[10] using the linearized Bhatnagar-Gross-Krook equation.

FIG. 6. Distribution of streamwise[(a) and (c)] and cross-stream[(b) and (d)] velocities near the bottom wall[(a) and (b)] and at the
center[(c) and (d)] of the channel for different values ofe ande=0.9. shd e=0.01,sjd e=0.1, ands+d e=1.0.



The linearization approximation assumed a collision relax-
ation to a Maxwell-Boltzmann distribution, and this consid-
erably simplified the calculation procedure. In addition, ide-
alized boundary conditions, such as the zero temperature
conditions at the wall, were assumed. This calculation was
also carried out in the low Knudsen number limit, and
boundary layers were observed for the hydrodynamic fields
near the walls where there were sharp variations in the tem-
perature.

The above theories usually assume that the distribution
function is close to a Maxwell-Boltzmann distribution, or is
collisionally relaxed to a Maxwell-Boltzmann distribution.
This assumption is valid only when the coefficient of resti-
tution is close to 1, and in the low Knudsen number limit
where the mean free path is small compared to the channel
width. In contrast, the velocity distribution function was de-
termined analytically[11] in the high Knudsen number limit,
where the mean free path is of the same magnitude as the
channel width, using an asymptotic analysis in the small pa-
rametere, wheree=nsL, n is the number density,s is the
diameter of the particles, andL is the channel width. The

particle-wall collisions are considered to be inelastic and are
described by simple relations which include coefficients of
restitution in the tangential and normal directions(et anden),
respectively. Both elastic and inelastic binary collisions be-
tween particles were considered. This study indicated that
the distribution function is very different from a Maxwell-
Boltzmann distribution in this limit. In the present study, the
predictions of this analysis are compared to the results of
event driven simulations in the high Knudsen number limit
where the coefficient of restitution is not close to 1, and the
frequency of binary collisions is small compared to the fre-
quency of particle-wall collisions. The objective of the
present simulations is to determine the particle velocity dis-
tribution in the low and high Knudsen limits, and to compare
them with theoretical predictions in both limits. A realistic
wall boundary condition with normal and tangential coeffi-
cients of restitution is assumed, and the present boundary
conditions differ from the bumpy wall conditions used in
earlier studies in the low Knudsen number limit. Thus, these
provide some indication of the effect of boundary conditions
on the profiles in this limit.

FIG. 7. Distribution of streamwise[(a) and (c)] and cross-stream[(b) and (d)] velocities near the bottom wall[(a) and (b)] and at the
center(c) and (d)] of the channel for different values ofe ande=0.3. s* d e=0.4, shd e=0.6, sjd e=0.8, ands+d e=0.9.



Molecular dynamics methods are a valuable tool for simu-
lating granular flows, and there have been many such studies.
While Campbell and co-workers[12–14] used the hard
sphere molecular dynamics, the soft particle contact model in
which the overlap between particles is interpreted as a defor-
mation that generates a restoring force proportional to both
the amount of overlap and relative velocity of the particles at
contact was adapted in Ref.[15]. These models study the
behavior of idealized granular systems by calculating the
motion of individual particles as they interact with each other
and the walls. The effects of different kinds of boundaries
were studied in detail[12,14,16,17], and the stress tensor and
self-diffusivity in a sheared granular material have been de-
termined[13,18]. There are several other studies in the lit-
erature(see Refs.[19–21] and references therein), focusing
on the clustering, interaction between clusters and normal
stress difference in sheared granular system.

The difficulty in an analytical determination of the distri-
bution function for a wide range of parameters makes it im-

portant to determine the detailed velocity distribution
through the particle level simulation and experiment. There
have been several studies available in literature that examine
the distribution of particle velocities in different granular
systems like shaken granular media and particles in a homo-
geneously cooling state(HCS) [22]. Non-Gaussian distribu-
tion functions of the vertical component of particle velocities
subjected to vertical shaking have been reported[23,24], and
the distribution of the horizontal component of particle ve-
locities in a shaken circular cylinder have been observed
[25]. The velocity in a heated granular medium has been
found to have a non-Gaussian high velocity behavior[26]. A
crossover from a non-Gaussian to a Gaussian behavior of the
distribution of the horizontal component of particle velocities
reported[27] as the degree of fluidization is varied in a hori-
zontally vibrated granular media. In this work we present the
distribution of both cross stream and streamwise components
of the velocity of particles sheared in a two-dimensional
channel.

FIG. 8. Distribution of the cross-stream velocity foret=en

=0.9,e=1.0, ande=0.01 near the wall plotted on a log-linear scale.

FIG. 9. Domains ine−e parameter space for different types of
distribution function.s+d—bimodal streamwise velocity distribu-
tion, s3d—streamwise velocity distribution with three maxima near
the wall, and s* d—composite Gaussian streamwise velocity
distribution.

FIG. 10. Distribution function plotted in a log-linear scale fore=0.99, with the Gaussian fit using no adjustable fitting parameters for(a)
e=1.0 and(b) e=22.75.s+d represents the simulation, and the(—) is the Gaussian fit.



II. SIMULATION TECHNIQUE

The system consists of a two-dimensional channel of
width L which contains disks of radiuss, andn is the num-
ber density per unit width of the disks. The channel is
bounded by moving walls with velocities ±Vw at z= ±L, as
shown in Fig. 1, while periodic boundary conditions are used
in the flow sxd direction. The momentum imparted to the

particles by the walls results in a gradient in the mean veloc-
ity in the gradientszd direction. The change in the particle
velocity due to a collision with the wall is given by

ux8 = etux ± s1 − etdVw, s1d

FIG. 11. Distribution of the streamwise velocity at the centere and near the bottom wall of the channel for two differente. The coefficient
of restitution is 0.9 for all the cases shown here.(a) and(b) at the centre of the channel fore=9.75 and 26.0, respectively, and(c) and(d)
at z/L=−0.95 fore=9.75 and 26.0, respectively.

FIG. 12. The distribution of the streamwise velocity near the bottom wall plotted on a log linear scale fore=et=en=0.7 and two different
number densities of particles.



uz8 = − enuz, s2d

whereux8 anduz8 are the post collisional velocities of a par-
ticle with initial velocity ux anduz, andet anden are tangen-
tial and normal coefficient of restitution respectively. The
velocities of the particles before and after a binary collision
are related as follows. The velocity of the center of mass,
v=u1+u2 remains unchanged, while the velocity difference
w8=u18−u28 after the collision is related to the velocityw
=u1−u2 before the collision by

w8 = fI − s1 + edkk g ·w, s3d

where e the coefficient of restitution for binary collisions,
and k is directed along the line joining the centers of two
colliding particles.

The event driven simulation consists of a streaming step
and a collision step. In the streaming step, the time required
for the next collision is calculated based on the current par-
ticle positions and velocities, and the positions are advanced
along a straight line up to the next collision. In the collision
step, the velocity of the colliding particles is updated accord-
ing to Eq. (3). Unlike in studies on infinite systems, it is
necessary to consider the possibility of particle-wall colli-

sions as well in the present case while calculating the time
required for the next collision. The collision rules for the
particle-wall collisions are given by Eqs.(1) and (2), while
the collision rules for particle-particle collisions are the stan-
dard ones where the velocity of the center of mass is un-
changed, while the relative velocity after collision is related
to that before collision by Eq.(3).

III. HIGH KNUDSEN NUMBER LIMIT

The velocity distribution in the high Knudsen number
limit for the flow in a channel with boundary conditions(1)
and(2) for particle-wall collisions was calculated by Kuma-
ran [11] in the limit where the frequency of particle-particle
collisions is small compared to the frequency of wall-particle
collisions. The frequency of wall-particle collisions per unit
width is proportional tonu, wheren is the number of par-
ticles per unit area andu is the magnitude of the particle
velocity, whereas the frequency of wall-particle collisions
per unit width of the channel is proportional ton2suL, since
n2us is the frequency of binary collisions per unit area.
Therefore, the ratio of the frequencies of particle-particle and
wall-particle collisions is given by the dimensionless param-

FIG. 13. Distribution of the cross-stream velocity at the center(a) and near the wall(b) of the channel fore=0.7. s+d e=1.0, s3d e
=13.0, ands* d e=26.0.

FIG. 14. Distribution ofuz on log-linear scale at the center(a) and near the wall(b) of the channel for a system withe=0.7 ande
=13.0. The solid line is a Gaussian fit with no adjustable parameter and the points are obtained from simulation.



etere;nsL, which is small compared to 1 in this limit. An
asymptotic analysis is used where binary collisions are ne-
glected in the leading approximation, and the situation cor-
responds to a single particle in a channel with boundary con-
ditions (1) and (2). If a particle has velocitysux,uzd and
collides with the top wall, the post-collisional velocities are

ux8 = etux + s1 − etdVw

uz8 = − enuz. s4d

This particle now has a negativeuz, and subsequently col-
lides with the bottom wall. The velocities after the second
collisions are

ux9 = etux8 − s1 − etdVw = et
2ux − s1 − etd2Vw,

uz9 = en
2uz. s5d

A steady state is achieved if the particle returns to its original
value after two collisions, orux9=ux anduz9=uz. It is easy to
see, from Eqs.(4) and(5), that the particle velocity returns to
its original value after two collisions only if the velocities are

ux = − V =
− s1 − etdVw

1 + et
,

ux8 = V =
s1 − etdVw

1 + et
, s6d

uz = uz8 = 0.

Further, an analytical expression can be obtained for the ve-
locity sux

snd ,uz
sndd aftern successive collisions with the walls if

the initial velocity issux
s0d ,uz

s0dd:

ux
snd + s− 1dns1 + s− 1dsn−1det

ndV = et
nux

s0d

uz
snd = s− 1dnen

nuz
s0d. s7d

Thus, if the particle velocities are initially random, with
equal numbers of particles having positive and negativez
velocities, then the particle velocities after a large number of
collisions converge to the velocitiess±V,0d. In this case, the
distribution function for the particle velocities consists of
two delta functions ats±V,0d.

However, as the particle velocity in thez direction re-
duces to zero, the frequency of the particle-wall collisions,
which is proportional touz, also reduces, and it is necessary
to include the effect of binary collisions. This is incorporated
by assuming that binary collisions occur between particles
with velocity s±V,0d. The reason for only considering binary
collisions between particles with velocitiess±V,0d. is the
following. For particles whose velocityuz is OsVd, there is a
significant error in the calculation of the post-collisional ve-
locities if we assume that the particle velocities ares±V,0d.
However, for these particles, the frequency of binary colli-

FIG. 15. Distribution of the streamwise velocity fore=0.7 and
e=13.0, i.e., Kn=0.077, at the center of the channel. The curve is fit
by a “composite Gaussian” with two Gaussian distributions with
different variances patched at their maxima. The straight line shows
the mean value.

FIG. 16. Distribution function for streamwise velocity fore=0.7 ande=26.0 at the wall of the channel plotted on a log-linear scale(a).
The two distinct lines indicate two variances below and above the maximum.(b) shows the fit of the distribution function to Eq.(10) in the
log scale.



sions isOsed smaller than that of particle-wall collisions, and
so the error incurred in the calculation of the distribution
function is Osed. For particles whose velocities areOseVd,
different from s±V,0d, the frequency of binary collisions is
of the same magnitude as that of particle-wall collisions, but

there is only a small error ofOsed in the calculation of the
distribution function due to the assumption that the particles
have velocitiess±V,0d. Thus, this approximation regarding
the velocities of the particles before a binary collision incurs
only a small error throughout the domain.

An elastic binary collision between two particles at
s±V,0d scatters these particles onto a circle in velocity space
with a center at the origin and a radiusV. These particles
undergo collisions with the wall, since they have a nonzero
velocity in the z directions. These particle-wall collisions
transport the particles onto a series of discrete contours in
velocity space, until their velocity returns to a region of size
OseVd abouts±V,0d. The flux of particles entering and leav-
ing a differential segment along a contour is determined us-
ing the Boltzmann collision operator for binary collisions,
and the distribution function along these contours at steady
state is determined by balancing the flux of particles entering
the contour with the flux leaving. The normal and shear
stresses are calculated from the distribution function. Details
are provided in the earlier paper[11].

It is easy to see that, in the leading approximation, which
corresponds to two delta functions ats±V,0d, the second
moment of the velocity distribution(which is proportional to
the stress) is highly anisotropic:

kux
2l = V2,

kuz
2l = 0, s8d

kuxuzl = 0.

However, when the velocities of particles scattered due to
binary collisions are included, the second moments of the
velocity distribution are found to scale as follows:

kux
2l − V2 , e,

kuz
2l , e, s9d

kuxuzl , e logsed.

It should be noted that the logarithmic dependence ofkuxuzl
is difficult to discern in simulations, since it is necessary to
go to very small values ofe to recover this, but the depen-
dence one in the high Knudsen number limit can be verified.

The simulation has been carried out for three sets ofen
andet, while the coefficient of restitution for particle particle
collisions e has been set equal to 1. The simulation can be
easily extended to cases whereeÞ1. Figures 2 and 3 show
the distribution functions for different sets of values of the
coefficient of restitution in normal and tangential direction,
as a function ofe at two different points across the channel
width. The distribution function is very different from
Maxwell-Boltzmann distribution, but converges to the pre-
dictions of the asymptotic analysis[11] in the limit e→0.

It is observed that the distribution function is bimodal
(Figs. 2 and 3), and that the peaks occur at ±V as predicted
by the asymptotic analysis, whereV=Vws1−etd / s1+etd and
Vw is the wall velocity. It is also seen from the figure that the

FIG. 17. Distribution of the streamwise velocity on a log-linear
scale with a corresponding Gaussian fit with no adjustable param-
eters fore=0.9 near wall. The two distinct segments indicate the
presence of two variances below and above maxima.s+d represents
the variance above the maxima ands3d represents the variance
below the maxima.



height of the peak decreases and the width increases ase
increases. However, the bimodal nature of the distribution
function persists fore up to 0.05.

Different moments of scaled velocitycsu* d were deter-
mined in the simulation, whereu* = su /Vd is the velocity
scaled byV. Figure 4 shows the scaling ofkuz

*2l and kux
*2l

−1 as a function ofe. The theory predicts that lime→0skux
*2l

−1d~e and lime→0kuz
*2l~e; these scaling laws are in agree-

ment with the simulation results. The moments of the distri-
bution function are shown as a function of position in Fig. 5.
It is observed that the difference between the wall and par-
ticle velocities at the wall increases aset increases, as can be

inferred from the relation between the wall velocity and post
collisional particle velocity, and this difference decreases as
e increases, because a particle undergoes multiple binary col-
lisions before reaching the wall, and the mean velocity
equilibrates to the wall velocity. It is also observed in Fig. 5
that the second moments(kux

2l and kuz
2l) are anisotropic in

this limit and that the anisotropy decreases with an increase
in e.

IV. LOW KNUDSEN NUMBER LIMIT

It has been observed that the bimodal nature of the distri-
bution function for the streamwise velocity changes ase is
increased, or Kn is decreased. In this section, the particle
velocity distribution in the low Kn limit will be discussed.
For all the results presented here, the tangential and normal
coefficient of restitution for wall particle collisions are as-
sumed to be equal to the restitution coefficient for the binary
collisions. Figure 6 shows the distribution function for both
the streamwise and cross-stream velocities of particles for
different values ofe for a fixed coefficient of restitution at
two different points in the channel, and Fig. 7 shows the
velocity distribution functions for a fixede but a different
coefficient of restitution at two different points in the chan-
nel. It is observed that the distribution function for the
streamwise velocity changes from a bimodal to a unimodal

TABLE I. Temperature obtained from simulation compared with
that obtained using the theory of Ref.[3].

v e

s Vw/L TRich Tsim

smd s1/sd sm2/s2d sm2/s2d

0.103 0.99 0.02 0.7 0.0848 0.0856

0.46 0.99 0.045 1.25 0.089 0.088

0.0975 0.9 0.02 4.0 0.292 0.291

0.4355 0.9 0.045 5.67 0.181 0.183

0.094 0.7 0.02 6.0 0.2217 0.218

0.445 0.7 0.045 7.0 0.0769 0.08

FIG. 18. Distribution of the cross-stream velocity on a log-linear scale with a corresponding Gaussian fit with no adjustable parameters
for e=0.9 near the wall. The two distinct segments indicate the presence of two variances below and above the maxima.s+d represents the
variance above the maxima ands3d represents the variance below the maxima.



distribution ase is increased. It is also observed that in the
high Knudsen number limit, the distribution of the stream-
wise velocity of particles is bimodal for any restitution coef-
ficient and at any point across the channel. However this
bimodal nature disappears as thee approaches 1. There ex-
ists a transition zone where the distribution of streamwise
velocity is bimodal at the center of the channel, and has three
maxima near the wall(Fig. 7). The third peak in the distri-
bution function appears at a velocityhscaledfs1−etd /
s1+etdgVwj beyond ±1 near the top and bottom walls of the
channel. In this regime, the nature of the streamwise velocity
distribution depends on the coefficient of restitution, as seen
in Fig. 7. Foreù1 the velocity distribution is unimodal, but
for e,1 the velocity distribution could be unimodal or bi-
modal depending on the coefficients of restitution. Further,
the nature of the distribution also depends on the position in
the channel. As the coefficient of restitution decreases, the
distribution of ux deviates from the Gaussian distribution
near the wall and exhibits skewness. At the center of the
channel, however, the distribution function continues to be
Gaussian.

Next, the cross-stream velocity distribution for the par-
ticle is studied. The distribution of the cross-stream velocity
is a delta function in the high Knudsen limit and is unimodal
in the moderate to low Knudsen number regime. The cross-
stream velocity distribution is non-Gaussian for systems with
moderately high Knudsen number, and varies ask exps−uzd
(Fig. 8).

In the limit where the Knudsen number is small compared
to 1, the distribution is Gaussian for a system with a restitu-
tion coefficient close to 1. The distribution of the cross-
stream velocity of particles remains Gaussian at the center of
the channel for a small coefficient of restitution, but assumes
the form of a composite Gaussian near the wall, with differ-
ent variances above and below the maximum velocity. The
details of the scaling of the distribution functions and the
anisotropy are discussed a little later. The regions in thee
−e parameter space where the distributions for the streain-
wise velocity are bimodal, composte Gaussian, and transition
type with more than one maximum are shown in Fig. 9.

In the low Knudsen number limitse.1d for s1−ed!1,
the distribution function is Gaussian, as shown in Fig. 10. In
this limit the velocities in the streamwise direction have been
nondimensionalized with the wall velocitiesVw. There is no
adjustable parameter used in the fit, and there is good agree-
ment for five decades. There is a significant departure from
the Gaussian distribution when the coefficient of restitution
is not close to 1. Figure 11 shows the distribution function
for both the streamwise and cross-stream components of the
velocity at two different positions in the gradient direction at
e=0.9 in the low Knudsen number regime. It is observed that
the distribution is symmetric at the center of the channel
whereas there is skewness in the distribution function near
the wall. It is apparent from Fig. 11 that the skewness is
stronger as the Knudsen number is increased, or ase is de-
creased, and from Fig. 12 that the skewness is stronger when

FIG. 19. (a) Density,(b) mean velocity, and(c) temperature fore=0.9 ande=13.0.(—) represents the temperature obtained in Ref.[3]
for the given density and the strain rate.



e is decreased at constante. A similar trend is observed for
the cross-stream component of velocity(Fig. 13).

The results obtained from the simulations in the low
Knudsen number high inelasticity limit are further studied to
obtain a quantitative description of the scaling of the distri-
bution function at high velocities(Fig. 14). Fig.15 shows the
distribution of the streamwise velocity of particles near the
bottom wall of the channel. The distribution has a form

fsuxd = k1exp
− sux − uxmdn

k2
, s10d

whereuxm is the position of the maximum of the distribution
function, andk1 andn is determined from the intercept of the

TABLE II. Source and dissipation near wall as determined from
the simulations.

s

e e

T v Vw/L So Do

smd sm2/s2d s1/sd s1/s3d s1/s3d

0.01 0.99 1.0 0.06 0.004 0.143 0.14 0.0134

0.01 0.9 1.0 0.645 0.004 1.0 21.09 4.52

0.01 0.7 1.0 1.68 0.0045 5.0 745.42 66.06

0.035 0.99 22.75 0.0861 0.324 2.25 22.18 3.53

0.035 0.9 22.75 0.125 0.36 5.75 176.74 72.93

0.035 0.7 22.75 0.054 0.375 7.5 161.59 60.313

FIG. 20. Anisotropy in temperature for different coefficients of restitution in the low Knudsen number regime,(……) Tx and(—) Tz.



function plotted in a log linear scale. It should be noted that
Eq. (10) is just a fit to the observed form of the distribution
function, which incorporates the possibility of different ve-
locity variances in the limitsux= +` and ux=−`. It is as-
sumed here that the behavior of the function in the limit of
large ux is similar to that forux near the maximum of the
distribution. To validate this assumption, the distribution
function is plotted againstux

n on a log-linear scale. The linear
relationship of this plot ensures the validity of the obtained
value ofn. Figure 16 shows the distribution function plotted
in a log scale along with the linear fit. No adjustable param-
eter is used in the fit. It is observed that thek1, defined in Eq.
(10) has a form 2/ÎpsÎk2m+Îk2pd, where k2=k2p for

ux.uxm andk2=k2m for ux,uxm. This indicates that there are
two distinct velocity variances for the distribution function,
one for velocities aboveuxm and the other for velocities be-
low uxm. The mean of this distribution is

kuxl = uxm+
k2p − k2m

ÎpsÎk2m + Îk1md
. s11d

Figure 17 shows the distribution of the streamwise velocity
and Fig. 18 the cross-stream velocity distribution on a log-
linear scale for different values ofe. The two distinct curves
indicate that there exist two variances below and above the
maximum value, as discussed above. Thus the simulation

FIG. 21. Flux of energy for different coefficients of restitution in the low Knudsen number regime(……) kux
2uzl, (—) kuz

3l.



results indicate that the nature of the velocity distribution
near the wall differs drastically from that at the center of the
channel for sheared inelastic granular materials at the low Kn
limit.

Next, the macroscopic properties obtained from the simu-
lations, such as the temperature, stress and heat flux, are
examined. The temperature obtained from the simulation is
compared with the temperature predicted in Ref.[3] for the
steady, homogeneous flow between two material planes sepa-
rated by a distanceL moving with a relative velocity ofV. It
was assumed that the density is a constant and the mean
velocity varies linearly between these two plates, and ob-
tained the granular temperature by a balance between the
source of fluctuating energy due to the mean shear and the
dissipation due to inelastic collisions. For smooth particles,
the granular temperature is

T =
ms2g2

4as1 − ed
, s12d

whereg is the strain rate and

m = m8s1 + vgsvdrd +
1

2
a,

a =
8mv2gsvdrÎT

p3/2s
,

m8 =
mÎT

BsgsvdÎp
f1 + vgsvds3r − 2drg,

r =
s1 + ed

2
,

B = s5 − 3rd,

andgsvd is given in Ref.[28]. The temperature at the center
of the channel is determined using the formulation, and is
compared with the simulation results in Table I. The simula-
tion results are in good agreement with the prediction of Ref.
[3] at the center of the channel, but a spatial variation in the
temperature and density is not predicted, since the flow is
assumed to be homogeneous. This variation could be signifi-
cant in the low Knudsen number limit, as observed in
Fig. 19.

It is also observed that the second moments of the distri-
bution (kux

2l andkuz
2l) are anisotropic,(Fig. 20), and the dif-

ference in energy between the streamwise and cross-stream
directions decreases ase increases. It is useful to note that
the difference in temperatures is about 20% ate=0.9, and as
much as 50% ate=0.7. In the simulation results, there is a
decrease in the temperature near the walls, due to the inelas-
tic nature of the particle collisions with the walls. To exam-
ine this further, the local shear production of the energy and

FIG. 22. Slip velocity at the wall fore=0.99s* d, e=0.9 shd, ande=0.7 sjd.



the local dissipation due to inelastic binary collisions are
determined and listed in Table II. It is observed that the
source due to the mean shear is larger than the dissipation
due to binary collisions in all cases, and so there is a nonzero
flux of energy towards the wall. The energy flux obtained
from simulations is shown in Fig. 21. This figure indicates
that the flux is positive near the top wall and negative near
the bottom wall, indicating that there is a transfer of fluctu-
ating energy from the particle to the wall.

The slip velocity at the wall has been calculated as the
difference between the wall velocity and the mean velocity
of system near wall, and is shown in Fig. 22. The slip veloc-
ity decreases as the coefficient of restitution decreases, and
decreases ase increases, though there is a significant slip
velocity even ate=0.5.

V. CONCLUSION

The velocity distribution of a sheared granular material in
a bounded channel is studied using an event driven simula-
tion for a wide variation in the coefficients of restitution and
the Knudsen number. In the limit of high Knudsen number,
the distribution function for the streamwise velocity is bimo-
dal, and the simulation results are found to be in good agree-
ment with theoretical predictions in the limite→0, wheree,
the ratio of the channel width and the distance between inter
particle collisions, is inversely proportional to the Knudsen
number. The scaling of the moments of the velocity distribu-
tion with e are also in agreement with theoretical predictions,
and the distribution function is nearly uniform across the
channel. In the limit of low Knudsen number, the distribution

function is observed to be close to Gaussian if the coefficient
of restitution is close to 1 in the streamwise and cross-stream
directions. However, if the coefficient of restitution is not
close to 1, the streamwise distribution is a “composite
Gaussian,” which consists of two Gaussian distributions
patched together at the location of the maximum velocity,
with one variance for velocities above the maximum velocity
and another for velocities below the maximum velocity.

The transition in the streamwise velocity distribution from
the bimodal form fore!1 to the composite Gaussian form
for e@1 occurs in a complicated fashion, and the distribu-
tion near the wall has three maxima at intermediate values of
e, while the distribution at the center undergoes a transition
from a bimodal to a unimodal form. The distribution function
for the cross-stream velocity undergoes a transition from a
delta function near zero velocity fore!1 to a Gaussian for
e@1.

The predictions for the temperature of a sheared granular
flow are accurate for determining the temperature at the cen-
ter of the channel for highe, but do not capture the tempera-
ture and density variation near the wall of the channel even
whene is between 10 and 25. In particular, the flux of energy
towards the wall of the channel due to the inelastic nature of
the particle-wall collisions is not recovered in this limit.
This, coupled with the complicated nature of the distribution
function in the channel, indicates that the predictions of ki-
netic theories based on a Gaussian distribution may not ac-
curately capture the dynamics of the flow when the coeffi-
cient of restitution is 0.9 or less even when the Knudsen
number is between 10 and 25.
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