Effect of surface charges on the curvature moduli of a membrane
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The modification of the curvature moduli due to surface charges in lipid bilayers is analyzed using the
nonlinear Poisson-Boltzmann equation for the relationship between the charge density and surface potential.
An expansion in a small parameter which is the ratio of the Debye length and the radius of curvature, is
used. At low charge densities, previous results obtained from the Debye-Huckel approximation are recovered.
At high charge densities, the corrections to the mean and Gaussian curvature approach constant values. The
total energy of curvature for a symmetrically charged membrane becomes negative when the charge density is
increased beyond a critical value, indicating that the membrane spontaneously forms vesicles. An asymmetry
in the charge densities on the two monolayers that form the bilayer results in a spontaneous curvature, and the
radius of curvature could be large compared to the Debye length when the asymmetry is small. The case of
adsorbed charges is also considered, where there is a reduction in the chemical energy when a charge is
adsorbed on the surface. At low charge density, the mean and Gaussian curvature are equal in magnitude and
opposite in sign to that for fixed charges, while at high charge density, the mean and Gaussian curvature
approach values identical to that for a surface with fixed charges. Numerical calculations of the change in the
curvature moduli with realistic parameter values indicate that these effects are likely to be of importance in the
spontaneous formation of vesicles.

[. INTRODUCTION changes in the transmembrane potential, it is useful to exam-
ine whether changes in the charge density on the surface
Vesicles, which are lipid bilayers shaped in the form ofcould alter the curvature moduli of the membrane.
spheres, are of interest in many practical applications, such There have been many studies on the effect of surface
as drug delivery systems. These are usually made under nooharges on the curvature moduli of membranes. Winterhalter
equilibrium conditions, because the bending energy for thend Helfrich[6] and Lekkerkerkef7] determined the correc-
formation of a vesicle of micron size is large compared to theion to the moduli due to adsorbed charges, and found that
thermal energy. However, some interesting experimental rethere is an increase in the mean curvature due to adsorbed
sults[1] have revealed that stable vesicles could be formed atharges, while the Gaussian curvature is negative. They also
equilibrium if a mixture of lipids with surface charges of found a nonzero value for the spontaneous curvature when
opposite signs are used. The relationship between the surfatiee charge densities on the two monolayers which form the
charge density and the curvature could also be of importanckilayer are different. Kumaraf8] analyzed the distribution
in biological systems. Two of the salient features of surface®f sizes of vesicles formed due to the difference in charge
encountered in biological systems, such as cell membranatensity of asymmetrically charged membranes. The subse-
and organelles, are that they are soft and can undergo shageent studies of Oberdisse and Poffteé4.0] also found that
changes, and they have adsorbed charges. It is well knowthere is an increase in the elasticity due to adsorbed charges.
[2] that significant variations in charge distribution and theKumaran[11,12 also studied the thermodynamic and dy-
transmembrane potential of membranes coincide with shapgamical instability of a flat charged surface due to the motion
changes. of charges on the surface. In all these studies, the change in
Previous studies have examined the shape changes of bithie electrostatic energy due to the curvature of the membrane
logical membranes due to forces exerted by ion transport iis determined, and the corrections to the elasticity moduli are
proteins, due to the asymmetry of inclusions in the mem-<calculated from the energy change. The corrections to the
brane and their phase separation on the surface, and othelastic moduli are manifested as additional contributions to
nonequilibrium processd8]. Though most of the studies on the curvature energy when a net curvature is imposed on the
biological membranes have examined fluctuations at thermahembrane. However, most of these studies uskkariza-
equilibrium [4], it has recently been realized that the forcestion approximation(Debye-Huckel approximatignfor the
generated on membranes by inclusions could play a crucidoisson-Boltzmann equation, and therefore these studies are
role in the structure and dynamics of membranes. Phasealid only at low charge densities. Consequently, they are
separation of the components of a membrane could also alteot valid in realistic situations where the charge densities
the shapég5]. However, it is expected that effects like head- may be large. In the present analysis, the contributions to the
tail asymmetry would lead to structures with characteristiccurvature moduli due to electrostatic effects are calculated
lengths of the same magnitude as the domains on the surfaagsing the nonlinear Poisson-Boltzmann equation, thereby
whereas typical sizes of vesicles could be two to three ordengroviding a complete solution for arbitrary charge densities.
of magnitude larger than the membrane thickness. Since The effect of charges on the dynamics of lipid bilayers
shape changes in biological membranes are accompanied hgs also been studied experimentally. Most studies focus on



the importance of electric fields on the stability of mem-radius of curvature could be of the order of microns when the
branes, and the electric fields necessary to cause rupture ebye length is of the order of 10 nm.

membranes. These are studied using electroporation tech- Another case considered in the present analysis is the ef-
niques, where the effect of electric fields on the stability offect of adsorbed charges on the curvature of the membrane.
the membrane is assessed. It has been known for a long tinfdhen charges are adsorbed, there is a reduction in the
[13] that application of a transverse electric field causeghemical energy due to adsorption, and the change in chemi-
breakdown of a membrane, and the voltage necessary &8l energy is opposite in sign to the electrostatic energy. It is

cause rupture is termed the breakdown voltage. The proce&§Sumed that the energy of adsorption is independent of sur-

of rupture is not completely understood, and it was previ-face coverage, so that the reduction in chemical energy for

ously thought that the Maxwell stresses caused by the ele€Ve"Y charge adsorbed is equal to the increase in_ the electro-
tric field at the surface, which acts like a mechanical stressStatic energy of the last adsorbed charge. In this case, the
could cause rupture. Though the equivalence of the MaxweftNa@nge in the mean and Gaussian curvature at low charge
stresses and mechanical stress on giant vesicles has bdiSities is equal in magnitude and opposite in sign to that
shown, it has been found that the tension at the breakdowf9" fixed charges at low charge densities. However, at high
voltage is too small to cause ruptufs]. Recent studies charge densities, the mean and Gaussian curvatures for a

have indicated that the electric potential reduces the edg@€mbrane with adsorbed charges are identical to that for a
energy required to create a def§td]. This is supported by memb.ran_e w!th fixed charges. The spontaneous curvature is
theoretical studieEL6] which show that the breakdown volt- OPPOSite in sign to that for a surface with fixed charges at
age depends not only on the charge density on the surfad@V charge density. , _ ,
and the electrostatic repulsion between the head groups, but 1h€ €lectrostatic energy is calculated using the nonlinear
also on the type of hydrophobic groups that are incorporateff ©iSSon-Boltzmann formalism in the next section. An expan-
in the lipid molecules. Further, electric effects are far fewerSiOn iS used in a small parameterwhich is the ratio of the
than those predicted by the Poisson-Boltzmann theory, ang€Pye length and the radius of curvature, and the electro-
charge interactions could play a significant role in determinStatic energy is determined Dby retaining terms correct to
ing the dynamics of the membrane. O(€) in the expansion. '_I'he correction to the mean and
The present analysis provides some interesting results réaussian curvature moduli as well as the spontaneous curva-
garding the change in the curvature moduli due to surfac&!re for a surface with fixed charges is given in Sec. Ill,
charges. The electric fields are created by charges adsorb¥ffile that for a surface with adsorbed charges is provided in
or fixed on the membrane, and are far lower than those re=€C- IV. A brief summary of the important results is pro-

quired for rupture. Though previous studies have indicated!ded in Sec. V.

that the Poisson-Boltzmann approximation may not be nu-

merically accurate, we expect the trends predicted here to be Il. ELECTROSTATIC ENERGY
observed in real systems. Following earlier studi&$], we

) N The electrostatic energy for a charged surface with

assume that the charges on the two sides of the lipid bilayer S . :
o . o charges on one side is first determined as a function of the
are decoupled. Though this is not strictly true, it is a gOOdcurvature in the limit where the radius of curvature is large
first approximation when the dielectric constant of the hydro- 9

phobic groups is small compared to that of water. First, w compared to the thickness of the counterion layer at the sur-

: , ace. The counterion density at the surface is determined
consider charges that are fixed to the surface, so that the only : . )

o . ; sing the Poisson-Boltzmann equations
contribution to the free energy is the electrostatic energy for

assembling the charged layer. In the limit of low charge den- VZ,/,Z —(n.—n_)/2, (1)
sities, the previous results of Winterhalter and Helfriéh

for the curvature moduli and spontaneous curvature are re- N, = exp—¢), )
covered. However, in the limit of high charge densities, it is

observed that the corrections to the mean and Gaussian cur- n_= exp(y), (3

vature tend to a maximum value. The correction to the mean ) )

curvature is positive, while the correction to the GaussiarfVhere ¢ is the scaled potentialzey*/T), n.=(n%/N.)
curvature is negative. In the limit of high charge density, it isand n_=(n*/N..) are the concentrations of the positively
found that the total curvature energy becomes negative, irRnd negatively charged ions scaled by the ion concentration
dicating that there is the spontaneous formation of vesiclegt a large distance from the surfae , and the scaled dis-
when the charge density is increased beyond a critical valu@lacementx= «xx*, where « is the inverse of the Debye
This possibility was raised by Winterhalter and Helfri@]  screening lengthc=(2N..z%e%/ €T)¥2 Here y* andx* are

in their calculation of the curvature moduli using the Debye-the dimensional potential and distance coordinatds, the
Huckel approximation, though the parameter regime incoordination numbefassumed to be equal for the positive
which this transition takes place is outside the limits of va-and negative ionse is the charge of an electroi\., is the
lidity of their analysis. An asymmetry in the charge densityion concentration at a large distance from the surfacis,

of the two monolayers that form the bilayer results in a sponthe dielectric permittivity of the medium, ariis the prod-
taneous curvature, and the radius of curvature is large conmuct of the Boltzmann constant and the temperature. The
pared to the Debye length when the asymmetry is smallcharge density at the surface per unit aveds determined
Calculations with realistic parameter values indicate that thérom the requirement of electroneutrality,



The leading-order equation faf, is identical to that for the
f dAoc=— f dVv(n,—n_), (49 potential at a flat interface, and an analytical solution can be

obtained for this case,
where the surface charge densitys scaled by N../«). The tanh( ¢ /4) = tank i/ 4)exp( —y) (12)
relationship between the charge density and the potential can s '

be used to simplify the above equation, where i is the surface potential. The higher-order correc-
tions to the potential cannot be evaluated analytically, but
f dAo’=2f dVVZy= —2f dAn-Vy, (5 ordinary differential equations can be obtained for these cor-
rections. It is convenient to effect a coordinate transfarm
wheredA is a differential area element on the charged sur-=cexp(-y), and define the constant=tanh(s/4). The do-
face, n is the unit normal at the surface directed into themain of integration &<y< is now transformed tac>u
solvent, while the integral over the surface at infinity is ne->0, and the equations for the corrections to the potential are
glected since the difference in charge densities decays expo- 2 d
nent@lly at large cﬁstances 'from the surface. If the charge <u2—2+u— Y1 —o(U) = 194 (U), (12)
density and potential are uniform at the surface, the electro- du du
neutrality condition reduces to (

d? d
u?—+u—

o=-2n-V, (6) T U
u

d
l/fz—u%'F In(u/c)g,(u)

wheren is the unit normal to the surface directed into the
counterion layer, and there is a negative sign in the above
equation because is opposite in direction to the outward
unit normal to the counterion layer.

The Poisson-Boltzmann equatiof®§ and(3) can be re- Where
duced to

y3
:'/fzgl(u)"‘?gs(u), (13

8 8
V2= sinh( ). (7) 91(“>=((1_u2)z—1_u2+1)'

These are solved in cylindrical and spherical coordinates us- au
ing a perturbation expansion in the parameter(«R) 2, g,(u)= , (14)
where R is the radius of curvature of the cylindrical or 1-u?
spherical surface. The solution for the cylindrical coordinate 3
system is presented in detail, but only the results for the :( 8u 4u )
: ) . gs(u) + .
spherical coordinate system are presented since the methods (1-u?»? 1-u?
of solution are identical for the two cases. It is useful to
expand the radial coordinate in the curvilinear coordinatelhe corrections to the potential can be separated into a ho-
system ag* =R+« 'y, whereR is the radial position of mogeneous solution and a particular solutigh,=C,y,
the surface ang is the nondimensional distance from the + 1 and ¥, =Cyiy+ b, where the homogeneous solu-
surface. The scaled radial coordinate xr* is then given tion is determined from the equation

by r=¢e 1+y. The electrical potential is also expanded in a 2 d
Taylor series in the parameter ( uz_2 + ud_) g— hg91(U)=0 (15)
d u
Y=o+ et €. ®) !

The Poisson-Boltzmann equation in a cylindrical coordinate®nd the particular solutions are determined from the inhomo-

X L . L geneous equationd2) and (13). The constant€; andC,
system with variations only in the radial direction, are adjusted so thair, = #7,=0 atu=c(y=0). The above

1d dy 9 equations are solved numerically, and the values of the gra-
rarfar- sinf()), O dients of the potentials are obtained at the surfae®. The
numerical results show that subject to errors of the order of
is expanded in the parameterto provide a hierarchy of the machine accuracy, the equations for the gradients in the

equations for the corrections to the potentials,

potentials at the surface are

dzl,bo_ . dl,bo —4c
dy2 = Slnf’(llfo): d_y yzozl_czy
d?y;  diyg di
dy2 +d_y:lrlllcosr(¢/0)! d_y y:0:_2C1 (16)
d2y, dy,  dy, _ dyp|  c(1-c?)
a2 Ty Y dy ~ Vacostto)+ (#2)sint ). Ayl 2




In the limit »/s—0 (c—0), the above solutions for the cor- These are also consistent with the results obtained using the

rection to the potential are Debye-Huckel approximation for a spherical surface, where
the potential is given by
dio| __,
- S exp —
Wy v= %(M). @3
e(e 1+y)
d
% =— % a7 For the general case where the two principal radii of curva-
Yly-o ture are not equal, the governing equation for the potential is
of the following form:
' d 1 1 d
dy ly 8 4 + + d =«k?sinh(¢), (24)
dy*? \Ry+y* Rp+y*/dy*

These are consistent, up @(e?), with the results obtained

from the Debye-Huckel approximation for the potential out-wherey* is the dimensional distance from the surfages

side a cylinder, the inverse of the Debye screening length, Ba@ndR, are
the principal radii of curvaturét is assumed, without loss of
generality, thatR;|<|R,|, andR; andR, are positive if the

: (18)  coordinatey is along the outward unit normal direction join-
ing the center of curvature to the point on the membrane

hered. is the B | function. H h bsti dsurface). With the definitions e=(xR,)"! and a,
whereJy Is the Bessel function. Here, we have substituted_ g /R ) the governing equation for the potential becomes
r=e€ -+y consistent with the nondimensionalizations used.

Ko(e 1+y)

P e

A similar calculation can be carried out for a spherical d?y L. dyr _
surface, where the Laplace operdtequivalent to Eq(9)] is d_y+( e(1+a,)—ye’(1+a; )d_y = sinh(¢). (25
1d ,dy The results for the leading order and first correction to the
2dr’ dr sinf(y). (19 potential gradient in this case are
In this case, the results for the gradients in the potential are % :M
dy | _ 1-¢c?
y=0
% _ —4c d (26)
dy |,y 1—¢?’ % =-2(1+a,)c.
(20) Yily-o
% = —4c. It was not possible to derive an exact analytical expression
dy y=0 for the second correction to the potential gradient. However,

an approximate form for the second correction is given by
It was not possible to derive an exact analytical expression )
(1-a)

for the second correction to the potential gradient. However, dy,
an approximate form for the second correction is given by dy 2

=—a,c3Jy1-c’+ c(1-c?). (27

y=0
di,

d_y = c3J1-c (21) A comparison between the numerically calculated value of

the second correction to the potential gradient and the value
given by Eq.(27) is shown in Fig. 1.

Correct to linear order iy in the limit c—0, the correc- The charge density at the surface can be calculated from
tions to the gradients of the potential at the surface are  the electroneutrality conditiof6),

y=0

d d d
% =—4y o=-2 %4—6%4—62%)
dy y=0 s y y Y/ ly—o
8c
d = +4e(1+a,)c+2a,c3\1—c?
diyl =—4ys, (22 g Aeiraderaa
=0
’ ~(1-a,)%c(1—c?). 28)
d
ki =0. Since the corrections to the potential in the above equation
dy y=0 are functions of the coefficiet=tanh(//4), the surface
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FIG. 1. Comparison of the numeric@ymbolg and theoretical

Ee=ES+ eES(1+a,) + €4 (1+a,)2ES +a,ES ], (39
where

_ 32c,arctaniico) 16c3

Ee L
0 1-c2 1-c2
ES=8In(1—c?),
(34)
: 8¢c3
ES =—2ci+ —,
2 o 1+4¢2

" 16 8
ES =—8c5— 3+ 5\/1—c3(c§+ 2),
wherec, is related too by Eq. (31).

lll. FIXED CHARGES

(lines) results for the second correction to the potential gradient at

the surface d¢,/dy)|,—, as a function of the parameter The
theoretical curves are obtained using E2j7). O, a,=0; A, a,
=0.25;V, a,=0.5; ¢, a,=0.75; +, a,=1.0.

In this section, the curvature moduli and the spontaneous
curvature are determined for a membrane with different
charge densities on the two sides, and o,. Without loss
of generality,o, is considered to be the charge density on

charge density is also obtained as a function of this paramte monolayer that is stretched by the curvature, wirjdés
eter. Equation$26), (27), and(28) can be inverted to obtain on the monolayer compressed by the curvature. The charges

c as a function of the surface charge

are considered to be “fixed,” in contrast to the analysis of
the following section, where the charges are adsorbed from

— 2
C=CgteCi+e€e°Cy, (29 the solution adjoining the membrane. In this case, the total
where free energy has only an electrostatic contribution,
—4+ 16+ 2 E°=[E§(0a) + E§(0) ]+ e(1+a,)[ES(0a) — ES(0p)]
C0:—1 ’ ’
7 +eX(1+a7)[E3 (02) +E5 ()]
oo (1+a)ce(l-co)? (30 +e2a,[ES (o) +ES (op)]. (35
' 2(1+c3) | o g
Note that there is a negative sign in the coefficientogf
1—c2)2 because this surface is compressed by the curvature, and the
Co(1~Co) 2 i | to this surface is directed towards th f
Co=———— = [hi(co)(1+a)“+arhy(co) ], unit normal to this surface is directed towards the center o
8(1+cp) curvature. In addition, we consider the limit where the dif-
ference in charge densitieAo=(0,— op)<<o, Where o
where =(0,+0p)/2. This is required because we have assumed
R NP S that the spontaneous curvature is large compared to the De-
h(Co)=(1~Co)(3—4C5—3Co), - bye length, and this assumption is valid only in this limit.
The electrostatic energy in this case, correct to quadratic or-
ha(Co)=2(1+c2)2(2c2—2—c2\1—cd). der ine andAo. is 9y g
The total electrostatic energy is determined from the energy e

required to assemble the charges at the surface in a potentiaIEe:2E8(0)+ EAU(lJrar)E I 62(1+a2)[2E§'(a)]
d r

field generated by the counterions in equilibrium,

Ee= f "y do*, 32)
0

wherecg* is the variable of integration angf is the surface

potential when the surface charge densityris Analytical

expressions for the electrostatic energy are obtained as a

function of the surface potential,

+€%a,[2ES (0)]. (36)
If the above free energy is expressed in terms of the mean
and Gaussian curvatures

e

Ee=—(1+a,— K2 +KEa e+ ES (o), (3)



the mean and Gaussian curvatures, as well as the spontane- 102 gttt
ous curvature, are easily deduced from the above corrections F
to the free energy, ] !
o o 10" < 3
Kn=4E; (o), ~ :
°© [
KE=2ES (o), (39) 3 14 .-t
!o [
. 1 dE} =
=——5 Ao 107 4 =
0 4E(29 do J’10
L X
In the Debye-Huckel approximation— 0, the above curva- R
tures have the following limiting form: 107 5 3
g
KE=(30%8), 1
1078 .
—1 1 2
KS:_(02/4)1 (39) 10 1 . 10 10
6= (2A0/30). FIG. 2. The mean curvaturp, (O), Gaussian curvaturig

(A), and spontaneous curvatukg (V) as a function ofo for a
The above solutions are identical to those derived by Winsurface with fixed charges.
terhalter and Helfrich for weakly charged membranes, for the
nondimensionalizations used here. There is an apparent difesicles if the surface charge density increases beyond a
ference of a factor of 2 in the equation for the spontaneousritical value, even in the absence of charge asymmetry. In
curvature, because Winterhalter and Helfrich have definethe absence of spontaneous curvature, the difference between
0,=0(1+9) andop=0o(1— ), while we have defined, the electrostatic free energy of a spherical vesicle and a flat
=(o+A0/2) andop,=(oc—Ac/2). Inaddition, the positive surface of equal area is given by
constant in the equation for the spontaneous curvature indi-
cates thakg>0 for Aoc>0, or the higher charge density is E®=87K{+47Kg. (41
on the monolayer stretched by the curvature. It is also useful
to examine the curvatures in the limit of high charge densi-There is a spontaneous transition to a vesicular state if the
ties ¢>1. In this limit, the curvatures have the following above energy change is negative. It is observed from Egs.

limiting forms: (39 that the right side of the above equation is positive in
the limit o<1, but Eqs.(40) show that the right side of Eq.
256 (41) is negative fore>1. This indicates that there is a spon-
Kh=8——, taneous transition from a flat state to a vesicular state at
0_2

intermediate values af, and numerical calculations indicate
80 322 128 that this transition takes place at=28.25. The energy per
e__ 0, 20Ve 2P (40)  Vesicle (87K +4mKg) is shown as a function af in Fig.
$ 3 &g o 3 for the case of fixed charges. It is useful to examine
whether this effect can be observed in real systems of inter-
est. The dimensional charge density required for this transi-
tion is o* =28.29N.,/k, whereN., is the molar density of

the counterions at a large distance from the surfacexaisd

It is interesting to note that the Gaussian curvature is negdhe inverse of the Debye length. Fbk.=10"? mol, the
tive, indicating that the Gaussian curvature contribution toDebye screening length is about 3 nm and the surface
the electrostatic energy tends to favor the formation of surcharge density works out te* ~6x10' m~2. This is
faces whose principal curvatures have the same sign. THagher than the charge densities typically observed in bio-
behavior of the mean and Gaussian curvature energies af@gical membranes, but only by about an order of magnitude.
the spontaneous curvature in the intermediate regime are It is useful to estimate the magnitudes of the curvature
shown in Fig. 2. It is observed that the mean curvature i€nergies due to electrostatic interactions, and determine
positive, and increases to its maximum value of 8 at largevhether these are likely to be of the same magnitude as those
charge density. The Gaussian curvature is negative, and dgue to the intrinsic curvature of the membrane. The curva-
creases as the charge density is increased. The spontanedure energy per unit area scales a$ gey™), and therefore
curvature varies in a narrow range fromX@/3c) at low  the Gaussian and mean curvatures scaleods ¢/*/«?),
charge density toAo/o) at high charge density. since the Debye lengtlk is the only length scale in the
The limiting forms(39) and(40) also raise the interesting System. Using the scalings* ~N../x and ¢* ~T/ze, the
possibility that there could be spontaneous formation ofcurvatures scale as,.T/«3, or [ €32T%%/(NY%e32%)]. For an

KS= ——
0 (o

_AU 4
T o




120 tions, the spontaneous curvature could be of the order of

10 wm when the Debye screening length is 1 nm.
90 -
60 - IV. ADSORBED CHARGES
The adsorption of the charged species onto the surface
30 results in a reduction in the chemical energy. Here, it is as-

sumed that the adsorbed species on the surface is noninter-
acting, so that the reduction in chemical energy per adsorbed
molecule is a constant. This would overestimate the concen-
-30 1 tration of the adsorbed species on the surface, because it
disregards any enthalpic or electrostatic interaction between

U =S e— |

8nKy+4nK,

60 1 the charged species on the surface. Therefore, this provides
an upper bound on the possible curvature due to the charge
-90 7 ‘ density-curvature coupling. However, we adopt this simpli-
fication in order to avoid dealing with specific adsorption
10~ ] 10" 102 10° models, which involve additional parameters.

When the adsorbed layer is in equilibrium with the bulk,
the reduction in the chemical energy due to the last adsorbed
FIG. 3. The total energy of a vesicle t&,+47Ky) asafunc-  charge is equal to the increase in the electrostatic energy of
tion of o for a surface with fixed chargesX) and adsorbed charges adsorption, which is; when nondimensionalized by
(B). (z€/T). If the charges are noninteracting so that the reduc-
tion in energy per charge is a constant, the total reduction in
electrolyte with coordination numbez=1, this is O(2  the electrostatic energy per unit areasig. The total en-
X 10 24NY?% J, whereN.. is the molar concentration in ergy per unit area, which is the sum of the electrostatic and
mol/l. Therefore, the curvature energy scale varies betweeghemical components, is given by
1072 J for very low electrolyte concentrations of 0.1 mM
and 10 22 J for high electrolyte concentrations of 1 M. This
is close to the bending energy of typical lipid bilayers of
10 1° J [8], indicating that the electrostatic contributions

could be significant in determining the bending energy of theUsing the expressions derived in the preceding section, the

charged surfac_e at low ion concentrations. following corrections to the free energy are obtained:
When there is charge asymmetry, the spontaneous curva-

ture is proportional to £ o/ o). This implies that the radius
of curvature is large compared to the Debye screening length

)

Eec= J "yt (0*)do* — o (44)
0

ESC=ES*+ eES(1+a,) + €[ (1+a,)ES® +a,ESC ],

when the charge asymmettyos is small compared to the (45)
mean charge density. Therefore, spontaneous formation of where
vesicles with radius large compared to the Debye length
would be observed when the charge asymmetry is small )
compared to the average charge density of the surface. For peo_ _ 16cq
example, a difference in charge densities of 1% on the two 0 1_C0'
sides of the membrane could give rise to micron-sized
vesicles when the Debye screening length is 10 nm. 5
In case the surface has an intrinsic mean curvgture energy ESc=g In(l—c§)+ 0 ,
K;, the total energy per unit area of the surface is c2
_ (46)
K| 2 K¢ 2 K¢
ot 1V Rep ), Ko , 2c3(3— 1502+ c3+3cH)
2\ Ry Ry 2\R, R, ° RiR» ESC =— 33 ,
(42) (1+cp)
This results in modified mean and spontaneous curvatures, oo 8c§(3c§— 1) 16
. 2 =T T 5 T 5
K= (Kt K5), 1+cg 3
| (43)
Ko=KGKE/ (Kt K. + ———-\1-c§(2+3ci+4cy).
3(1+cf)

This has the effect of further reducing the spontaneous cur-

vature of the membrane and increasing the radius of curvafhe mean and Gaussian curvature energies and the sponta-
ture. ForK;/K;,~0.01 as indicated by the above calcula- neous curvature are calculated using relations similar to Eq.



(42) for the surface with fixed charges. In the limit<1, 10 e T
these curvature energies have the following limiting behav-
ior: 5 5
KE=—(30%8), o o
_ 2 ©
K§*=(0/4), (47 <
S i
K§=(2A0/30). 3
~-10 -
The mean and Gaussian curvature are negative of those for X’
the case with fixed charges, while the spontaneous curvature xE_15 i i
remains unchanged. The reason for this is as follows. In the
limit of small o, the surface charge density, is propor- 20 i
tional to . Therefore, the electrostatic ener@6) is equal i
to (ois/2), while the change in the chemical energy is |
—(oyg). Consequently, the total energy for the adsorbed -25

1 10! 102 108

charges is the negative of the electrostatic energy. It is also -

observed that the mean curvature is negative for a membrane
with adsorbed charges, and therefore the curvature modulus FIG. 4. The mean curvaturé (O), Gaussian curvaturg®
decreases due to the adsorption of the charges. The Gaussiax), and spontaneous curvatusg® (V) as a function ofo for a
curvature is positive, and tends to favor surfaces with prinsurface with adsorbed charges.

cipal curvatures of opposite sign. The spontaneous curvature

remains unchanged. An interesting consequence of the cucharge densities as predicted by E¢S). The Gaussian cur-
vature energie§46) and(47) is that the adsorption of charges vature has the opposite behavior, and goes from positive val-
favors the formation of vesicles, since the energy per unites at low charge density to negative values at high charge
area (X+Kg°) is negative in this case. However, mem- density. The spontaneous curvature has a behavior similar to
branes also have an intrinsic mean curvatifte which is  that for a system with fixed charges. The variation of
positive, and therefore there is a spontaneous transition tB7K, + 477K33 as a function ofr is shown in Fig. 2 for a
vesicles only when #(2K! +2KEC+ Kg") is negative, or for ~ surface with adsorbed charges. It is observed that the curva-
o>2(K},) Y2 If we assume the dimensional intrinsic curva- ture energy due to charge adsorption is negative both for
ture of the membrank! =10"1°J, and the energy scale for small and larger, and becomes positive at intermediate val-
the charged surface is 18 J as calculated above for weak U€S Ofo. . ,
electrolytes, the transition to vesicles occurs #or 6. This The spontaneous curvature in the present case requires
is certainly outside the regime of validity of the linearization caréful interpretation, since the correction to the mean cur-
approximation, so this effect is not likely to generate a tranvature due to electrostatic effedts” is negative. If the in-
sition for weakly charged biological membranes. However trinsic mean curvatur&y, is positive and larger in magni-
the present calculation indicates that the charged surfadeide thanKp’, the effective spontaneous curvature of the
should have a curvature energy that is lower than the unsurface isK,= KK (K}, + K. This is opposite in sign

charged surface. to Kg°, since the mean curvature modulk§’ is negative.
In the limit o>1, the limiting forms for the mean and Consequently, the mean curvature in the present case is op-
Gaussian curvature are posite in sign to that for a system with fixed charges, and
favors a higher charge density on the monolayer which is
KE— g @ compressed by the curvature.
m 0_2 1
V. CONCLUSIONS
ec_ _ §)+ ﬂiJr@ (48) The change in the mean and Gaussian curvature moduli
’ 3 Jo o and the spontaneous curvature due to charges on a membrane
were analyzed using the Poisson-Boltzmann equation. The
ec Ao 8 linearization approximation was not made in the present
Ko T o 1= ol analysis, so this calculation provides the coupling between

the charge density and curvature even for strongly charged
The leading-order solutions for the curvatures in this limitsurfaces. Previous calculations, which used the linearized
are identical to those for a surface with fixed charges. Théebye-Huckel formalism, indicated that the mean and
behavior of the mean, Gaussian, and spontaneous curvatuBaussian curvatures increase as the square of the charge den-
in the intermediate regime is shown in Fig. 4. It is observedsity at low charge density. These results are recovered here,
that the mean curvature is negative at low charge densitiebut the present analysis also indicates that there is a satura-
as predicted by Eqgs46), and becomes positive at high tion of the mean and Gaussian curvatures at high charge



densities. The mean curvature saturates to a valugwh&n  positive coefficient indicates that the energy is lowered when
scaled by N.T/«%)] at high charge densities, while the the monolayer with the higher charge density is stretched by
Gaussian curvature increases to a value-¢#0/3) in this  the curvature. This raises the possibility of the spontaneous
limit. Thus the presence of charges increases the mean cuisrmation of vesicles of radius large compared to the Debye
vature modulus, and results in a negative Gaussian curvatuféngth when the charge asymmetry is small compared to the
modulus, which favors principal curvatures of equal signsmean charge density of the membrane.
The magnitude of the curvature enerdy.(T/«°) varies be- The coupling between charge density and curvature for a
tween 102° J and 1022 J for variations in theN., between  membrane with adsorbed charges was also considered in the
0.1 mM and 1 M. Therefore, the electrostatic curvature entimit where there is no enthalpic interaction between the
ergies are close to the intrinsic curvature energy estimated teharges on the surface, so that the gain in chemical energy
be 10°*° J [8] in the limit of high charge densities. This per charge adsorbed is equal to the loss of electrostatic en-
indicates that surface charges could have a significant effeergy for the last charge adsorbed on the surface. It was found
on the curvature energies. that the corrections to the mean and Gaussian curvatures in
Another interesting possibility is the reduction in the total this case are opposite in sign to that for the case with fixed
curvature energy in the limit of high charge densities. It wascharges at low charge densities. However, at high charge
speculated by Winterhalter and Helfri¢h] that the total densities, the mean and Gaussian curvature are identical to
curvature energy BK%+477K§ may become negative at those for the case with fixed charges. The variation of the
high charge densities, resulting in the spontaneous formatiospontaneous curvature is similar to that for the case of fixed
of vesicles when the curvature energy is due to electrostaticharges. The negative mean curvature at low charge densities
effects alone. However, they were not able to verify, sincor membranes with adsorbed charges indicates that electro-
their calculations were based on the Debye-Huckel approxistatic effects tend to reduce the curvature modulus, and favor
mation, which is not valid for high charge densities. Thespontaneous formation of vesicles. However, the magnitudes
present calculation indicates that such a transition does tak#f the mean curvature are small compared to the intrinsic
place ato=28.5, and the total curvature energy is negativecurvature, indicating that electrostatic effects are likely to
at high charge densities even in the absence of asymmetry soften the membrane in the limit of low charge densities, but
the charge density. are unlikely to cause spontaneous formation of vesicles. A
The spontaneous curvature, scaled by the inverse of theharge asymmetry could cause a spontaneous curvature in
Debye length, varies proportional t¢/o), whereAo is  which the radius of curvature is large compared to the Debye
the asymmetry in the charge density on the two sides of théength in this case as well. However, in contrast to the case
membrane andr is the average charge density. The coeffi-of fixed charges, the surface which is stretched by the curva-
cient of proportionality varies in a small range between 2/3ture has a lower charge density, while the surface which is
at low charge density and 1 at high charge density. Theompressed has a higher charge density.
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