
Effect of surface charges on the curvature moduli of a membrane

V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

The modification of the curvature moduli due to surface charges in lipid bilayers is analyzed using the
nonlinear Poisson-Boltzmann equation for the relationship between the charge density and surface potential.
An expansion in a small parametere, which is the ratio of the Debye length and the radius of curvature, is
used. At low charge densities, previous results obtained from the Debye-Huckel approximation are recovered.
At high charge densities, the corrections to the mean and Gaussian curvature approach constant values. The
total energy of curvature for a symmetrically charged membrane becomes negative when the charge density is
increased beyond a critical value, indicating that the membrane spontaneously forms vesicles. An asymmetry
in the charge densities on the two monolayers that form the bilayer results in a spontaneous curvature, and the
radius of curvature could be large compared to the Debye length when the asymmetry is small. The case of
adsorbed charges is also considered, where there is a reduction in the chemical energy when a charge is
adsorbed on the surface. At low charge density, the mean and Gaussian curvature are equal in magnitude and
opposite in sign to that for fixed charges, while at high charge density, the mean and Gaussian curvature
approach values identical to that for a surface with fixed charges. Numerical calculations of the change in the
curvature moduli with realistic parameter values indicate that these effects are likely to be of importance in the
spontaneous formation of vesicles.
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I. INTRODUCTION

Vesicles, which are lipid bilayers shaped in the form
spheres, are of interest in many practical applications, s
as drug delivery systems. These are usually made under
equilibrium conditions, because the bending energy for
formation of a vesicle of micron size is large compared to
thermal energy. However, some interesting experimenta
sults@1# have revealed that stable vesicles could be forme
equilibrium if a mixture of lipids with surface charges o
opposite signs are used. The relationship between the su
charge density and the curvature could also be of importa
in biological systems. Two of the salient features of surfa
encountered in biological systems, such as cell membra
and organelles, are that they are soft and can undergo s
changes, and they have adsorbed charges. It is well kn
@2# that significant variations in charge distribution and t
transmembrane potential of membranes coincide with sh
changes.

Previous studies have examined the shape changes o
logical membranes due to forces exerted by ion transpo
proteins, due to the asymmetry of inclusions in the me
brane and their phase separation on the surface, and
nonequilibrium processes@3#. Though most of the studies o
biological membranes have examined fluctuations at ther
equilibrium @4#, it has recently been realized that the forc
generated on membranes by inclusions could play a cru
role in the structure and dynamics of membranes. Ph
separation of the components of a membrane could also
the shape@5#. However, it is expected that effects like hea
tail asymmetry would lead to structures with characteris
lengths of the same magnitude as the domains on the sur
whereas typical sizes of vesicles could be two to three ord
of magnitude larger than the membrane thickness. S
shape changes in biological membranes are accompanie
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changes in the transmembrane potential, it is useful to ex
ine whether changes in the charge density on the sur
could alter the curvature moduli of the membrane.

There have been many studies on the effect of surf
charges on the curvature moduli of membranes. Winterha
and Helfrich@6# and Lekkerkerker@7# determined the correc
tion to the moduli due to adsorbed charges, and found
there is an increase in the mean curvature due to adso
charges, while the Gaussian curvature is negative. They
found a nonzero value for the spontaneous curvature w
the charge densities on the two monolayers which form
bilayer are different. Kumaran@8# analyzed the distribution
of sizes of vesicles formed due to the difference in cha
density of asymmetrically charged membranes. The sub
quent studies of Oberdisse and Portes@9,10# also found that
there is an increase in the elasticity due to adsorbed char
Kumaran @11,12# also studied the thermodynamic and d
namical instability of a flat charged surface due to the mot
of charges on the surface. In all these studies, the chang
the electrostatic energy due to the curvature of the memb
is determined, and the corrections to the elasticity moduli
calculated from the energy change. The corrections to
elastic moduli are manifested as additional contributions
the curvature energy when a net curvature is imposed on
membrane. However, most of these studies used alineariza-
tion approximation~Debye-Huckel approximation! for the
Poisson-Boltzmann equation, and therefore these studies
valid only at low charge densities. Consequently, they
not valid in realistic situations where the charge densit
may be large. In the present analysis, the contributions to
curvature moduli due to electrostatic effects are calcula
using the nonlinear Poisson-Boltzmann equation, ther
providing a complete solution for arbitrary charge densiti

The effect of charges on the dynamics of lipid bilaye
has also been studied experimentally. Most studies focus
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the importance of electric fields on the stability of mem
branes, and the electric fields necessary to cause ruptu
membranes. These are studied using electroporation t
niques, where the effect of electric fields on the stability
the membrane is assessed. It has been known for a long
@13# that application of a transverse electric field cau
breakdown of a membrane, and the voltage necessar
cause rupture is termed the breakdown voltage. The pro
of rupture is not completely understood, and it was pre
ously thought that the Maxwell stresses caused by the e
tric field at the surface, which acts like a mechanical stre
could cause rupture. Though the equivalence of the Maxw
stresses and mechanical stress on giant vesicles has
shown, it has been found that the tension at the breakd
voltage is too small to cause rupture@15#. Recent studies
have indicated that the electric potential reduces the e
energy required to create a defect@14#. This is supported by
theoretical studies@16# which show that the breakdown vol
age depends not only on the charge density on the sur
and the electrostatic repulsion between the head groups
also on the type of hydrophobic groups that are incorpora
in the lipid molecules. Further, electric effects are far few
than those predicted by the Poisson-Boltzmann theory,
charge interactions could play a significant role in determ
ing the dynamics of the membrane.

The present analysis provides some interesting results
garding the change in the curvature moduli due to surf
charges. The electric fields are created by charges adso
or fixed on the membrane, and are far lower than those
quired for rupture. Though previous studies have indica
that the Poisson-Boltzmann approximation may not be
merically accurate, we expect the trends predicted here t
observed in real systems. Following earlier studies@6,8#, we
assume that the charges on the two sides of the lipid bila
are decoupled. Though this is not strictly true, it is a go
first approximation when the dielectric constant of the hyd
phobic groups is small compared to that of water. First,
consider charges that are fixed to the surface, so that the
contribution to the free energy is the electrostatic energy
assembling the charged layer. In the limit of low charge d
sities, the previous results of Winterhalter and Helfrich@6#
for the curvature moduli and spontaneous curvature are
covered. However, in the limit of high charge densities, it
observed that the corrections to the mean and Gaussian
vature tend to a maximum value. The correction to the m
curvature is positive, while the correction to the Gauss
curvature is negative. In the limit of high charge density, it
found that the total curvature energy becomes negative
dicating that there is the spontaneous formation of vesi
when the charge density is increased beyond a critical va
This possibility was raised by Winterhalter and Helfrich@6#
in their calculation of the curvature moduli using the Deby
Huckel approximation, though the parameter regime
which this transition takes place is outside the limits of v
lidity of their analysis. An asymmetry in the charge dens
of the two monolayers that form the bilayer results in a sp
taneous curvature, and the radius of curvature is large c
pared to the Debye length when the asymmetry is sm
Calculations with realistic parameter values indicate that
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radius of curvature could be of the order of microns when
Debye length is of the order of 10 nm.

Another case considered in the present analysis is the
fect of adsorbed charges on the curvature of the membr
When charges are adsorbed, there is a reduction in
chemical energy due to adsorption, and the change in che
cal energy is opposite in sign to the electrostatic energy.
assumed that the energy of adsorption is independent of
face coverage, so that the reduction in chemical energy
every charge adsorbed is equal to the increase in the ele
static energy of the last adsorbed charge. In this case,
change in the mean and Gaussian curvature at low ch
densities is equal in magnitude and opposite in sign to
for fixed charges at low charge densities. However, at h
charge densities, the mean and Gaussian curvatures
membrane with adsorbed charges are identical to that f
membrane with fixed charges. The spontaneous curvatu
opposite in sign to that for a surface with fixed charges
low charge density.

The electrostatic energy is calculated using the nonlin
Poisson-Boltzmann formalism in the next section. An exp
sion is used in a small parametere, which is the ratio of the
Debye length and the radius of curvature, and the elec
static energy is determined by retaining terms correct
O(e2) in the expansion. The correction to the mean a
Gaussian curvature moduli as well as the spontaneous cu
ture for a surface with fixed charges is given in Sec.
while that for a surface with adsorbed charges is provided
Sec. IV. A brief summary of the important results is pr
vided in Sec. V.

II. ELECTROSTATIC ENERGY

The electrostatic energy for a charged surface w
charges on one side is first determined as a function of
curvature in the limit where the radius of curvature is lar
compared to the thickness of the counterion layer at the
face. The counterion density at the surface is determi
using the Poisson-Boltzmann equations

¹2c52~n12n2!/2, ~1!

n15 exp~2c!, ~2!

n25 exp~c!, ~3!

where c is the scaled potential (zec* /T), n15(n1* /N`)
and n25(n2* /N`) are the concentrations of the positive
and negatively charged ions scaled by the ion concentra
at a large distance from the surfaceN` , and the scaled dis
placementx5kx* , where k is the inverse of the Debye
screening lengthk5(2N`z2e2/eT)1/2. Herec* and x* are
the dimensional potential and distance coordinates,z is the
coordination number~assumed to be equal for the positiv
and negative ions!, e is the charge of an electron,N` is the
ion concentration at a large distance from the surface,e is
the dielectric permittivity of the medium, andT is the prod-
uct of the Boltzmann constant and the temperature. T
charge density at the surface per unit areas is determined
from the requirement of electroneutrality,
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E dAs52E dV~n12n2!, ~4!

where the surface charge densitys is scaled by (N` /k). The
relationship between the charge density and the potential
be used to simplify the above equation,

E dAs52E dV ¹2c522E dA n•“c, ~5!

wheredA is a differential area element on the charged s
face, n is the unit normal at the surface directed into t
solvent, while the integral over the surface at infinity is n
glected since the difference in charge densities decays e
nentially at large distances from the surface. If the cha
density and potential are uniform at the surface, the elec
neutrality condition reduces to

s522n•“c, ~6!

wheren is the unit normal to the surface directed into t
counterion layer, and there is a negative sign in the ab
equation becausen is opposite in direction to the outwar
unit normal to the counterion layer.

The Poisson-Boltzmann equations~1! and ~3! can be re-
duced to

“

2c5 sinh~c!. ~7!

These are solved in cylindrical and spherical coordinates
ing a perturbation expansion in the parametere5(kR)21,
where R is the radius of curvature of the cylindrical o
spherical surface. The solution for the cylindrical coordin
system is presented in detail, but only the results for
spherical coordinate system are presented since the me
of solution are identical for the two cases. It is useful
expand the radial coordinate in the curvilinear coordin
system asr * 5R1k21y, whereR is the radial position of
the surface andy is the nondimensional distance from th
surface. The scaled radial coordinater 5kr * is then given
by r 5e211y. The electrical potential is also expanded in
Taylor series in the parametere,

c5c01ec11e2c2 . ~8!

The Poisson-Boltzmann equation in a cylindrical coordin
system with variations only in the radial direction,

1

r

d

dr
r

dc

dr
5 sinh~c!, ~9!

is expanded in the parametere to provide a hierarchy of
equations for the corrections to the potentials,

d2c0

dy2
5 sinh~c0!,

d2c1

dy2
1

dc0

dy
5c1 cosh~c0!, ~10!

d2c2

dy2
1

dc1

dy
2y

dc0

dy
5c2 cosh~c0!1~c1

2/2!sinh~c0!.
an
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The leading-order equation forc0 is identical to that for the
potential at a flat interface, and an analytical solution can
obtained for this case,

tanh~c0 /4!5tanh~cs /4!exp~2y!, ~11!

wherecs is the surface potential. The higher-order corre
tions to the potential cannot be evaluated analytically,
ordinary differential equations can be obtained for these c
rections. It is convenient to effect a coordinate transformu
5c exp(2y), and define the constantc5tanh(cs/4). The do-
main of integration 0,y,` is now transformed toc.u
.0, and the equations for the corrections to the potential

S u2
d2

du2
1u

d

duD c12g2~u!5c1g1~u!, ~12!

S u2
d2

du2
1u

d

duD c22u
dc1

du
1 ln~u/c!g2~u!

5c2g1~u!1
c1

2

2
g3~u!, ~13!

where

g1~u!5S 8

~12u2!2
2

8

12u2
11D ,

g2~u!5
4u

12u2
, ~14!

g3~u!5S 8u3

~12u2!2
1

4u

12u2D .

The corrections to the potential can be separated into a
mogeneous solution and a particular solution,c15C1cg
1cp1 and c25C2cg1cp2, where the homogeneous solu
tion is determined from the equation

S u2
d2

du2
1u

d

duD cg2cgg1~u!50 ~15!

and the particular solutions are determined from the inhom
geneous equations~12! and ~13!. The constantsC1 and C2
are adjusted so thatc15c250 at u5c(y50). The above
equations are solved numerically, and the values of the
dients of the potentials are obtained at the surfacey50. The
numerical results show that subject to errors of the orde
the machine accuracy, the equations for the gradients in
potentials at the surface are

dc0

dy U
y50

5
24c

12c2
,

dc1

dy U
y50

522c, ~16!

dc2

dy U
y50

5
c~12c2!

2
.
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In the limit cs→0 (c→0), the above solutions for the co
rection to the potential are

dc0

dy U
y50

52cs ,

dc1

dy U
y50

52
cs

2
, ~17!

dc2

dy U
y50

5
cs

8
.

These are consistent, up toO(e2), with the results obtained
from the Debye-Huckel approximation for the potential o
side a cylinder,

c5csS K0~e211y!

K0~e21!
D , ~18!

whereJK is the Bessel function. Here, we have substitu
r 5e211y consistent with the nondimensionalizations us

A similar calculation can be carried out for a spheric
surface, where the Laplace operator@equivalent to Eq.~9!# is

1

r 2

d

dr
r 2

dc

dr
5 sinh~c!. ~19!

In this case, the results for the gradients in the potential

dc0

dy U
y50

5
24c

12c2
,

~20!
dc1

dy U
y50

524c.

It was not possible to derive an exact analytical express
for the second correction to the potential gradient. Howev
an approximate form for the second correction is given b

dc2

dy U
y50

52c3A12c2. ~21!

Correct to linear order incs in the limit cs→0, the correc-
tions to the gradients of the potential at the surface are

dc0

dy U
y50

524cs ,

dc1

dy U
y50

524cs , ~22!

dc2

dy U
y50

50.
-

d
.
l

re

n
r,

These are also consistent with the results obtained using
Debye-Huckel approximation for a spherical surface, wh
the potential is given by

c5csS exp~2y!

e~e211y!
D . ~23!

For the general case where the two principal radii of cur
ture are not equal, the governing equation for the potentia
of the following form:

d2c

dy* 2
1S 1

R11y*
1

1

R21y*
D dc

dy*
5k2 sinh~c!, ~24!

wherey* is the dimensional distance from the surface,k is
the inverse of the Debye screening length, andR1 andR2 are
the principal radii of curvature~it is assumed, without loss o
generality, thatuR1u,uR2u, andR1 andR2 are positive if the
coordinatey is along the outward unit normal direction join
ing the center of curvature to the point on the membra
surface!. With the definitions e5(kR1)21 and ar
5(R1 /R2), the governing equation for the potential becom

d2c

dy
1S e~11ar !2ye2~11ar

2!
dc

dyD5 sinh~c!. ~25!

The results for the leading order and first correction to
potential gradient in this case are

dc0

dy U
y50

5
22~11ar !c

12c2
,

~26!
dc1

dy U
y50

522~11ar !c.

It was not possible to derive an exact analytical express
for the second correction to the potential gradient. Howev
an approximate form for the second correction is given b

dc2

dy U
y50

52arc
3A12c21

~12ar !
2

2
c~12c2!. ~27!

A comparison between the numerically calculated value
the second correction to the potential gradient and the va
given by Eq.~27! is shown in Fig. 1.

The charge density at the surface can be calculated f
the electroneutrality condition~6!,

s522S dc0

dy
1e

dc1

dy
1e2

dc2

dy D U
y50

5
8c

12c2
14e~11ar !c12arc

3A12c2

2~12ar !
2c~12c2!. ~28!

Since the corrections to the potential in the above equa
are functions of the coefficientc5tanh(cs/4), the surface
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charge density is also obtained as a function of this par
eter. Equations~26!, ~27!, and~28! can be inverted to obtain
c as a function of the surface charges,

c5c01ec11e2c2 , ~29!

where

c05
241A161s2

s
,

c152
~11ar !c0~12c0

2!2

2~11c0
2!

, ~30!

c25
c0~12c0

2!2

8~11c0
2!3

@h1~c0!~11ar !
21arh2~c0!#,

where

h1~c0!5~12c0
2!~324c0

223c0
4!,

~31!
h2~c0!52~11c0

2!2~2c0
2222c0

2A12c0
2!.

The total electrostatic energy is determined from the ene
required to assemble the charges at the surface in a pote
field generated by the counterions in equilibrium,

Ee5E
0

s

cs* ds* , ~32!

wheres* is the variable of integration andcs* is the surface
potential when the surface charge density iss* . Analytical
expressions for the electrostatic energy are obtained
function of the surface potential,

FIG. 1. Comparison of the numerical~symbols! and theoretical
~lines! results for the second correction to the potential gradien
the surface (dc2 /dy)uy50 as a function of the parameterc. The
theoretical curves are obtained using Eq.~27!. s, ar50; n, ar

50.25; ¹, ar50.5; L, ar50.75; 1, ar51.0.
-

y
tial

a

Ee5E0
e1eE1

e~11ar !1e2@~11ar !
2E2

e81arE2
e9#, ~33!

where

E0
e5

32c0 arctanh~c0!

12c0
2

2
16c0

2

12c0
2

,

E1
e58 ln~12c0

2!,
~34!

E2
e8522c0

21
8c0

2

11c0
2

,

E2
e9528c0

22
16

3
1

8

3
A12c0

2~c0
212!,

wherec0 is related tos by Eq. ~31!.

III. FIXED CHARGES

In this section, the curvature moduli and the spontane
curvature are determined for a membrane with differ
charge densities on the two sides,sa andsb . Without loss
of generality,sa is considered to be the charge density
the monolayer that is stretched by the curvature, whilesb is
on the monolayer compressed by the curvature. The cha
are considered to be ‘‘fixed,’’ in contrast to the analysis
the following section, where the charges are adsorbed f
the solution adjoining the membrane. In this case, the t
free energy has only an electrostatic contribution,

Ee5@E0
e~sa!1E0

e~sb!#1e~11ar !@E1
e~sa!2E1

e~sb!#

1e2~11ar
2!@E2

e8~sa!1E2
e8~sb!#

1e2ar@E2
e9~sa!1E2

e9~sb!#. ~35!

Note that there is a negative sign in the coefficient ofsb ,
because this surface is compressed by the curvature, an
unit normal to this surface is directed towards the center
curvature. In addition, we consider the limit where the d
ference in charge densitiesDs5(sa2sb)!s, where s
5(sa1sb)/2. This is required because we have assum
that the spontaneous curvature is large compared to the
bye length, and this assumption is valid only in this lim
The electrostatic energy in this case, correct to quadratic
der in e andDs, is

Ee52E0
e~s!1eDs~11ar !

dE1
e

ds
1e2~11ar

2!@2E2
e8~s!#

1e2ar@2E2
e9~s!#. ~36!

If the above free energy is expressed in terms of the m
and Gaussian curvatures

Ee5
Km

e

2
~11ar2K0

e!2e21Kg
eare

21E0
e8~s!, ~37!

t
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the mean and Gaussian curvatures, as well as the spon
ous curvature, are easily deduced from the above correct
to the free energy,

Km
e 54E2

e8~s!,

Kg
e52E2

e9~s!, ~38!

K0
e52

1

4E2
e8

dE1
e

ds
Ds.

In the Debye-Huckel approximations→0, the above curva-
tures have the following limiting form:

Km
e 5~3s2/8!,

Kg
e52~s2/4!, ~39!

K0
e5~2Ds/3s!.

The above solutions are identical to those derived by W
terhalter and Helfrich for weakly charged membranes, for
nondimensionalizations used here. There is an apparent
ference of a factor of 2 in the equation for the spontane
curvature, because Winterhalter and Helfrich have defi
sa5s(11d) andsb5s(12d), while we have definedsa
5(s1Ds/2) andsb5(s2Ds/2). In addition, the positive
constant in the equation for the spontaneous curvature i
cates thatK0

e.0 for Ds.0, or the higher charge density
on the monolayer stretched by the curvature. It is also us
to examine the curvatures in the limit of high charge den
ties s@1. In this limit, the curvatures have the followin
limiting forms:

Km
e 582

256

s2
,

Kg
e52

80

3
1

32A2

As
1

128

s
, ~40!

K0
e5

Ds

s S 12
4

s D .

It is interesting to note that the Gaussian curvature is ne
tive, indicating that the Gaussian curvature contribution
the electrostatic energy tends to favor the formation of s
faces whose principal curvatures have the same sign.
behavior of the mean and Gaussian curvature energies
the spontaneous curvature in the intermediate regime
shown in Fig. 2. It is observed that the mean curvature
positive, and increases to its maximum value of 8 at la
charge density. The Gaussian curvature is negative, and
creases as the charge density is increased. The sponta
curvature varies in a narrow range from (2Ds/3s) at low
charge density to (Ds/s) at high charge density.

The limiting forms~39! and~40! also raise the interestin
possibility that there could be spontaneous formation
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vesicles if the surface charge density increases beyon
critical value, even in the absence of charge asymmetry
the absence of spontaneous curvature, the difference betw
the electrostatic free energy of a spherical vesicle and a
surface of equal area is given by

Ee58pKm
e 14pKg

e . ~41!

There is a spontaneous transition to a vesicular state if
above energy change is negative. It is observed from E
~39! that the right side of the above equation is positive
the limit s!1, but Eqs.~40! show that the right side of Eq
~41! is negative fors@1. This indicates that there is a spo
taneous transition from a flat state to a vesicular state
intermediate values ofs, and numerical calculations indicat
that this transition takes place ats528.25. The energy pe
vesicle (8pKm

e 14pKg
e) is shown as a function ofs in Fig.

3 for the case of fixed charges. It is useful to exam
whether this effect can be observed in real systems of in
est. The dimensional charge density required for this tra
tion is s* 528.25N` /k, whereN` is the molar density of
the counterions at a large distance from the surface andk is
the inverse of the Debye length. ForN`51022 mol/l, the
Debye screening length is about 3 nm and the surf
charge density works out tos* ;631017 m22. This is
higher than the charge densities typically observed in b
logical membranes, but only by about an order of magnitu

It is useful to estimate the magnitudes of the curvat
energies due to electrostatic interactions, and determ
whether these are likely to be of the same magnitude as th
due to the intrinsic curvature of the membrane. The cur
ture energy per unit area scales as (s* zec* ), and therefore
the Gaussian and mean curvatures scale as (s* zec* /k2),
since the Debye lengthk is the only length scale in the
system. Using the scalingss* ;N` /k and c* ;T/ze, the
curvatures scale asN`T/k3, or @e3/2T5/2/(N`

1/2e3z3)#. For an

FIG. 2. The mean curvatureKm
e (s), Gaussian curvatureKg

e

(n), and spontaneous curvatureK0
e (¹) as a function ofs for a

surface with fixed charges.
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electrolyte with coordination numberz51, this is O(2
310222/N`

1/2) J, whereN` is the molar concentration in
mol/l. Therefore, the curvature energy scale varies betw
10220 J for very low electrolyte concentrations of 0.1 m
and 10222 J for high electrolyte concentrations of 1 M. Th
is close to the bending energy of typical lipid bilayers
10219 J @8#, indicating that the electrostatic contribution
could be significant in determining the bending energy of
charged surface at low ion concentrations.

When there is charge asymmetry, the spontaneous cu
ture is proportional to (Ds/s). This implies that the radius
of curvature is large compared to the Debye screening len
when the charge asymmetryDs is small compared to the
mean charge densitys. Therefore, spontaneous formation
vesicles with radius large compared to the Debye len
would be observed when the charge asymmetry is sm
compared to the average charge density of the surface.
example, a difference in charge densities of 1% on the
sides of the membrane could give rise to micron-siz
vesicles when the Debye screening length is 10 nm.

In case the surface has an intrinsic mean curvature en
Ki , the total energy per unit area of the surface is

E5
Km

i

2 S 1

R1
1

1

R2
D 2

1
Km

e

2 S 1

R1
1

1

R2
2K0

eD 2

1
Kg

e

R1R2
.

~42!

This results in modified mean and spontaneous curvatur

Km5~Km
i 1Km

e !,
~43!

K05Km
e K0

e/~Km
i 1Km

e !.

This has the effect of further reducing the spontaneous
vature of the membrane and increasing the radius of cu
ture. ForKm

e /Km
i ;0.01 as indicated by the above calcul

FIG. 3. The total energy of a vesicle (8pKm14pKg) as a func-
tion of s for a surface with fixed charges (s) and adsorbed charge
(n).
n
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tions, the spontaneous curvature could be of the orde
10 mm when the Debye screening length is 1 nm.

IV. ADSORBED CHARGES

The adsorption of the charged species onto the sur
results in a reduction in the chemical energy. Here, it is
sumed that the adsorbed species on the surface is noni
acting, so that the reduction in chemical energy per adsor
molecule is a constant. This would overestimate the conc
tration of the adsorbed species on the surface, becau
disregards any enthalpic or electrostatic interaction betw
the charged species on the surface. Therefore, this prov
an upper bound on the possible curvature due to the ch
density-curvature coupling. However, we adopt this simp
fication in order to avoid dealing with specific adsorptio
models, which involve additional parameters.

When the adsorbed layer is in equilibrium with the bu
the reduction in the chemical energy due to the last adsor
charge is equal to the increase in the electrostatic energ
adsorption, which is cs when nondimensionalized b
(ze/T). If the charges are noninteracting so that the red
tion in energy per charge is a constant, the total reductio
the electrostatic energy per unit area isscs . The total en-
ergy per unit area, which is the sum of the electrostatic a
chemical components, is given by

Eec5E
0

s

cs* ~s* !ds* 2css. ~44!

Using the expressions derived in the preceding section,
following corrections to the free energy are obtained:

Eec5E0
ec1eE1

ec~11ar !1e2@~11ar !
2E2

ec81arE2
ec9#,

~45!

where

E0
ec52

16c0
2

12c0
2

,

E1
ec58 ln~12c0

2!1
16c0

2

11c0
2

,

~46!

E2
ec852

2c0
2~3215c0

21c0
413c0

6!

~11c0
2!3

,

E2
ec952

8c0
2~3c0

221!

11c0
2

2
16

3

1
8

3~11c0
2!

A12c0
2~213c0

214c0
4!.

The mean and Gaussian curvature energies and the sp
neous curvature are calculated using relations similar to
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~42! for the surface with fixed charges. In the limits!1,
these curvature energies have the following limiting beh
ior:

Km
ec52~3s2/8!,

Kg
ec5~s2/4!, ~47!

K0
ec5~2Ds/3s!.

The mean and Gaussian curvature are negative of thos
the case with fixed charges, while the spontaneous curva
remains unchanged. The reason for this is as follows. In
limit of small s, the surface charge densitycs is propor-
tional to s. Therefore, the electrostatic energy~46! is equal
to (scs /2), while the change in the chemical energy
2(scs). Consequently, the total energy for the adsorb
charges is the negative of the electrostatic energy. It is
observed that the mean curvature is negative for a memb
with adsorbed charges, and therefore the curvature mod
decreases due to the adsorption of the charges. The Gau
curvature is positive, and tends to favor surfaces with p
cipal curvatures of opposite sign. The spontaneous curva
remains unchanged. An interesting consequence of the
vature energies~46! and~47! is that the adsorption of charge
favors the formation of vesicles, since the energy per u
area (2Km

ec1Kg
ec) is negative in this case. However, mem

branes also have an intrinsic mean curvatureKm
i which is

positive, and therefore there is a spontaneous transitio
vesicles only when 4p(2Km

i 12Km
ec1Kg

ec) is negative, or for
s.2(Km

i )1/2. If we assume the dimensional intrinsic curv
ture of the membraneKm

i 510219 J, and the energy scale fo
the charged surface is 10220 J as calculated above for wea
electrolytes, the transition to vesicles occurs fors.6. This
is certainly outside the regime of validity of the linearizatio
approximation, so this effect is not likely to generate a tra
sition for weakly charged biological membranes. Howev
the present calculation indicates that the charged sur
should have a curvature energy that is lower than the
charged surface.

In the limit s@1, the limiting forms for the mean an
Gaussian curvature are

Km
ec582

768

s2
,

Kg
ec52

80

3
1

48A2

As
1

256

s
, ~48!

K0
ec5

Ds

s S 12
8

s D .

The leading-order solutions for the curvatures in this lim
are identical to those for a surface with fixed charges. T
behavior of the mean, Gaussian, and spontaneous curv
in the intermediate regime is shown in Fig. 4. It is observ
that the mean curvature is negative at low charge densi
as predicted by Eqs.~46!, and becomes positive at hig
-

for
re
e

d
so
ne
lus
ian
-
re

ur-

it

to

-
,
ce
n-

t
e
ure
d
s,

charge densities as predicted by Eqs.~47!. The Gaussian cur-
vature has the opposite behavior, and goes from positive
ues at low charge density to negative values at high cha
density. The spontaneous curvature has a behavior simila
that for a system with fixed charges. The variation
(8pKm

ec14pKg
ec) as a function ofs is shown in Fig. 2 for a

surface with adsorbed charges. It is observed that the cu
ture energy due to charge adsorption is negative both
small and larges, and becomes positive at intermediate v
ues ofs.

The spontaneous curvature in the present case req
careful interpretation, since the correction to the mean c
vature due to electrostatic effectsKm

ec is negative. If the in-
trinsic mean curvatureKm

i is positive and larger in magni
tude thanKm

ec , the effective spontaneous curvature of t
surface isK05Km

ecK0
ec/(Km

i 1Km
ec). This is opposite in sign

to K0
ec , since the mean curvature modulusKm

ec is negative.
Consequently, the mean curvature in the present case is
posite in sign to that for a system with fixed charges, a
favors a higher charge density on the monolayer which
compressed by the curvature.

V. CONCLUSIONS

The change in the mean and Gaussian curvature mo
and the spontaneous curvature due to charges on a mem
were analyzed using the Poisson-Boltzmann equation.
linearization approximation was not made in the pres
analysis, so this calculation provides the coupling betwe
the charge density and curvature even for strongly char
surfaces. Previous calculations, which used the lineari
Debye-Huckel formalism, indicated that the mean a
Gaussian curvatures increase as the square of the charge
sity at low charge density. These results are recovered h
but the present analysis also indicates that there is a sa
tion of the mean and Gaussian curvatures at high cha

FIG. 4. The mean curvatureKm
ec (s), Gaussian curvatureKg

ec

(n), and spontaneous curvatureK0
ec (¹) as a function ofs for a

surface with adsorbed charges.
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densities. The mean curvature saturates to a value of 8@when
scaled by (N`T/k3)] at high charge densities, while th
Gaussian curvature increases to a value of2(40/3) in this
limit. Thus the presence of charges increases the mean
vature modulus, and results in a negative Gaussian curva
modulus, which favors principal curvatures of equal sig
The magnitude of the curvature energy (N`T/k3) varies be-
tween 10220 J and 10222 J for variations in theN` between
0.1 mM and 1 M. Therefore, the electrostatic curvature
ergies are close to the intrinsic curvature energy estimate
be 10219 J @8# in the limit of high charge densities. Thi
indicates that surface charges could have a significant e
on the curvature energies.

Another interesting possibility is the reduction in the to
curvature energy in the limit of high charge densities. It w
speculated by Winterhalter and Helfrich@6# that the total
curvature energy 8pKm

e 14pKg
e may become negative a

high charge densities, resulting in the spontaneous forma
of vesicles when the curvature energy is due to electros
effects alone. However, they were not able to verify, sin
their calculations were based on the Debye-Huckel appr
mation, which is not valid for high charge densities. T
present calculation indicates that such a transition does
place ats528.5, and the total curvature energy is negat
at high charge densities even in the absence of asymmet
the charge density.

The spontaneous curvature, scaled by the inverse of
Debye length, varies proportional to (Ds/s), whereDs is
the asymmetry in the charge density on the two sides of
membrane ands is the average charge density. The coe
cient of proportionality varies in a small range between
at low charge density and 1 at high charge density. T
.

f
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ur-
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e

positive coefficient indicates that the energy is lowered wh
the monolayer with the higher charge density is stretched
the curvature. This raises the possibility of the spontane
formation of vesicles of radius large compared to the Deb
length when the charge asymmetry is small compared to
mean charge density of the membrane.

The coupling between charge density and curvature fo
membrane with adsorbed charges was also considered in
limit where there is no enthalpic interaction between t
charges on the surface, so that the gain in chemical en
per charge adsorbed is equal to the loss of electrostatic
ergy for the last charge adsorbed on the surface. It was fo
that the corrections to the mean and Gaussian curvature
this case are opposite in sign to that for the case with fi
charges at low charge densities. However, at high cha
densities, the mean and Gaussian curvature are identic
those for the case with fixed charges. The variation of
spontaneous curvature is similar to that for the case of fi
charges. The negative mean curvature at low charge dens
for membranes with adsorbed charges indicates that ele
static effects tend to reduce the curvature modulus, and fa
spontaneous formation of vesicles. However, the magnitu
of the mean curvature are small compared to the intrin
curvature, indicating that electrostatic effects are likely
soften the membrane in the limit of low charge densities,
are unlikely to cause spontaneous formation of vesicles
charge asymmetry could cause a spontaneous curvatu
which the radius of curvature is large compared to the De
length in this case as well. However, in contrast to the c
of fixed charges, the surface which is stretched by the cu
ture has a lower charge density, while the surface which
compressed has a higher charge density.
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