Weakly nonlinear analysis of the electrohydrodynamic instability of a charged membrane
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The effect of nonlinear interactions on the linear instability of shape fluctuations of a flat charged membrane
immersed in a fluid is analyzed using a weakly nonlinear stability analysis. There is a linear instability when
the surface tension reduces below a critical value for a given charge density, because a displacement of the
membrane surface causes a fluctuation in the counterion density at the surface, resulting in an additional
Maxwell normal stress at the surface which is opposite in direction to the stress caused by surface tension. The
nonlinear analysis shows that at low surface charge densities, the nonlinear interactions saturate the growth of
perturbations resulting in a new steady state with a fluctuation amplitude determined by the balance between
the destabilizing electrodynamic force and surface tension. As the surface charge density is increased, the
nonlinear terms destabilize the perturbations, and the bifurcation is subcritical. There is also a significant
difference in the predictions of the approximate Debye-Huckel and more exact Poisson-Boltzmann equations at
high charge densities, with the former erroneously predicting that the bifurcation is supercritical at all charge
densities.

[. INTRODUCTION saturate the linearly unstable shape fluctuations, leading to a
supercritical state, or whether the bifurcation is subcritical
It is well known that adsorbed charges on membrane sumwhere nonlinearities destabilize the linearly stable state.
faces have a significant effect on the functioning of mem- It is well known that the presence of adsorbed charges
branes in biological systems. There are significant variationsould significantly alter the elasticity of membranes. Winter-
in charge distributiorf1] and the transmembrane potential halter and Helfrici{ 7] and Lekkerkerkef8], as well as the
when there are shape changes in membranes. There has asstbsequent studig9,10], found that there is an increase in
been experimental evidence to indicate that variation irthe elasticity due to adsorbed charges. There is a change in
charge densities could be important in influencing the shapethe modulus for the mean curvature and the Gaussian curva-
of vesicles made of lipid bilayers. Vesicles are usually maddure due to adsorbed charges, and the change in the Gaussian
under nonequilibrium conditions, because the bending ereurvature could favor the spontaneous formation of vesicles.
ergy for the formation of a vesicle of micron size is large In these studies, the change in the electrostatic energy due to
compared to the thermal energy. However, some interestinthe curvature of the membrane is determined, and the correc-
experimental result$2] have revealed that stable vesiclestions to the elasticity moduli are calculated from the free
could be made at equilibrium if a mixture of lipids with energy change. The corrections to the elastic moduli are
surface charges of opposite signs are used. There have bemanifested as additional contributions to the curvature en-
many studies on shape changes due to the asymmetry efgy when a net curvature is imposed on the membrane. It
inclusions in the membrane and their phase separation on thes been showfi1] that a difference in the charge densities
surface, and other nonequilibrium process¥s Phase sepa- in the two lipid layers forming a bilayer could stabilize a
ration of the components of a membrane could also alter theesicle, because there is a reduction in electrostatic energy
shape[4,5], but it is expected that effects such as head-taiwhen the higher charge density is on the outside of the
asymmetry would lead to structures with characteristicvesicle. This could compensate for the increase in the curva-
lengths of the same magnitude as the domains on the surfadeye energy. The effect of charge density curvature coupling
whereas typical sizes of vesicles could be two to three ordersn the dynamics of fluctuations on a charged surface was
of magnitude larger than the membrane thickness. Sincanalyzed[12]. The analysis showed that when the charges
shape changes in biological membranes are accompanied hye permitted to move on the membrane surface, there is an
changes in the transmembrane potential, it is useful to examnstability of the flat state of the membrane due to a corre-
ine whether shape changes of flexible charged surfaces coulated variation in the charge density and the curvature. How-
be caused by changes in the surface potential. The lineaver, this analysis assumed that the thickness of the counter-
stability of surface fluctuations on a charged surface has bedon layer at the surface is small compared to the wavelength
studied as a function of the surface potenii@l, and it is  of the perturbations, and variations in the counterion density
known that surface fluctuations become unstable when thparallel to the surface were neglected.
surface potential exceeds a critical value at a given surface In the present analysis, we carry out a weakly nonlinear
tension, or when the surface tension reduces below a criticanalysis of the fluctuations at the surface of a charged mem-
value for a given surface potential. However, the effect ofbrane. The corresponding linear analygsg indicated that
nonlinear interactions on the growth of the fluctuations canperturbations become unstable when the surface charge den-
not be studied using a linear analysis. The objective of theity exceeds a critical value for a given membrane tension, or
present analysis is to examine whether nonlinear interactiornthe tension reduces below a critical value for a given surface



charge density. However, the linear analysis cannot be usedhen the dielectric constant of the hydrophobic tails in the
to determine the amplitude of fluctuations, and it is necessarljpid layer is small compared to the dielectric constant of the
to include higher order terms in the amplitude expansion. Irsurrounding water. In practical situations, the ratio is about
the present case, a Landau analysis is used where the néX#0, so the approximation is valid for distances about 40
higher (cubic) term in the amplitude expansion is included, imes the bilayer thicknesg’]. Though this is not strictly
and the “Landau constant,” which is the coefficient of the true in cases where the dielectric constants are comparable,
cubic term in the amplitude expansion, is calculated. If theve use this as a first approximation to make the problem
coefficient of the cubic term is negative, the system is superanalytically tractable.
critically stabilized by nonlinear interactions at a nonzero
amplitude. If the coefficient of the cubic term is positive, the Il. GOVERNING EQUATIONS
system is destabilized by nonlinear interactions. The analysis ) ) , i
is carried out using the Poisson-Boltzmann equation for the A two-dimensional coordinate system is used for analyz-
relation between the charge density and potential, as well 489 the perturballqns, whesg is the direction normal to the
the simpler Debye-Huckel approximation. The Debye-membrane and™ is t.he“dlﬂr_ecu.on in the plane of the mem-
Huckel approximation is valid only at low charge densities,Prane. The superscript **” indicates dimensional quantities,
while the Poisson-Boltzmann equation is applicable to highefVhile nondimensional quantities are written without a super-
charge densities as well. One of the important results of th&¢TPt- The nlembrane is flat in the base state, and is located
analysis is that there is a significant difference in the result&t POsitiony* =0 separating two Newtonian fluids which
of the nonlinear analysis for the two models even when th&xtend to infinity in they* direction. The membrane has a
linear stability analysis provides results that are in goodcharge densityr™, while the concentration of the charged
agreement. species at a Iarge_ distance from_t_hg membrandere the
It is important to note that the wavelength of perturbationsSolution is neutralis N... In the vicinity of the membrane,
in this case is of the same magnitude as the thickness of tHBere is a double layer with charge densitigs(y*) and
counterion layer near the surface. The counterion layer thickd* (y*). The electrolyte is considered to be symmetric so
ness under physiological conditions is about 1 nm, which ighat the number of charges per ion are equal for the two
small compared to the length scale of structures such agharged specieg, =z_=z.
vesicles. However, the linear stability analy$§ predicts The incompressible Navier-Stokes equations for the fluid,
that the most unstable mode for a flat membrane has zeftie concentration equations for the charged species, and the
wave number, indicating that the most unstable mode for &oisson-Boltzmann equation relating the potential to the
system of finite size is likely to be the size of the systemcharge density are
itself. However, the selection of the most unstable mode is
likely to depend very sensitively on the surface potential V*V* =0, (1)
when the size of the structure is large compared to the thick-
ness of the counterion layer. There are other situations where ~ p* (Jf V'* +V/* . V¥VI* ) = — V¥ pi¥ 4+ % v *2y1*
the thickness of the counterion layer could increase jom e Dk ol
when the salt concentration is decreased, and the results of +(ny—nT)eE”, @
the present analysis would be directly applicable in those
cases. - _ o v +ﬂv* zp'*} 3)
The linear stability analysi§6] showed that the inertial * T '
and convective terms in the momentum and concentration
equations are zero for neutrally stable modes, and so it is
assumed in the present case that the Reynolds and Peclet gn* +v* . Vn* =V*.D
numbers are zero. The limit of low Reynolds number is ap-
propriate for micron scale structures in biological systems. %
The validity of the zero Peclet number limit can be estimated w2 0% __ Pc_
ot e RSt V*ey : )
as follows. The diffusion of a small molecule in a liquid is €
0(10° m?/s), and the Peclet numbed (/D) is small for o o
structures of micron scalds~10° m if the velocity scale Where the superscridtis used to distinguish between the
is smaller than 10% m/s. For membranes with surface ten- fluid on the two sides of the membrares a for the fluid in
sion and in the absence of fluid inertia, a characteristic vethe half-spacey*>0, andb for fluid in the half-spacey*
locity scale can be estimated a&/f), wherel is the sur- <0 in the base state;* andp; are the velocity and pressure
face tension ang is the viscosity. The viscosity of water is in the fluid, p* and »* are the density and viscosity which
0O(10 2 kg/m s), and therefore the velocity is small com- are assumed to be equal for the two fluids for simplitis
pared to 10° m/s forI'<10~° kg/m €. This is about three the charge of an electrol* = — V* ¢* is the electric field,
orders of magnitude less than the surface tension of an aif* is the scalar electric potential field, anfi=(a/dt*).
water interface, and therefore the present analysis is likely to We consider perturbations with wavelength of the same
be applicable only for membranes with very low tension. magnitude as the Debye length, so that the following
In this analysis, we assume that the charge densities oscalings are used#* =T/(ze)y, x* =x"1x, V*
the two sides of the membrane are decoupled. This is valigc[N..T/(7«)v], pf=N.Tp;, and time t*=»/(N.T)t,

an* +V*.Vn* =v*.D

v* zen*_ * 1%
n.———V*7| (4)



where k= (N..z%e?/(€T))*? is the inverse of Debye screen- Wa=Pexp —y), (19)
ing length. With these scalings, the equations become

b_ b
V.v=0, ®) PP=v. expyy). (20
Re(aV +V - V(W) = — Vph+ VA + (V2 V!, (7) The mean fluid pressure is related to the potential by
| | | | 1 3\]/' 2
Peon,+v-Vn,)=V-[Vn,+n, V'], (8) Pf=§ W . (21
Pgon" +V'-Vn_)=V[Vn_—n_Vy']. 9)
A. Boundary conditions
VZiyl=—(n.—n) (10 Since the membrane surface fluctuates, boundary condi-

tions are applied on the boundary that varies with position.
We consider the potential at the surface of the membrane to
be fixed in the present analysis, and the boundary condition
for the surface potential is

where Re= (pN..T)/(7%«?) is the Reynolds numbératio of
inertial and viscous forces for the velocity fluctuatipasid
Pe=N.T/(7D«?) is the Peclet numbefratio of convective
and diffusive effects for the electrolyte concentration field
The fluid mass and momentum equations are considerably l/,'|)(yﬂ=1p'ﬂy (22)
simplified for the case Re0 and Pe=0

Wherez,//'|xy,] is the potential at the perturbed interface while

Vv=0, (12) W! is the mean surface potential. The boundary condition
| ” | - | for the fluid velocity and stress fields are as follows. In the
—Vpi+ VAV (V) V=0, (12)  |imit where the amplitude of perturbations is large compared

. . . . to the thickness of the membrane, the tangential velocity at
while the Poisson-Boltzmann equation for the potential cafne g rface is small compared to the normal velocity, and so
be written as the tangential velocity can be assumed to be zero in the lead-

20 | ing approximation. The normal velocity of the fluid at the
Vi =sinily]. (13 surface of the membrane is equal to the velocity of the mem-
brane in the normal direction, while the difference between
the normal fluid stresses is balanced by the normal force due
to surface tension.

While implementing boundary conditions of the ty(@2),

V2 =yl (14) the interface position is not knowa priori, but is deter-

mined as a part of solution, and so some care has to be taken

In the present study, detailed analytical results are providedhile applying boundary conditions. Consider a material
for the Debye-Huckel approximatiofhenceforth called the point on the unperturbed membrane which is labeled by its
DH mode), while numerical results of the nonlinear coordinatex. After deformation, this moves to a new posi-
Poisson-Boltzmann equatiqi®B mode) are also provided. tion z(x), where»(x) is the vertical component of thea-
The details of the numerical procedure are given in the Apgrangiandisplacement of the material point at the interface.
pendix B. By definition, the components of tHeulerian displacement

In the base state, the pressure and electrical potential vafield u are given by
only in they direction, and the governing equations are

For small potentials, Ae)*/T)<1, the Poisson-Boltzmann
equation reduces to a linear equatiddebye-Huckel ap-
proximation

Uy(X,t)= 7. (23
—dyPi+(di¥")(d,¥")=0, (15
The unit normaln and the unit tangent to the perturbed
d2W'=F,[¥"] (16) interface are defined as
y ’
whered,=(d/dy), Fi[¥']=sin{¥'], and¥' for the PB an an
and DH models respectively. The solutions for the potentials & o)t St x
in the base state are n= t= . (29
an 2 an 2
P2 14| — 1+ —
Ya=4tanh [ e Ytan il (17 X X
) The matching conditions for the velocity at the perturbed
Ph=4 tani ! ¥ ta”*{%b- (18) interface &, n) are
(n'Va)|x,n:(n'Vb)|x,n:(n'Vm)|x,n- (25

The following simplified solutions are obtained using the
Debye-Huckel approximation: (t-va)|xy,,:(t-vb)|xy,]=0, (26)



where the superscriph refers to variables defined on the v;": DUy, (34)
membrane surface. The scaled normal stress balance condi-
tion is whereD;=d,+ V-V is the substantial derivative.

[n-7n)2, —[n-7nly =T (Vsn),, (27) lIl. STABILITY ANALYSIS

where V is the surface gradient along the membrane sur- Linear stability studieg6] have indicated that perturba-
face, given byV,=[V—n(n-V)], whereV is the three- tions become unstable when the surface potential exceeds a
dimensional gradient operator, anrd is the stress tensor critical value for a given surface tension, or when the surface
along the membrane. The terWy-n is the negative of the tension is decreased below a critical value for a given surface
mean curvature of the membrane surface, and the term prgotential. However, the linear growth of perturbations is af-
portional to this accounts for the normal stress exerted due ttected by nonlinearities both in governing equations as well

surface tension. as in the boundary conditions, although the nonlinearities in
The terms in the boundary conditioi®5)—(27) are ex- the governing equations are not present in the Debye-Huckel
panded in a Taylor series in the parametet u, . approximation. The nonlinearities in the boundary conditions
arise due to Taylor expansion of the boundary conditions
| N [ 9uy 1(duy 2 about the unperturbed state, as well as due to the variation of
(V)] y=|vxtoy Ix ol ok Tl (28 the surface normal along the perturbed interface. The linear
stability analysis(discussed in Appendix Aindicates that
au 1/du.\2 ] perturbations become unstable in the zero wave number limit
| B R y y X . o .
(n-v )|x,,7— Uy_vx(a_x) 3 (W +--- 1, (29 k—0. However, in real systems there is a minimum permis-
- sible wave number of perturbations due to the finite lateral
[n-7n]| extent of the system. Perturbations with this lowest permis-
X7 sible wave number become unstable first when the surface
au au au potential exceeds the critical value, and the effect of nonlin-
%Yy y o y | o . . :
> gy~ Ty Tax 1= Ty X +7yy earities on the growth of these perturbations is analyzed in

- the weakly nonlinear analysis. In the weakly nonlinear

1+ &)2 theory, we aim to find the state of the system after it is
X - rendered linearly unstable. The system is therefore assumed
to have a tensio’ slightly smaller than the critical tension
(30) I'; given by the linear theory. Wheh is slightly smaller
) thanT', perturbations with wave numbé&g and lower be-
m come unstable and generate higher harmonics due to nonlin-
Ix? ear interactions. It is useful to define the functi&(x)
Vnly,=— e (B)  =exdi(kx+wd)]. In the weakly nonlinear theory, an expan-
1+ _y> sion is used in the harmonic series as well as the amplitude
X X, of the perturbations

where the constitutive relation for the fluid stresses is * - _ ~y
By, 0)=2 2 [AD]TEDEN(y)+E SpTEN(y)],
7=—pd +[Vo+ (Vo) 1+ VyVy—31 (Vi) - (V). s=0n=s

(32) (35

Since the position of the interface has to be determined avsvhere the integer superscripindicates the h_armonlcs with
wave number gk.) and frequency4w.), the integer super-

a part of the solution, the boundary conditions at the per- " o g .
tur%ed interface are expanded abOL)Jlt their values at thep ur?—Crlptn indicates the order in powers of the amplitude of the

perturbed interface/=0. If F indicates a fluid parameter perturbation, the superscript is the complex conjugate,

(fluid velocity, stressesthenF|, , at the perturbed interface gg(v?t;n?é?alzt(h; %g'zlgflijgs do:;;Tgwwé':l\i/se;h;;q\;ﬁr;)e;r;%t_he
are expanded in a Taylor series about their valuesAT)( eter defined later, anél(7) is anO(1) quantity. It should be

— ir 22 2 noted thatA,(7) andA( ) are real. As an aside, it is possible

Floy=[Flo+LoFlon+ 2L Flort - 33 at this stagg t)o let th(e )amplitud!levary as a functiopn of a
where[---], represent quantities evaluated at the unper_slow spatial variab'le in thg dirgction. This wou_ld result in
turbed interface, and is obtained as a part of the solution. @ €nvelope equatioi partial differential equatigrfor A as
From the above expressions, infinite series representatiosfunction of the slow spatial and temporal variables. In the
for the flow quantities are obtained as functionsspfand ~ expansion(35), ¢(*? refers to the variables in the mean
these are truncated at the required order in the weakly norflow, while (- are the perturbations in the linear stability
linear theory. The Eulerian velocity field in the membraneanalysis, and the results of the linear stability analysis are
(v is defined as the substantial derivative of the displaceebtained by truncating the expansitb) ats=1n=1. To
ment field determine whether the linear instability is supercritical or



subcritical, it is also necessary to consider equations for the 17
perturbations at ordes=0n=2, s=2n=2, ands=1n
=3, as shown in Appendix A.

The slow time scale referred to below Eq.35) arises for
the following reason. In the vicinity of the transition point
(' ,ke), the amplitude is governed by the Landau expansion

a

AL(7) HA (D) =sT+ Ay ()P (36)
wheres(?) is the real part of the linear growth rasé”) and
st! is the real part of the first Landau constaft. Near the
linear neutral curves®~(I'—T'y), ands!® can be written
assV=(dsl?/drI), (I'-T). If s is O(1), then the sec-
ond term in the right-hand side of E(B6) is O(€?), and a
balance is achieved if[{—T'y)(ds{®/dI") .~ €. For defi-
niteness, letl —I'))=T",€%, wherel', is anO(1) quantity
whose sign determines whether we are in the stable or uny constant value in the low wave number regime as can be
stable region around the neutral cufeenegativd™, isinthe  geen from the analytical expressidA19). However, for
unstable region Now, this term should be balanced by the \yaye numberss1 the critical surface tension scales as
term on the left-hand side of E¢36), and so we introduce -1 The critical surface tension as predicted by models DH
the slow time scale in the time derivative@s-e°d.. Since  5nq pB agree well for low values of surface potentials, but
Aq(7) is independent of the fast time scaléhe above equa-  he pH model underestimates the critical surface tension for
tion becomes larger potentials. This trend can be easily understood, since
the gradients of mean potential, as obtained from the PB
model, are higher than that by the DH model, thereby ren-
dering the system more unstable.

The Landau equation can be derived in kke O limit for
the case of the DH model
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FIG. 1. Linear neutral stability curve for the charged membrane,

a comparison of the DH and PB models fé#=¥2. O, DH
model; A, PB model?3=1.0; V, PB model¥Z=5.0.

A=, A=T,(ds\97dI)+sPAZ. (37)
This is the “scaled” version of the Landau equation in the
vicinity of the critical point of the linear neutral curve. The
objective of the rest of the analysis is to determ’sﬁé which
determines whether the instability is subcritical or supercriti-
cal.

The details of the weakly nonlinear analysis are given in
Appendix A. The boundary conditions for the problem at

order (5,n) contain inhomogeneous terms of ord&n)  The Landau coefficient is negative in the-0 limit (note

wherem<n. Thus, the original nonlinear problem with an 41, is negativé. Thus, the system is supercritically stable
unknown membrane interface is reduced to a hierarchy ofitn an equilibrium amplitude given by

linear (but inhomogeneougroblems, which are solved be-
ginning from the linear (1,1) problem. The nonlinear analy- 16T,
sis was carried out both for the PB as well as DH models. A(7)= \/ 2 ,

The linear stability analysis shows that the value of critical AZ(4—K?)(1+1H) W

surface tension for both the Poisson-Boltzmann and the . o . o
Debye-Huckel models is of the same order fbg~0(1). WhereA(r) is the eqwhbnum amplitude whilé\ is .the.am-
However the nonlinear analysis can be quite different eveflitude of height perturbations used for normalization and
for the regime of?2~0O(1) where the linear stability results has been set equal to 1.0 in the present analysis.

agree. This is because the governing equations in the case of FOr k 0f O(1), thereduced equilibrium amplitude

the DH model are linear at all orders while they are are
nonlinear for the PB model and these nonlinearities can af-

1 dA K[, A%k(—4+Kk?)(1+r2)wa2
_ﬁz__z_F ( A s A(7)2.
A(r) dr 4 64

(38)

(39

fect the results considerably.

IV. RESULTS

The linear stability analysis fos=1,n=1 (Appendix A

W32+ (ph)?
Aea= AL \/((r—

shows a maximuniFig. 2) at finite wave number for the DH
model. It is useful to compare the equilibrium amplitude ob-
tained from the DH model with the PB model far of

shows that a system is linearly unstable when the scale®(1) (Fig. 2). The results for the two models agree well for
surface tensiorp(zl“/((\IfZ)er(\Ifg)z) decreases below a low surface potentials, but for surface potential @f1),
critical value. Figure 1 shows the linear neutral stabilitythere is significant difference between the equilibrium ampli-
curve for the system for different values of the surface potudes of the two models, although the linear stability results
tential; the region above the curve is stable while that belowcompare well forO(1) values of surface potential. This can
the curve is unstable. The neutral stability curve shows thabe attributed to the nonlinearities present at each order which
the scaled value of the critical surface tension asymptotes toan lead to significantly different results. Although the DH
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FIG. 2. Variation of the reduced equilibriubm ar?plitude with  FIG. 3. Comparison of variation of equilibrium amplitude with
wave numberk for the PB and DH model foW'i=¥5. O, DH  the base state potential for different potentials for the PB and DH

model; A, PB model¥;=0.1; ¢, PB model¥,=1.0; V, PB  models for @2=¥?%) andk=0.01. A, DH model;O, PB model.
model ¥ =3.0; X, PB model¥=5.0.

model indicates the presence of a supercritically stable staffaPilized by nonlinear interactions, and has a supercritical
for all values of surface potentials, the PB model shows thagquilibrium state. The amplitude of fluctuations scales as
the system goes from a supercritically stable state to a sutix —xo) 2 wherey= (/[ (¥2)?+¥2]?) is the ratio of the
critical instability at large values of the surface potential.surface tension and the square of the surface potential. The
Table | gives the variation of the reduced Landau constantritical valuey. approaches a value in the low wave number
with surface potential at two different values of wave num-limit, and so the amplitude of perturbations is determined by
berk. The DH model predicts a constant value of the reducec dynamicalbalance between the stabilizing surface tension
Landau constant as can be seen from B8) and is nega- and destabilizing surface potential. Therefore, it is expected
tive, indicating supercritical stability. The PB model how- that the amplitudes of long wave surface fluctuations are not
ever, shows a bifurcation from supercritical stability to sub-determined from thermodynamic equipartition of energy
critical |nsta.b|||ty as the surface potential is increased and th%onsideraﬁonS, but rather by e|ectrodynamic considerations
Landau constant becomes positive at high values of surfaGgnhen the system is in the unstable regime for low surface

potential. charge densities. In this regime, the results of the Debye-

This is more clearly seen in Figs. 3 and 4, where the, kel and Poisson-Boltzmann equations are in good agree-
reduced equilibrium amplitude is plotted as a function of the,

surface potential for two different wave numbers. The figures ' : : } .
show that the equilibrium amplitudes predicted by the PB (2) At higher surface potential, the Debye-Huckel ap

roximation predicts that the system is still supercritically
model are much '°.Wer than that for the DH quel'.Howe.V.ergtable, but the Poisson-Boltzmann equation indicates that
the PB model indicates a change to subcritical instabilit

a: L ) INStablityinere is a subcritical bifurcation by which a linearly stable
when W is O(1) and this is indicated by a discontinuity in gy stem is rendered unstable sufficiently close to the neutral
the curves. stability curve. Thus, the system does not saturate to a new

steady state at high surface potential, but has to undergo a
V. CONCLUSIONS shape change. The present analysis indicates that there is a

The nonlinear analysis of the stability of fluctuations at a
charged surface have revealed two important results. 10" 4
(1) At low surface charge densities, the linear instability is

TABLE I. \Variation of scaled Landau coefficient
— s (P @2+ (¥ 2] with surface potential.

k=0.01 k=1.0
R\ Os DH PB DH PB

0.001 6.31X10* 6.168<10°* 3.675x10 2 3.675<10 2

0.01 6.31X10° % 8.004<10°* 3.675<10°? 3.676x10 2 107 A "
01 6.31%10°* 2.900<1072 3.735<10°2 3.676x102 L

1.00 6.31x10°4 1.923 3.67%10°%2 7.133x1072 ¢

3.00 6.31x10°* —22556  3.67%102 —7.044x10°1! FIG. 4. Comparison of variation of the equilibrium amplitude
500 6.31X10% —952.325 3.67%10 2 —21.7484 with the base state potential for different potentials for the PB and
10.0 6.31x%10°% —6.072x10° 3.675<10°2  —133068 DH models for #2=W¥2) and k=1.0. A, DH model; O, PB
model.




qualita.tive difference in the predictic_)ns of the nonlinear ;3(1,1)+(ayvi(l,l))ay,l)zo, (A12)
analysis for the Debye-Huckel and Poisson-Boltzmann equa-
tions for y~1, even when the predictions of the linear sta-

~a(1,1) a1\ (L) _
bility analysis are in close agreement. Thus, it is necessary to v (V) Uy 0. (AL3)
use the Poisson-Boltzmann equation to accurately capture - -
. iy . 1,1 b(1,1)_ 27 (1,1
the effect of nonlinearities on the growth of perturbations. D= D=TKAuM, (A14)
An issue of interest is whether the agreement can be ob- 5

tained between the PB and DH models by renormalizing the PP+ (9, w2 ultP=0, (A15)
surface potential in the DH model. This can be accomplished
only when the qualitative nature of the bifurcati¢super- wb(1,1)+((9y\pb)a§1,l):0' (A16)
critical or subcritical is identical for the two models. The
results of the present analysis indicate that at low surface ~ ~

p y 03(1,1): su§,1'1), (A7)

potentials, the bifurcation is supercritical for both the DH

and PB models, and so agreement can be obtained by ren

malizing the potential in the DH model. However, at high

potentials(for '3 greater than about 5, as shown in Figs. 3 ~(1,1)_ _Ta(l,1) ~1(1,1) ~1(1,1) [

and 4, the bifurcation is predicted to be supercritical by the Tyy P 2dy0y T () (9y 1) (A18)

DH model, but subcritical by the PB model. In this case, it is

clear that agreement cannot be obtained by renormalizing thgnd the pressure is calculated from thelirection momen-

surface potential in the PB model. tum balance. The eigenfunctions are then substituted in the
boundary conditions, and the resultant dispersion matrix is

APPENDIX A solved to obtain the eigenvalise

Uhere the normal stress perturbation is

The s=1,n=1 problem The governing equations in the 'k (—1+ m)(1+rz)waz
Fourier modes are s=— 4+ w >

(A19)

T o T
kv ™+ dyvy 0. (A1) wherer is the ratio of surface potentialslﬂ)/(\lfg‘). The

expression for the growth rate indicates that the Maxwell
stress destabilizes long wavelength perturbations when the
potentials increase beyond a critical valueH®)¥2>2T,

and wavelength&?<k? are rendered unstable where

—ikp{ M+ (97— k) o)+ ik ! BN a2 = 0, (A2)

— oy D+ (35— k2 oy P+ (0, W) (95— k) ! D)

(A3)
a2 b2
+(ay¢|(1,1))((9)2/q,|):0_ (A4) k2:4[(‘1’s +W¥o%)—2I]
T (P

These can be reduced to get a single governing equation for
they velocity The growth rate however is independent of the sign of the
_ _ surface potential as expected. The results of linear stability
(95— K2) P D= F,[ /1], (A5)  theory for the case of the PB model are obtained by numeri-
cally calculating the eigenfunctions. The results of the two

(ai_kZ)Z{,'y(lyl)o, (A6)  models are in good agreement f#i<1, but are not in

agreement whed2~0(1). It should also be noted that the
whereF,[ ¢/ tD]="3/ (1D cosh¥'] and ' (D for models PB ~ growth rate is real, so that the instability results in standing
and DH respectively. The resulting governing equations foWaves.
the PB model have to be solved numerically, but analytical The s=0,n=2 problem This problem represents the
solutions can be obtained for the DH model x-independent correction to the mean flow due to nonlinear
interactions. The governing equations are

PP D=Azexd — V1+kYy], (A7) -
ay0\{®?=0, (A20)
YPAD=B, exd V1+k3y], A8
v zexd y] (A8) z9y2~U|x(O’2)_ ikTp* a(l,l)ai“l‘pa(l,l)_’_ ik’;ﬂa(l,l)ai'fp* (L=,
03 D= (A +Agy)exd —kyl, (A9) (A21)
;3(1,1): (By+B,y)exiky]. (AL0) _ kz(’l:,/* '(1*1)ay~1//'(1'1)+~z/f'(1'1)<9y:b*'(1'1)) _ 23yf)'f(0*2)

(A22)
The boundary conditions are _ ~ _ ~
53(1’1)=55(1’1), (A11) (A23)



+2a,9' 255w =0, (A24) — 9, BICD+ (32— 40?5 P k(D) 5 D
1(1,1) 12771 (1,
G OA=F [ O], (A25) — dyy! MDagy! D (A39)
where for the DH model

021 ~1(02) +(&5—40[2)_;;(2,2)_,’_(9y“lr/'jl(2,2)(a)2/\];rg):0, (A40)
Ful 1=

and for the PB model (95— 4a?) P 2A=F [y 2], (A41)
1(0,2)] — 1 177100,2) 1 TTHLIN2 cin 7
Fol 0 71= 2 coslgr [ () sinf ] where for the DH model
The eigenfunctions consistent with the above equations for
the case of the DH model are F2[~¢'(2'2)]=¢~//'(2v2)
v,{%?=0, (A26)
and for the PB model
pi%?=0, (A27)
B F2[¢|(2,2)] — 4k2"lz,l(2,2)+ COSF[\I’ran’IZI(Z’Z)]
POA=mGPexd -y], (A28) -
+{(P T2 sin{ w12,
POA=M{Pexdy], (A29)
_ The PB model is solved numerically. For the DH model
pa02= 02 (A30)  however, analytical solutions are possible and we admit de-
caying solutions for this problem. The eigenfunctions consis-
v2(02=\02), (A31) tent with the above governing equations can be written as

The boundary conditions for the problem are lengthy and are ~a(22 2.2)

not provided here. The normal velocity continuity boundary PR2A=MGD exd — V1+4kPy], (A42)
condition is identically satisfied and so is the normal stress

boundary condition so that the mean pressure developed is ~b(22)_ r1(22) —

set to zero. The tangential velocity boundary condition and ¥ =Mgr~ exd v1+4k7y], (A43)
the potential boundary condition then determine the mean

correction to the tangential velocity and the potential. Both (22), n1(22)
Maz + Ma3 y

these corrections are exponentially decaying functions. The Sa@2- (A44)
normalizations evaluated from the boundary conditions are y e2ky '
MOA=[A?(—1+2\1+Kk?)W¥?3]/2, (A32) s ., .
vh2=e2Y MG+ MBy). (A45)

MGP=[A2(—1+21+k>)War]/2,  (A33)

M©@2_ (A34) At the interfacey=0, there are seven inhomogeneous
az ' boundary conditions that can be used to calculate the eigen-
functions for the velocities and the potential. The constants
M{3?=0 (A35) :
b2 ' can be easily evaluated as

The @=2,n=2 problem This problem represents the non-
linear correction to the second harmonic of the linearly un- MZI=MGD=MmEZI=M(Z?=0, (A46)
stable wavenumbek. The governing equations at order
=2n=2 are the following:

M 22 A*WIF1
~1(22) 4 9i 1(22) 2)_ _ |
¢9yUy +2iav, =0, (A36) al (—3+4 T —1+4k2)(1+r2)

P f 7 (A47)
—2iap{ A+ (92— 4a2)p\2D— k3P D)2

+ ik'l‘/'/l (1,1)(9)2/:/') (11 (A37) Azr‘ngz

M (22 = _

L (—3+4TH IR 1 +4K)(1+12)

+2ik P 22w ) + 2iky @A7wL=0, (A39) (A48)




Ta2,2)__
Uy =

where

F1=[6(—1+1+Kk?)+(—5+41+k*—1+4k?
+ 21+ k%14 4k?)r>—k?(3+5r?)],

F2=[—-5+4{1+k*—

+6\1+Kr2—k3(5+3r?)].

Thea=1,n=3 problem The variations of the amplitude

—{AY = 2K?+ (= 1+ 21+ k) (= 1+ V1+4kH) (= 1+r)(1+1)} (A49)
2(— 3441+ K2— 1+ 4K2)(1+12)
[

w I (AU =3, (AG0)
7_%13) “5(13)_rk2"(13)—g . (A61)

a(1,3) ay(L.3)=
VI+ 4K+ 21+ K21+ 4k?— 6r? e (A62)
PO INTIg (A6
p ;1(1,3)_ S u(yl I—g (A64)

A(7) with the slow time scale appear as inhomogeneous

terms in the boundary conditions at order=1, n=3. The

governing equations are
ikvl+ay0,=0, (A50)
—ikpy+ (95— k2 v+ ik (950
_ 2ik37ﬁ* |(1,1)l~ﬁ|(2,2)+ 2i k~¢|(1,1)(9)2/7p|(0,2)
+ 2 k:,,l (2,2)55'97/* 1(1,1)_ ikTﬁ* '(1'1)33?0' (2,2),
(A51)
— ayPi+ (35— K2)vy + (9, W) (95— K2 o + (ay ') (57"
_ 2k2¢~p'(1'1)ﬁyz~p'(°’2)— 4k2?0'(2'2)<9y¢~p* 1(1,1)
_ kZFJr* |(1,1)(9y~lr,,|(2,2)Jr 2(7y'1,7/| (1,1)(9)2/(7) (0,2)
+ Zayal(O,Z)aiTﬁl(l,l)_,r_ &yw(z,z)ai;‘ﬂ* 1(1,1)

i &y:,/* |(1,1)(3§l~ﬂl(2,2), (A52)

_?bl(l,3)_ k2"Z|(1,3)+ (9)2[?#(1,3): 0. (A53)

The governing equations can be solved to get elgenfunct|ons

that can be written as follows:

PLI= ML exd — 1+ K2y, (A54)
PPLI= ML ex V1T K2y, (A55)
a(l A= (MEI+ME3y)exd —ky], (A56)
ooA= ML+ MLy exd ky]. (AS7)

The eigenfunctions when substituted in the boundary condi-
tions can then be written in the matrix form as

ClA=B (AB5)

where C=(c;;) is the coefficient matrix, vectorA
=[MGV MG MED MED MEGD MED U] while
vectorB= [91,92 03.04.05,06,97]. The time derivative of
the amplitude is present in the inhomogenaity and the
expression for the Landau coefficient is obtained using the
solvability condition for the matrix equation. The adjoint
problem for Eq.(A65) is constructed by defining the inner
product of two vectors andv as

(uv)y=>, ulv;, (A66)
whereu is the complex conjugate af;. Using the defini-
tion of adjomt we get

C*A*=0. (A67)
whereA* =[c,,c,,C3,C4,C5,Cq,C,] is the nontrivial adjoint
solution for the homogeneous adjoint problem, a@d
(c ) is the adjoint of the matriXC. The Landau equation
then obtained using the Fredholms solvability condition by
setting the solution of the adjoint problem orthogonal to the
inhomogenetities,

A*B=0. (A68)

APPENDIX B

Here we give the numerical procedure for calculating
eigenfunctions in the case of the PB model. Details are given
for the linear problem and similar procedure holds for all the

The inhomogeneous boundary conditions in the (1,3) probother orders of nonlinearity. The governing equations to be

lem are

53(1,3)_;3(1,3)291, (A58)

034 (9 vHUt=g,, (AS9)

solved are
(92— k2) Pt V= cosf wa 3! (1), (B1)

(95— k?)Zp,MV=0. (B2)



The governing equation for thevelocity is decoupled and y=0. The integration is therefore proceeded from a small

two decaying eigenfunctions admitted are given by value of y=y, and is verified to be independent of the
~ choice ofyy. The boundary conditions are the solutions for
vy=e ¥ and ye . (B3)  the DH model in they=0 limit. The decaying eigenfunction

i , -, for the DH model is given byA7), so that the boundary
For Eq.(B1) however analytical solutions are difficult. The condition aty=y, becomes

equation is solved numerically by making a coordinate trans-

formationy=e Y so that the domain of integration is trans- .

formed fromy=0 andy= to y=1 andy=0. A similar Py =y, (B5)
transformation can be made for the bottom fluid namsely,

=¢Y and the integration limits in this case get transformed ,

from y=—2 andy=0 toy=0 andy=1. The transformed ay~,/,'(1’1)|y=y0= VI + 1)y D1, (B6)
equation then becomes

(y2a§+yﬁy_k2)’lz,l(l,1): cosh w2 1y (D), (B4)  The numerical procedure is same for all other orders. For the

adjoint problem, the homogeneous solution is obtained by

To integrate Eq.B4) numerically we need two boundary the above procedure. The nonhomogeneous solution is then
conditions aty=0. The equations are however singular atobtained using homogeneous boundary conditions=ay,,.
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