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Abstract. The stability of wall modes in a flexible tube of radius R surrounded by a viscoelastic material
in the region R < r < HR in the high Reynolds number limit is studied using asymptotic techniques.
The fluid is a Newtonian fluid, while the wall material is modeled as an incompressible visco-elastic solid.
In the limit of high Reynolds number, the vorticity of the wall modes is confined to a region of thickness
O(ε1/3) in the fluid near the wall of the tube, where the small parameter ε = Re−1, and the Reynolds
number is Re = (ρV R/η), ρ and η are the fluid density and viscosity, and V is the maximum fluid velocity.
The regime Λ = ε−1/3(G/ρV 2) ∼ 1 is considered in the asymptotic analysis, where G is the shear modulus
of the wall material. In this limit, the ratio of the normal stress and normal displacement in the wall,
(−ΛC(k∗,H)), is only a function of H and scaled wave number k∗ = (kR). There are multiple solutions
for the growth rate which depend on the parameter Λ∗ = k∗1/3C(k∗,H)Λ. In the limit Λ∗ � 1, which is
equivalent to using a zero normal stress boundary condition for the fluid, all the roots have negative real
parts, indicating that the wall modes are stable. In the limit Λ∗ � 1, which corresponds to the flow in
a rigid tube, the stable roots of previous studies on the flow in a rigid tube are recovered. In addition,
there is one root in the limit Λ∗ � 1 which does not reduce to any of the rigid tube solutions determined
previously. The decay rate of this solution decreases proportional to (Λ∗)−1/2 in the limit Λ∗ � 1, and the
frequency increases proportional to Λ∗.

PACS. 83.50.-v Deformation; material flow – 47.15.Fe Stability of laminar flows – 47.60.+i Flows in ducts,
channels, nozzles, and conduits

1 Introduction

Many biological systems and biotechnology processes in-
volve flow through flexible tubes and channels. The flow
of blood and other fluids in the body takes place through
flexible tubes, and the separation and purification pro-
cesses in pharmaceutical industries often involve flow in
tubes and channels made up of polymer matrices and
membranes. These have been analyzed using models sim-
ilar to those for the flow in a rigid tube, but some ex-
periments conducted by Krindel and Silberberg [1] sug-
gest that the characteristics of the flow in a flexible tube
could be very different. The drag force in a flexible tube
is much larger than that in a rigid tube of the same
radius at Reynolds numbers where the flow in a rigid
tube is laminar, and the anomalous drag force could not
be accounted for by changes in the radius of the tube.
This led them to conclude that the Reynolds number
at which the flow changes from the laminar to turbu-
lent regime is much smaller than the transition Reynolds
number Re = 2300−4000 for a rigid tube, and the tran-
sition Reynolds number is influenced by the elasticity of
the surface. This instability is qualitatively different from
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the “pearling” instability observed in cylindrical vesicles
[2,3], because the instability is induced by fluid flow, in
contrast to the instability of a cylindrical fluid membrane
due to external excitation. It is useful, from a technological
viewpoint, to develop a fundamental understanding of the
factors affecting this transition, since this would help in
optimizing the design of biotechnological processes. In ap-
plications where it is important to have high mass or heat
transfer rates, it would be necessary to operate the system
in the turbulent regime where the transfer rates are up to
three orders of magnitude higher than that in the laminar
regime. In processes where low drag forces are desirable,
the system could be operated in the laminar regime.

At the point of transition from the laminar to turbu-
lent regime, the laminar flow becomes unstable to small
perturbations, and so it is necessary to study the stability
characteristics of the flow to predict the Reynolds num-
ber at which there is a transition from stable to unstable
modes. The stability of the “viscous modes” in the flow
through a flexible channel in the low Reynolds number
regime, where Re ≡ (ρV R/η)� 1, and (V η/GR) ∼ 1 was
analyzed by Kumaran, Fredrickson and Pincus [4]. Here,
ρ and η are the density and viscosity of the fluid, R is
the channel thickness or tube radius, V is the character-
istic fluid velocity and G is the shear modulus of the wall



material. In this regime, there is a balance between the vis-
cous forces in the fluid and the elastic forces in the wall.
It was observed that the viscous modes become unstable
when the fluid velocity is increased beyond a critical value.
The analysis was extended to the flow in a flexible tube by
Kumaran [5]. The stability of the “inviscid modes” in the
high Reynolds number regime Re� 1 and (ρV 2/G) ∼ 1,
was analyzed using asymptotic techniques for a channel
flow [6] and for a tube flow [7]. In this case, there is a
balance between the inertial forces in the fluid and the
elastic forces in the wall, and the analysis indicated that
the inviscid modes are always stable.

The above asymptotic results are rather paradoxical,
because they predict that the flow in the low Reynolds
number regime could become unstable, while the flow
in the high Reynolds number regime is always stable.
In order to resolve this paradox, a numerical continua-
tion of the unstable viscous modes into the intermedi-
ate Reynolds number regime was undertaken by Srivatsan
and Kumaran [8] for the flow in a flexible channel, and
by Kumaran [9] for the flow in a flexible tube. In these
studies, it was found that the instability does persist into
the intermediate Reynolds number regime, but the crit-
ical Reynolds number is much larger than the Reynolds
number at which the inviscid modes are observed for a
given set of fluid and wall properties. In addition, a bound-
ary layer of thickness O(Re−1/3) smaller than the width
of the channel thickness or tube radius was observed for
these unstable modes in the high Reynolds number regime.
This is very different from the boundary layer of thickness
O(Re−1/2) for the inviscid modes. The O(Re−1/3) scaling
is characteristic of a set of modes called “wall modes”.
The purpose of the present analysis is to examine these
wall modes in the high Reynolds number regime using
asymptotic analysis. The analysis is carried out for a flex-
ible tube, because results are available for a rigid tube in
the high Reynolds number regime, and this facilitates val-
idation of the present results. However, the results could
easily be extended to the flow in a channel with flexible
walls.

There are two types of high Reynolds number modes
in a rigid tube where the vorticity is confined to thin re-
gions near the center of the tube or at the wall [10]. The
vorticity of the “center modes” is confined to a region of
thickness O(Re−1/4) at the center of the tube, and the

decay rate of these modes is O(Re−1/2) smaller than the
fluid strain rate. The vorticity of the “wall modes” is con-
fined to a layer of thickness O(Re−1/3) at the wall, and the

damping rate of these modes is O(Re−1/3) smaller than
the fluid strain rate. The flexibility of the tube will not
affect the center modes because the vorticity is confined
to the center, but the wall modes could be affected due
to the wall flexibility. It should be noted that the wall
mode is distinct from the “inviscid mode” for a flexible
tube which was analyzed earlier [7], and the differences
are summarized in Section 3.

The stability characteristics are first determined using
asymptotic analysis in the high Reynolds number limit in
Section 2. A scaling analysis shows that the elastic stresses

Fig. 1. Configuration and definition of coordinate systems.

in the wall affect the damping of the wall modes when the
dimensionless number Λ ≡ ε−1/3(G/ρV 2)1/2 ∼ 1, where
ε ≡ Re−1. It is shown, using scaling arguments, that the
inertial and viscous stresses are of the same magnitude in
the wall layer, and the parameter Λ represents the ratio of
the elastic stresses in the wall material and the inertial (or
viscous) stresses in the fluid. The velocity and stress fields
are expanded in the small parameter ε, and an asymptotic
analysis is used to determine the growth rate of the wall
modes. In the regime Λ ∼ 1, the elastic stress is large
compared to the inertial stress in the wall material, and
the wall admittance is only a function of the ratio of radii
of the wall and the fluid H and the wave number k of the
perturbations. There are multiple solutions for the growth
rate of the perturbations. In the limit Λ → ∞, the solu-
tions reported previously for a rigid tube are recovered.
In addition, there is one mode in a flexible tube whose
growth rate does not converge to any of the rigid tube
modes, but which has a diverging frequency in the limit
Λ → ∞. This is the least stable wall mode in a flexible
tube, and its decay rate decreases proportional to Λ−1/2

in the limit Λ→∞.

2 Analysis

The configuration consists of a tube of radius R sur-
rounded by a visco-elastic solid in the region R < r < HR
as shown in Figure 1. The mean flow in the tube is a steady
Hagen-Poiseuille flow:

v̄i = V

(
1−

r2

R2

)
δix (1)

where V is the maximum velocity at the center of the
tube. In the linear stability analysis, a small perturbation
is added to the mean velocity of the form vi = v̄i+v′i, and
the growth rate of the perturbation is determined. The
dynamical equations for the velocity perturbation are the
linearized Navier-Stokes equations for an incompressible
Newtonian fluid:

∂iv
′
i = 0 (2)

ρ[∂tv
′
i + (v̄j∂jv

′
i + v′j∂j v̄i)] = −∂ip

′ + η∂2
j v
′
i (3)

where ∂t ≡ (∂/∂t), ∂i ≡ (∂/∂xi), ρ and η are the density



and viscosity of the fluid and p′ is the pressure perturba-
tion. The stress due to the perturbation in the velocity
field is:

τ ′ij = −p′δij + η(∂iv
′
j + ∂jv

′
i). (4)

The wall of the tube is made up of a visco-elastic material
whose dynamics is described by a displacement field u′i
which represents the displacement of material points from
their steady state positions due to the stresses at the sur-
face. The dynamical equations for the displacement field
u′i are similar to those used for incompressible elastic solids
(Landau and Lifshitz [11]) modified to include viscous ef-
fects. Similar equations have been used for the study of
surface fluctuations in polymer gels (Harden, Pleiner and
Pincus [12], Kumaran [13]) and in the earlier studies of
the instability in flexible tubes (Kumaran [5–7,9]). The
displacement field for the incompressible visco-elastic ma-
terial satisfies the solenoidal condition:

∂iu
′
i = 0 (5)

while the momentum balance equation is:

ρ∂2
t u
′
i = −∂ip

′ +G∂2
j u
′
i + ηs∂

2
j v
′
i (6)

where G is the shear modulus, ηs is the viscosity of the
visco-elastic material that comprises the surface and the
velocity v′i = ∂tu

′
i. For simplicity, it has been assumed

that the density of the wall material is the same as that of
the fluid. The first term on the right side of the above ex-
pression is the gradient of the pressure required to enforce
incompressibility, the second is the divergence of an elas-
tic stress due to the strain in the medium and the third
is the divergence of a viscous stress due to the strain rate.
The stress tensor in the wall is:

σ′ij = −p′δij +G(∂iu
′
j + ∂ju

′
i) + ηs(∂iv

′
j + ∂jv

′
i). (7)

In the constitutive relation (7), it is assumed that the
shear modulus G and the viscosity of the wall ηs are in-
dependent of the frequency. The validity of these assump-
tions was discussed in detail in Kumaran [9]. The assump-
tion regarding the shear modulus is valid over a wide range
of frequencies for polymer gels, and the value of the modu-
lus is referred to as the plateau modulus. The loss modulus
of polymer gels does not exhibit the same property, and so
the assumption regarding the viscosity may not be valid
for polymer gels. However, the results of the present anal-
ysis can easily be adapted to situations where the viscosity
is frequency dependent, if the frequency dependence of the
viscosity is known.

The boundary conditions at the center of the tube are
v′r = 0 and ∂rv

′
x = 0 due to axisymmetry. In addition, it

is necessary to specify boundary conditions at the outer
surface r = HR for the displacement field in the wall
material. For definiteness, we use zero displacement con-
ditions u′r = 0 and u′x = 0 at this surface. However, it
should be noted that the boundary conditions only affect
the constant C(k∗,H) in equation (31), which gives the
ratio of the normal velocity and normal stress at the in-
terface. Though there is a quantitative variation in this

ratio if a different boundary condition such as the zero
stress condition is used at the surface r = HR, the qual-
itative nature of the wall modes remain unchanged. The
boundary conditions at the interface between the fluid and
the wall are the continuity of velocity and stress applied
at the perturbed interface between the fluid and the wall.
It is convenient to expand the velocity and stress fields
at the perturbed interface in a Taylor series about their
values at the unperturbed interface r = R. The linear
terms in the expansion are retained and the higher order
terms neglected to obtain the following conditions where
all the quantities are evaluated at the unperturbed inter-
face r = R:

v′r = ∂tu
′
r,

v′x + u′r∂r v̄x = ∂tu
′
x,

τ ′rr = σ′rr,

τ ′xr = σ′xr. (8)

In the boundary condition for the axial velocity, the addi-
tional term on the left side is the variation in the mean ve-
locity at the surface due to a change in the surface height.

In the linear stability analysis, the perturbations to
the velocity and displacement fields are expressed as the
sum of Fourier modes periodic in the x direction,

v′i = ṽi(r) exp (ikx+ st),

u′i = ũi(r) exp (ikx+ st), (9)

where k is the wave number and s is the growth rate of the
perturbations. It is useful to discuss the derivation for the
length, time and velocity scales for the wall modes. The
linearized Navier-Stokes equations for the Fourier modes
(9) are

(dr + r−1)ṽr + ikṽx = 0 (10)

ρ(s+ ikV (1−(r/R)2))ṽr = −drp̃

+ η(d2
r + r−1dr − r

−2 − k2)ṽr (11)

ρ
(
s+ ikV (1−(r/R)2))

)
ṽx + ρṽr(−2V r/R2) = −ikp̃

+ η(d2
r + r−1dr − k

2)ṽx
(12)

where (1) has been inserted for the mean velocity v̄i. In
the high Reynolds number limit, the inertial effects are
large compared to viscous effects, and one could attempt
to obtain a leading order solution by neglecting viscous
effects. The inviscid equations in this limit are

(dr + r−1)ṽr + ikṽx = 0, (13)

ρ(s+ ikV (1− (r/R)2))ṽr + drp̃ = 0, (14)

ρ(s+ ikV (1− (r/R)2))ṽx + ρṽr(−2V r/R2) + ikp̃ = 0.
(15)



However, the viscous terms in the conservation equation
contain the highest derivatives, and the neglect of these
terms converts the momentum equations from second or-
der to first order differential equations. Consequently, it is
not possible to satisfy all the velocity and stress boundary
conditions required for the original viscous second order
differential equations, and only the normal velocity and
normal stress conditions can be satisfied at the interface
between the fluid and the wall material. To satisfy the
tangential velocity and stress boundary conditions at the
wall, it is necessary to postulate a viscous “wall layer” of
thickness δR where δ � 1 where the viscous effects are
significant. Consequently, it is useful to define an “outer
flow” with velocity ṽoi in the core of the tube, where the
distance from the wall is large compared to O(R), and
the inviscid equations (13, 14, 15) are applicable, and a
“wall layer” with velocity ṽwi where the distance from the
wall is O(δR) and the viscous effects are significant. The
parameter δ is determined by balancing the viscous and
inertial terms in the conservation equations in the wall
layer.

In the wall layer, a scaled distance from the wall z∗ is
defined as z∗ = (1 − r/R)/δ with δ � 1. The linearized
Navier-Stokes equations (10–12), expressed in terms of
this scaled coordinate, are

(−(Rδ)−1dz∗ +R−1(1− z∗δ)−1)ṽwr + ikṽwx = 0 (16)

ρ(s+ ikV (1− (r/R)2))ṽwr = (Rδ)−1dz∗ p̃w

+ η((Rδ)−2d2
z∗ − (Rδ)−1R−1(1− δz∗)−1dz∗

+R−2(1− δz∗)−2 − k2)ṽwr (17)

ρ(s+ ikV (1− (r/R)2))ṽwx + ρṽwr(−2V r/R2) = −ikp̃w

+ η((Rδ)−2d2
z∗ − (Rδ)−1R−1(1− δz∗)−1dz∗ − k

2)ṽwx
(18)

where ṽwr and ṽwx are the velocities in the wall layer.
From equation (16), it can be inferred that ṽwx ∼ δ−1ṽwr
for a balance to be achieved between the two terms
on the left side (it is assumed that the wave number
k ∼ R−1). It is useful to define a scaled axial velocity
ṽ∗wx = (ṽwx/V ), and the appropriate scaled radial velocity
is ṽ∗wr = (ṽwr/δV ). With this definition, the mass conser-
vation equation correct to leading order in small δ is

−dz∗ ṽ
∗
wr + ik∗ṽ∗wx = 0 (19)

where the scaled wave number k∗ = (kR). The leading
order momentum conservation equation in the r direction,
expressed in terms of ṽ∗wr and ṽ∗wx, is

ρ(s+ 2ik∗(V/R)δz∗)V ṽ∗wx − 2ρ(V 2/R)δṽ∗wr =

− ik∗p̃w/R+ (η/R2)δ−2d2
z∗(V ṽ

∗
wx) (20)

In equation (20), only the leading order term in the ex-
pression for the mean velocity v̄x has been retained, and
the higher order terms have been neglected. A balance

between the inertial and viscous terms in the above equa-
tion can be achieved in two ways. The first is to consider
the case δ ∼ (η/ρR2s)1/2. This corresponds to the “invis-
cid modes” analyzed earlier by the author [6,7]. In this
case, the growth rate s is is determined from the invis-
cid equations (13, 14, 15), and this is inserted into the
scaled equations for the wall layer in order to determine
the velocity profile in the wall layer. It can be easily ver-
ified from (13, 14, 15) that the growth rate for the in-
viscid modes scales as s ∼ (V/R), and consequently the
boundary layer thickness scales as δ ∼ Re−1/2. Another
way to achieve a balance between the inertial and vis-
cous terms in (20) is to consider the case s ∼ (δV/R),
and (ρδV/R) ∼ (η/R2δ2). This balance indicates that the
boundary layer thickness scales as δ ∼ Re−1/3, and the
growth rate scales as s ∼ Re−1/3(V/R). This balance cor-
responds to the “wall modes”. Without loss of generality,
the small parameter δ is defined as δ = Re−1/3, and a
scaled growth rate s∗ is defined as s∗ = (Re1/3sR/V ), to
give the following equation

(s∗ + 2ik∗z∗)ṽ∗wx − 2ṽ∗wr = −ik∗p̃∗w + d2
z∗ ṽ
∗
wx (21)

where the scaled pressure p̃∗w = (Re1/3p̃w/(ρV
2)). The

momentum conservation equation in the r direction (17)
is simplified using the scaled expressions for the veloci-
ties, pressure and the growth rate, and the leading order
terms in the small parameter δ are retained to obtain the
following leading order scaled equation

dz∗ p̃
∗
w = 0. (22)

From (22), it is seen that the variation of the pressure
in the direction normal to the flow is zero in the leading
approximation; this is the common feature of boundary
layer flows. The solution of the equations (19, 21, 22) are
provided in Appendix A, and the results are

ṽ∗wx = Ai(y, 1),

ṽ∗wr = 2−1/3(ik∗)2/3[yAi(y, 1)−Ai(y,−1)],

p̃∗w = 0. (23)

where Ai(y, p) are generalized Airy functions of order p
defined in Appendix A, and the argument y is

y = (2ik∗)1/3[(s∗/2ik∗) + z∗]. (24)

The solution (23) indicates that the O(Re−1/3ρV 2) con-
tribution to the pressure in the wall layer is zero. To apply
the normal stress continuity at the interface, it is neces-
sary to determine the largest non-zero contribution to the
pressure in the wall layer. This can be obtained by bal-
ancing the pressure and inertial terms in the momentum
conservation equation (17), and it is easily inferred that
the pressure scales as p̃w ∼ Re−1(ρV )ṽwx. For future ref-
erence, the magnitudes of the velocity and stress fields in



the wall layer are:

ṽwr ∼ ε
1/3ṽwx

τ̃wrr ∼ ε(ρV )ṽwx

τ̃wxr ∼ ε
2/3(ρV )ṽwx (25)

where ε = Re−1 is a small parameter. In the above equa-
tion, the normal stress is of the same magnitude as the
pressure, p̃w, while the shear stress scales as ηdr ṽwx, which
is O(ε2/3ρV ṽwx), since dr ṽwx ∼ ε−1/3(ṽwx/R).

The equations for the inviscid outer flow in the tube are
(13, 14, 15). It can be shown, as follows, that the bound-
ary conditions at the interface, (Eq. (8)), imply that the
velocities in the outer region are O(ε1/3) smaller than the
tangential velocity in the wall layer ṽwx. In the wall mate-
rial, the radial and tangential displacement fields are of the
same magnitude. From the tangential velocity boundary
condition in (8), the displacement ũr ∼ (R/V )ṽwx where
ṽwx is the magnitude of the tangential velocity in the wall
layer. Inserting this into the normal velocity boundary
condition in (8), it can be seen that the velocity field in
the outer flow ṽor ∼ ε1/3ṽwx. In addition, ṽox ∼ ε1/3ṽwx
because the radial and tangential velocities are of the same
magnitude in the outer region. From (15), it can be veri-
fied that the pressure is O(ε1/3ρV ṽwx). The magnitudes of
the velocity and the stress fields in the outer flow, similar
to (25) for the wall layer, are:

ṽor ∼ ε
1/3ṽwx,

ṽox ∼ ε
1/3ṽwx,

τ̃orr ∼ ε
1/3(ρV )ṽwx,

τ̃oxr ∼ ε(ρV )ṽwx. (26)

In (26), the normal stress τ̃orr has the same magnitude
as the pressure p̃o in the outer region. For the subsequent
analysis, it is not necessary to obtain detailed solutions for
equations (13, 14, 15) for the outer flow, but it is sufficient
to use a scaling analysis to obtain the relation between
the pressure and the radial velocity at the wall. Using
the scaled velocity ṽ∗oi = (ṽoi/ε

1/3V ) and scaled pressure
p̃∗o = (ε−1/3p̃o/ρV

2), equation (15) has the following form
at the wall r = R in the leading approximation:

p̃∗o = 2(ik∗)−1ṽ∗or. (27)

This provides a relation between the pressure and the nor-
mal velocity due to the outer flow at the wall. Note that
the term ρsṽwx in equation (15) has been neglected, be-
cause it is O(ε1/3) smaller than the terms retained above.

The equations for the displacement field in the wall
material are obtained using the form (8) for the displace-
ment field. The details of the calculation for the eigen-
functions ũi(r) are provided in Appendix B. It is suffi-
cient for the present purposes to discuss the magnitudes
of the displacement and stress fields in the wall materi-
als. From the boundary condition for the tangential ve-
locity (8), it can be seen that ũr ∼ (ṽwxR/V ). The
normal stress in the fluid scales as τ̃orr ∼ ε1/3ρV ṽwx

from (26), while the elastic stress in the wall scales as
σ̃rr ∼ (Gũr/R). The dynamics of the wall material will
influence the fluid flow only if these two stresses are of the
same magnitude, which requires that the dimensionless
number Λ ≡ ε−1/3(G/ρV 2) ∼ 1. With this, the magni-
tudes of the displacement and stress fields are:

ũr ∼
Rṽwx

V
,

ũx ∼
Rṽwx

V
,

σ̃rr ∼ Λ(ε1/3ρV )ṽwx,

σ̃xr ∼ Λ(ε1/3ρV )ṽwx. (28)

The solutions for the scaled eigenfunctions ũ∗r = (ũr/R)
and ũ∗x = (ũx/R) are determined in the Appendix B, and
the leading order shear and normal stress fields, σ̃∗rr =
σ̃rr/(ε

1/3ρV 2) and σ̃∗xr = σ̃xr/(ε
1/3ρV 2), are:

σ̃∗rr = −p̃∗ + 2Λdrũ
∗
r

σ̃∗xr = Λ(drũ
∗
x + ik∗ũ∗r). (29)

It is useful to note that the parameter Λ represents the
ratio of the elastic stresses in the wall material and the
inertial or viscous stresses in the fluid. The limit Λ �
1 represents the rigid wall limit, where the elasticity of
the wall is large. In the complementary limit Λ � 1, the
wall elasticity is small and this limit corresponds to a soft
material which undergoes large deformation due to the
flow.

The growth rate of the perturbations can now be ob-
tained using the boundary conditions for the velocity and
stress fields (8). The leading order boundary conditions,
consistent with the magnitudes of the velocity, displace-
ment and stress fields, equations (25, 26, 28) are:

ṽ∗wx − 2ũ∗r = 0,

ṽ∗wr + ṽ∗or = s∗,

ũ∗r − p̃
∗
o = σ̃∗rr,

σ̃∗xr = 0. (30)

The zero displacement conditions (ũ∗r = 0 and ũ∗x = 0)
at r = HR and the shear stress condition σ̃∗xr = 0
at r = 0 can be used to determine three of the con-
stants, B2, B3 and B4 as a function of B1 in the solutions
(53, 54) for the displacement fields. Using these, the ra-
tio of the normal stress and the normal velocity at the
unperturbed interface r = R can be written as:

σ̃∗rr
ũ∗r

= −ΛC(k∗,H) (31)

where C(k∗,H) is independent of the growth rate s∗, be-
cause the solutions for the displacement field (53, 54) do
not depend on s∗. The constant C(k∗,H) is always posi-
tive, and the product C(k∗,H)Λ is the inverse of the “wall
admittance” Y defined by Landahl [15]. The use of (31) for
the wall simplifies the calculations, since it is not necessary



Fig. 2. Roots of the characteristic equation (32) for various
values of Λ∗. The circles are the roots in the limit Λ∗ → ∞,
and the squares are the roots in the limit Λ∗ = 0. The broken
line shows the boundary between stable and unstable regimes.

to solve the equations for the fluid and the wall simulta-
neously in order to determine the growth rate. It should
be noted that C(k∗,H) is in general a complex quantity.
However, in the asymptotic limit considered here, where
the elastic term in the momentum equations for the wall
displacement field is large compared to the viscous and
acceleration terms, C(k∗,H) is a real quantity.

Using (31) for (σ̃∗rr/ũ
∗
r) and (27) for (p̃∗o/ṽ

∗
or), the ve-

locity conditions in (30) can be simplified to give the char-
acteristic equation for y:

i1/3Λ∗Ai(y, 1)−Ai(y,−1) = 0 (32)

where Λ∗ = [(2k∗)1/3ΛC(k∗,H)/4]. The parameter Λ∗ has
been introduced so that the solutions of (32) can be repre-
sented in terms of just one dimensionless parameter. This
parameter is proportional to ΛC(k∗,H), which is the ratio
of the normal stress and the normal displacement in the
wall material (see Eq. (31)). Since C(k∗,H) is a positive
function of k∗ and H, the coefficient Λ∗ can vary over the
range 0 ≤ Λ∗ ≤ ∞. The limit Λ∗ � 1 corresponds to
the rigid wall case, while the limit Λ∗ � 1 corresponds to
the case of a soft material which undergoes large displace-
ments due to stresses applied at the surface.

Equation (32) can be solved for y, and the growth rate
s∗ = (2ik∗)2/3y at the interface z∗ = 0. The wall modes
are stable for (π/2) < Arg(s∗) < (3π/2), which corre-
sponds to (π/6) < Arg(y) < (7π/6) as shown by the bro-
ken line in Figure 2. It is useful to first examine the roots
of the equation (32) in the limits Λ∗ � 1 and Λ∗ � 1.
In the limit Λ∗ � 1 ((G/ρV 2)� ε1/3), the equation (32)
reduces to:

ṽ∗wx = Ai(y, 1) = 0. (33)

The above equation is identical to that for the wall modes
in a rigid tube [14]. In this limit, the velocity of the elastic
surface is small compared to the fluid velocity in the wall
layer, and the wall can be considered rigid in the leading
approximation. There are multiple solutions for (33), all
of which are stable. The four pairs of solutions having the

lowest magnitudes are:

y1 = −4.107± 1.144i,

y2 = −6.798± 1.035i,

y3 = −9.031± 0.969i,

y4 = −11.015± 0.923i. (34)

The pair of solutions for y1 is identical to that reported
by Gill [14], but the other three differ slightly from Gill’s
results due to the use of an approximate formula by Gill
for evaluating these solutions.

The limit Λ∗ � 1 corresponds to (G/ρV 2) � ε1/3. In
this limit, the elastic stress in the wall material is small
compared to the pressure in the fluid, and it is necessary
to set the fluid pressure at the surface p̃∗o equal to zero
in the leading approximation. In this limit, equation (32)
reduces to:

Ai(y,−1) = 0. (35)

The roots of the above equation are on the negative real
axis, as shown in Figure 2, and the roots that have the
four lowest magnitudes are:

y1 = −1.019,

y2 = −3.248,

y3 = −4.820,

y4 = −6.163. (36)

It can be seen form Figure 2 that the above roots are also
stable.

Figure 2 also shows the trajectory of the roots as Λ∗ is
varied. There is a smooth transition from the roots in the
limit Λ∗ � 1 (36) to the roots in the limit Λ∗ � 1 (34). In
addition, the root with the lowest magnitude, y = −1.019,
in the limit Λ∗ � 1 does not correspond to a continuation
of any of the roots in the limit Λ∗ � 1, but diverges in
this limit. The reason for this behavior can be explained as
follows. The asymptotic behavior of this root in the limit
Λ∗ � 1 can be determined from the large y asymptotic
expansion for the Airy functions in equation (32):

lim
y→∞

Ai(y, 1) = exp [−(2/3)y3/2]

× (−0.282095y−3/4 + 0.240956y−9/4 +O(y−15/4)),

lim
y→∞

Ai(y,−1) = exp [−(2/3)y3/2]

× (−0.282095y1/4− 0.0411388y−5/4 +O(y−11/4)).
(37)

The ratio of these two terms is:

Ai(y,−1)

Ai(y, 1)
= y +

1
√
y

+O(y−2). (38)

Using the above expansion in (32), the limiting value of
the divergent root is:

y = i1/3Λ∗ − (i1/3Λ∗)−1/2 +O(Λ∗)−2. (39)



Using (24) for y at the wall (z∗ = 0), the growth rate is

s∗ = i(2k)2/3Λ∗ − (2k)2/3

×

(
1 + i
√

2

)
(Λ∗)−1/2 + O(Λ∗)−2. (40)

The above expression indicates that in the limit Λ∗ � 1,
there exists a root whose magnitude diverges proportional
to Λ∗ which was not captured by the earlier Λ∗ =∞ anal-
ysis for a rigid tube [14]. Further, it can be seen that as Λ∗

increases, this root approaches the broken line in Figure 2
which represents the boundary between stable and unsta-
ble modes. This implies that this solution becomes less
stable as the Λ∗ is increased, and the wall flexibility has
a stabilizing effect on this solution. This solution, which
is not a continuation of any of the rigid wall solutions is
the least stable solution in a flexible tube. The frequency
of this solution diverges proportional to Λ∗ and a decay
rate that decreases proportional to (Λ∗)−1/2 for Λ∗ � 1.
The physical reason for this can be explained as follows.
Consider the case Λ∗ � 1, where the normal stress σ̃∗rr in-
creases proportional to Λ∗. From the boundary condition
(30), it can be seen that the magnitude of the outer flow
velocity ṽ∗or increases proportional to the frequency |s∗| in
the limit |s∗| � 1 while the tangential velocity ṽ∗wx re-
mains of the same magnitude as the normal displacement
ũ∗r . From the condition for the outer flow (27), this implies
that there is an increase in the magnitude of the pressure
proportional to |s∗| as well. Thus, a balance between the
normal stress in the wall and the pressure in the fluid is
achieved when the magnitude of the frequency increases
proportional to Λ∗, and the solution corresponding to this
condition does not satisfy the zero normal velocity condi-
tion at the wall.

3 Conclusions

The growth rate of the wall modes in the limit of high
Reynolds number was determined using asymptotic anal-
ysis. A scaling analysis showed that the viscous stresses in
the fluid are of the same magnitude as the elastic stresses
in the wall for Λ = ε−1/3(G/ρV 2) ∼ 1, where G is the
shear modulus of the surface, V is the maximum velocity
in the tube and ε = Re−1 is a small parameter. The lin-
earized equations were solved using an expansion in the
small parameter ε. In the leading approximation, the ve-
locity fluctuations are confined to a wall layer of thickness
O(ε1/3) smaller than the radius of the tube, and the ve-
locity fluctuations in the outer region are O(ε1/3) smaller
than those in the wall layer. However, the pressure due
to the outer inviscid flow turns out to be O(ε−1/3) larger
than the pressure and the normal stress in the wall layer,
and is the dominant contribution to the normal stress in
the fluid. The inertial and viscous effects in the wall are
small compared to the elastic effects for Λ ∼ 1, and the
ratio of the normal stress and normal velocity in the wall
is only a function of the wave number of the perturbation
and the material parameters, and is independent of the
frequency of the perturbations.

It is useful to compare the characteristics of the wall
mode with those of the inviscid modes in a flexible tube
[6,7]. In the inviscid modes, the leading order flow in the
tube is inviscid, and the viscous dissipation does not influ-
ence the leading order frequency. The tangential velocity
boundary condition requires the presence of a wall layer
of thickness O(ε1/2) at the wall. In the wall layer, there is
a balance between the inertial term ρ∂tvi and the viscous
term η∂2

j vi, and the convective term ρvj∂jvi is small com-
pared to the other terms. The presence of the wall layer
results in a correction of O(ε1/2) to the leading order fre-
quency of fluctuations. In contrast, in the present case, the
growth rate of the perturbations is O(ε1/3) smaller than
the leading order frequency. As a consequence, the lead-
ing order equations contain the inertial, convective and
viscous term (see Eqs. (22, 21)), and the leading order
velocity fluctuation is confined to a wall layer of thick-
ness O(ε1/3) at the wall. The velocity due to the inviscid
flow is O(ε1/3) smaller than that in the wall layer, and the
inviscid flow is driven by the flow in the wall layer.

In the asymptotic analysis, the decay rate of the
perturbations depends on the wave number k and the

dimensionless number Λ∗ ≡ k∗1/3ΛC(k∗,H), where
(−ΛC(k∗,H)) is the ratio of the normal stress and normal
velocity in the wall material at the interface. In the limit
Λ∗ � 0, the elastic stress in the wall is large compared to
the fluid pressure. The tangential velocity boundary con-
ditions for the fluid reduces to a no-slip condition in this
limit, and the wall resembles a rigid surface. The equation
for the decay rate reduces to that obtained by Gill [14]
for the flow through a rigid tube. There are multiple solu-
tions for the decay rate, all of which have a negative real
part, indicating that the fluctuations are stable in this
limit. In the limit Λ∗ � 1, the normal stress in the wall
is small compared to that in the fluid, and the normal
stress boundary condition for the fluid reduces to a zero
normal stress condition. There are multiple solutions for
the decay rate in this limit as well, and all these solutions
have negative real parts, indicating that the fluctuations
are stable. The solution for the decay rate makes a smooth
transition between the two regimes. In addition, there is
a non-trivial solution in the limit Λ∗ � 1 which does not
converge to any of the rigid wall solutions in the limit
Λ∗ � 1, but whose frequency increases proportional to

Λ∗ and decay rate decreases proportional to Λ∗−1/2 in
this limit. This solution, which is the least stable mode in
a tube with large but finite elasticity, was not obtained in
earlier studies of rigid walled tubes [14].

Though this new mode of oscillation does not go un-
stable in the asymptotic analysis, the asymptotic analysis
fails as the parameter Λ∗ is increased, since the frequency
of the perturbations increases proportional to Λ∗, and it
is no longer justified to neglect the acceleration in the wall
material. The earlier numerical studies [8,9] on the con-
tinuation of the viscous modes, and a more recent numer-
ical analysis [16] carried out specifically to probe the wall
modes, show that a numerical continuation of this mode
does become unstable as the Reynolds number is increased
beyond a critical value for a given set of fluid and wall



parameters. This explains why there are unstable modes
in flexible channels and tubes with a boundary layer of
thickness O(Re−1/3) smaller than the characteristic di-
mension. In addition, this mode is not a continuation of
any of the rigid tube solutions, but is qualitatively differ-
ent, and this is the reason why a similar instability is not
observed in a rigid tube, where the wall modes (asymp-
totic and numerical) are always stable.

Appendix A

The solution for the components of the wall layer velocity
ṽ∗wx and ṽ∗wr and the pressure p̃∗w are obtained as follows
from the equations (19, 21, 22). An equation for the axial
velocity in the wall layer is obtained taking the derivative
of (21) with respect to z∗, and using (19) to express ṽ∗wr
in terms of ṽ∗wx:

[−(s∗ + 2ik∗z∗) + d2
z∗ ]dz∗ ṽ

∗
wx = 0. (41)

The above third order differential equation for ṽ∗wx has the
solution:

ṽ∗wx = C1 + C2Ai(y, 1) + C3Bi(y, 1), (42)

where

y = (2ik∗)1/3[(s∗/2ik∗) + z∗], (43)

Ai(y) and Bi(y) are the Airy functions which are solutions
of the equation (d2

y+y)ψ(y) = 0, and the generalized Airy
functions are given by (Drazin and Reid [10]):

Ai(y, 1) =

∫ y

∞
dy Ai(y), Ai(y,−1) =

dAi(y)

dy
, (44)

Bi(y, 1) =

∫ y

∞
dy Bi(y), Bi(y,−1) =

dBi(y)

dy
. (45)

The coefficients C1, C2 and C3 in (42) are determined by
matching the solution for the tangential velocity in the
wall layer with that in the outer region. It is shown a
little later that the tangential velocity in the outer re-
gion scales as ε1/3ṽwx, and the matching condition re-
quires that ṽ∗wx → 0 for z∗ → ∞. The Airy functions
Ai(y, p) are convergent in the limit y → ∞ only for
(−π/3) < Arg(y) < (π/3), and so it is necessary to choose
Arg(i1/3) = (π/6) in (24). In this domain, the Airy func-
tion Bi(y, p) diverges, and so the matching condition re-
quires that C1 = 0 and C3 = 0 in (42). With this, the
solutions for the velocity profiles and the pressure in the
wall layer are:

ṽ∗wx = Ai(y, 1),

ṽ∗wr = 2−1/3(ik∗)2/3[yAi(y, 1)−Ai(y,−1)],

p̃∗w = 0. (46)

The coefficient C2 in (42) has been set equal to 1 without
loss of generality. The expression for the tangential veloc-
ity in (46) is identical to that obtained by Gill [14] for the
flow in a rigid tube.

Appendix B

The linearized equations of motion for the wall material
(from Eqs. (5, 6)) are:

(dr∗ + r∗−1)ũr + ik∗ũx = 0 (47)

− dr∗ p̃+ [−ρε2/3s∗2 + (G+ ε1/3s∗ηs)

× (d2
r∗ + r∗

−1
dr∗ − r

∗−2 − k∗2)]ũr = 0 (48)

− ik∗p̃+ [−ρε2/3s∗2 + (G+ ε1/3s∗ηs)

× (d2
r∗ + r∗

−1
dr∗ − k

∗2)]ũx = 0 (49)

where r∗ = (r/R). Consistent with the magnitudes (28),
the scaled displacement and pressure fields in the elastic
medium are defined as ũ∗i = (ũi/R) and p̃∗ = p̃/(ε1/3ρV 2)
to obtain the following dimensionless equations:

(dr∗ + r∗
−1)ũ∗r + ik∗ũ∗x = 0 (50)

− dr∗ p̃
∗ + [−ε1/3s∗2 + (Λ+ εs∗ηr)

× (d2
r∗ + r∗

−1
dr∗ − r

∗−2 − k∗2)]ũ∗r = 0 (51)

− ik∗p̃∗ + [−ε1/3s∗2 + (Λ+ εs∗ηr)

× (d2
r∗ + r∗

−1
dr∗ − k

∗2]ũ∗x = 0 (52)

where ηr = (ηs/η) is the ratio of the viscosities of the fluid
and the wall material. In the leading order approximation,
the acceleration term proportional to ε1/3 and the gradient
of the viscous stress proportional to εηr can be neglected,
and the solutions for the displacement fields are:

ũ∗r =B1r
∗K0(k∗r∗) +B2K1(k∗r∗) +B3r

∗I0(k∗r∗)

+B4I1(k∗r∗) (53)

ũ∗x =(iB1/k
∗)[2K0(k∗r∗)− k∗r∗K1(k∗r∗)]

− iB2K0(k∗r∗) + (iB3/k
∗)[2I0(k∗r∗)

+ k∗r∗I1(k∗r∗)] + iB4I0(k∗r∗) (54)

p̃∗ =2Λ[B1K0(k∗r∗) +B3I0(k∗r∗)] (55)

where I0(k∗r∗), I1(k∗r∗), (K0(k∗r∗)) and (K1(k∗r∗)) are
modified Bessel functions, and (B1), (B2), (B3) and (B4)
are constants to be determined from the boundary con-
ditions. Two of these are fixed by the zero displacement
conditions ((ũ∗r = 0) and (ũ∗x = 0)) at (r∗ = H), while
the other two are determined from the conditions at the
interface.
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