
I N V A R I A N T S  O F  A N A L Y T I C  L O C A L  R I N G S  (1) 

by S. S. ABHYANKAR, T. T. M O H  and M. VAN DER PUT 

w I. Introduct ion.  

This is a sequel to [2]. In Theorems (4.2), (4.3), (5.5), (5.6), (5.7), (5.8), 
(5-9), and (6. I) we shall prove several results concerning groups of automorphisms 
of analytic local rings and the rings of invariants of such groups. In the statements 
of all these theorems except the last one, K is any valued field and Am is the ring of 
convergent power series in indeterminates X1, . . . ,  Xm with coefficients in K. In w 7 
we shall make some remarks concerning fields of definition and their relationship with 
fields of invariants. 

Terminology. - -  We shall use the terminology of [2, w 2]. By card we shall denote 
cardinal number. If  R is any ring and S is the integral closure of R in the total quotient 
ring T of R, then every automorphism of R can be extended uniquely to an auto- 
morphism of S, i.e., given any gEG(R) there exists a unique bEG(S) such that 
h(r) =g(r)  for all rER; (namely, since T is the total quotient ring of R, there exists 
a unique h'EG(T) such that h' (r )=g(r)  for all rER; since S is the integral closure 
of R in T, we must have h'(S) = S, and hence we get the unique hEG(S) by taking 
h(s) =h'(s)  for all sES); the resulting map of G(R) into G(S) will be denoted by IR, 
i.e., I R : G(R) -+ G(S) is the unique monomorphism such that for all gEG(R) and all 
rER we have IR(g)(r)=g(r);  note that 

Ia(G(R)) = {heG(S) : h(R)---- R}. 

w 2. Integral  dependance  and  conductor .  

Recall that if R is a ring and S is an overring of R then by definition, 
the conductor of R in S 

= { u E R  : useR  for all sES} 
= the largest ideal in P,. which remains an ideal in S. 

Lemma (2. x ). - -  Let R be a ring and let S be an overring of  R.  Let C be the conductor 
of  R in S. Then we have the following. 

(1) The work of Abhyankar and Moh was supported by the National Science Foundation under N.S.F.- 
GP-6388 at Purdue University. The work of van der Put was supported by the Netherlands Organization for 
the Advancement of Pure Science (Z.W.O.). 
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(2. x . x )  Let Q be any ideal in S, and let h e G ( S , Q )  and geG(R) 
h(r)=g(r) for all reR.  Then gsG(R,  Q n R ) .  

(~,.I .2) For any heG(S, C) we have h ( R ) = R .  

be such that 

(2. x. 3) Let Q be any ideal in R. Then QC is an ideal in S. Moreover, for any 
heG(S, QC) we have h ( R ) = R ,  and upon defining geG(R) by taking g(r)=h(r) for all 
reR,  we have that geG(R,  QC). 

(2. x-4) Let Q be any ideal in S, and let ueC. Then (uS)Q is an ideal in R.. Now 
assume that u is a nonzerodivisor in S, and let h~G(S) and g~G(R, (uS)Q) be such that 
h(r)=g(r) for all reR .  Then heG(S, Q) .  

(2. I .  5) Let Q be any ideal in R., and let u e C be such that u is a nonzerodivisor in S. 
Let heG(S) and gsG(R, (uP.)Q) be such that h(r)=g(r) for all reR.  Then heG(S, QS). 

Proof of (2. I. I). - -  Obvious. 
Proof of (2.1.2).  - -  For any heG(S, C) and any rER wehave  h ( r ) - - r e C c R ,  

and hence h(r)eR. Thus for any heG(S, C) we have h (PQcR;  by [2, (2.1)] we 
also have h - l e G ( S , C )  and hence h-I(R) c R ;  therefore h ( R ) = R .  

Proof of (2.1.3).  - -  Any element t in (QC)S can be expressed as a finite sum: 

t = ~ q i u i s  i with q i e Q , u i e C ,  sieS; now uisieC for all i, and hence teQC.  This 

shows that QC is an ideal in S. Since Q C c C ,  we have G(S, QC) cG(S,  C); therefore 
the rest now follows from (2. I. i) and (2. I .2). 

Proof of  (2.1.4).  - -  Clearly (uS)QcR.  and hence (uS)Qis an ideal in R. Now 
assume that u is a nonzerodivisor in S, and let beG(S) and geG(R,  (uS)Q) be such 
that h(r)=g(r) for all reR.  Given any seS we want to show that h ( s ) - - s e Q .  Now 
useR;  since geG(R,  (uS)Q), and u and us are elements in R, we get 

g(us) - -us=uq with q e Q ,  and g ( u ) - - u = u q '  with q'~Q. 

Now g ( u s ) -  us = h (us ) -  us 
= h(u)h(s)-- uh(s) + uh(s)-- us 
= h ( s ) ( h ( u ) - -  u) + u(h(s) - -  s) 

= h(s)(g(u)-- u) + u(h(s)-- s) 

and hence u(h(s)-- s) = (g(us)-- us)-- h(s)(g(u)-- u) 
= uq--  h(s)uq' 
=u(q--h(s)q ' ) .  

Since u is a nonzerodivisor in S, we must have h(s)--s =q--h(s)q'  and hence h( s ) - - s eQ .  

Proof of (2. I. 5). - -  We get a proof of this by making the following changes in 
the proof of (2.1.4) :  omit the first two sentences; in the third and the last sentences 
change Q to Q s ;  in the fourth sentence change G(R, (uS)Q) to G(R, (uR)Q). Alter- 
natively let Q ' = Q S ;  then Q' is an ideal in S; clearly (uR)Qc(uS)Q '  and hence 
geG(R,  (uS)Q'); therefore by (2.1.4) we get that heG(S, Q'). 

Lemma (~,. ",). - -  Let R be a ring and let S be the integral closure of R in the total quotient 
ring of R.  Let C be the conductor of R in S. Then we have the following. 
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(2.2.  x) I f  Q is any ideal in S then G(S, Q)CaIR(G(R))r  , QcaR) ) .  
(2.2.2) G(S, C) c IR(G(R)). 
(2 .2 .3 )  I f  Q is any ideal in R then QC is an ideal in S and G(S, QC) c IR(G(R , QC)). 
(2 .2 .4 )  Let Q be any ideal in S, and let ueC. Then (uS)Q is an ideal in R. I f  

moreover u is a nonzerodivisor in R, then IR(G(R , ( uS )Q) )cG(S ,  Q) .  

( 2 . 2 . 5 )  Let Q be any ideal in R, and let u E C be such that u is a nonzerodivisor in R.  
Then Ia (O(R , ( u R ) Q ) ) c G ( S ,  QS).  

Proof. - -  (2.2.  I), (2.2.2)  and (2.2.3)  follow respectively from (2. i .  i), (2.1.2)  
and (2.1.3).  (2.2.4) and (2.2.5) follow respectively from (2.1.4) and (2.1.5) by 
noting that in the present case every nonzerodivisor in IL is also a nonzerodivisor in S. 

Lemma ( 2 . 3 ) . -  Let R be a noetherian ring with r a d a { o } = { o  }. Let P1, . . . , P e  
be all the distinct prime ideals of height zero in R. Let T be the total quotient ring of R.  Let R* 
be a noetherian subring of T such that T is the total quotient ring of R*. (Note that then by 
[I, (18.9) ] we have that:  P1T, . . . ,  P ,T  are exactly all the distinct prime ideals in T, 
and they all have height zero; T is noetherian; (P1T) n R*, . (P~T) n R* �9 are exactly 
all the distinct prime ideals of height zero in R*; rada,{o } = { o } ;  and for I<_i<e 
we have ( P ~ T ) n R = P  i and ((P~T) n R * ) T = P i T . )  Let S be the integral closure of  R 

R*. in T.  Assume that R*c S and S is integral over Then we have the following: 

(2 .3 .x )  For I < i < e  we have 

I~I(G[S, (P~T) n S]) = G[R, P~], 

I~,~(G[S, (P,T) n S]) = G[R*, (P~T) n R*], 
- - 1  * and Ir~ (IR,(G[R , (P~T) n R*])) c G [ R ,  Pi]. 

(2 .3 .2 )  Assume that the integral closure of R/Pi in its quotient field is a finite (R/P~)-m0dule 
for I < i < e .  Let C be the con&ctor Of R in S. Then C contains a nonzerodivisor of R.  

(2 .3 .3 )  Assume that the integral closure o f R / P  i in its quotient field is a finite (R/P~)-module 
for I < i < e .  Also assume that the integral closure of R*/(PiT ) n R* in its quotient f ield is a 
finite (R*/(P~T) caR*)-module for I < i < e .  Let J be any ideal in R.  Then there exists an 
ideal J* in R* such that IR,(G(R*,J*))cIR(G(R,J))  and such that for l < i < e  we have: 

J* c PiT <r J c PiT. 
Proof of (2.3. I). - -  The second equation follows the first equation by interchan- 

ging R and R*. The last inclusion follows from the first and the second equations. 
To prove the first equation, given any geG(R)  let h =  IR(g ). What  we have to show 
is that: g(P~)=P~-*~h((P~T)nS)=(P~T)CaS. I f  h((P~T) n S ) = ( P ~ T ) n S  then 

g(P~) = h(P~) = h(R ca ((P,T) ca S)) = h(R) ca h((P,T) ca S) = R ca ((P,T) ca S) = P,. 

Conversely, suppose that g(Pi)-----Pi. Let h' be the unique element in G(T) such that 
h'(s)=h(s) for all seS. Since P1T, . . . ,  P ,T  are exactly all the distinct prime ideals 
in T and h' is an automorphism of T, we see that h ' ( P i T ) = P j T  for some j .  Now 

P, = g(e,) = h'(e,) = h '((e,T) ca R) = h'(e,T) ca h'(R) = (P~T) ca R = ej 
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and hence j = i .  Therefore 

h((P,T) n S ) =  h'((V,T) n S ) =  h'(P,T) n h ' (S)=(PIT)  n S. 

Proof of (2.3.2).  - -  The quotient ring of R with respect to Pi is clearly a field 
a n d h e n c e b y [ i , ( 1 9 . 2 1 . 2 ) ] w e g e t t h a t  C C P  i. This being so for I < i < e ,  weconclude 
that C contains a nonzerodivisor of R. 

Proof of (2.3- 3)- - -  Let C be conductor of R in S ; by (2.3.2) we can find ueC such 
that u is a nonzerodivisor in T, i.e., u6P~T for I < i <  e. Let C* be the conductor of R* 

�9 C* U* in S; by (2 3.2) we can find u*e such that is a nonzerodivisor in T, i.e., u*6PiT 

for I < i < e .  By (2.2.3) weknow t h a t J C  is an idea l in  S and G(S, JC) r  JC) ) ;  
since JecJ, we also have I~(G(R, J C ) ) c l R ( G ( R , J ) ) .  By (2.2.4) we get that 
(u*S)(JC) is an ideal in R* and IR,(G(R* , ( u*S) ( j c ) ) ) cG(S ,  JC).  Therefore upon 
letting J* = (u* S) (JC) we get that J* is an ideal in R* and Ia , (G(R* ,J*) )c lR(G(R,J ) ) .  
Now (uu*T)(JT) c J * T c J T ,  and uu*6PiT for I < i < e ;  therefore for I < i < e  we have: 

J* c P~T ~:> J r  PIT. 

Lemma ( 2 . 4 ) -  - -  Let R be an analytic local ring over a valued field K. Let S be an overring 
of R such that S is a finite R-module. Let N be any subset of S such that N is contained in every 
maximal ideal of S. Then R[N] is an analytic local ring over K. 

Proof. ~ We can find a finite sequence of elements Yl, . . . ,Ym in N such that 
K [ N ] = R [ Y l , - - . , Y m ] ;  now R [ y l , . . . , y J = ( R [ y ~ , . . . , y i _ a ] ) [ y ~ ]  for I<_i<m; conse- 
quently, by an obvious induction, the general case would follow from the case when N 
consists of  a single element y. Let X0, X1, X2, . . .  be indeterminates. Since R is 
an analytic local ring over K, there exists a K-epimorphism v : B ~ R .  where 
B = K [ < X 1 , . . . , X ~ > ]  for some nonnegative integer n. Let A = K [ < X o , . . . , X ~ > ]  
where we regard A to be an overring of B. Since y is integral over R, there exists a 
positive integer e and elements ao, . . . ,  a, in B with a, : I such that 

e 

(I) X v(ai)yi= o. 
i = 0  

Let d b e  the smallest nonnegative integer _~e such that adr ). Let q=e--d .  Then 
by the Weierstrass Preparation Theorem [i,  (lO.3) ] there exist elements b 0 , . . . ,  b~,, 
t 0 , . . . ,  tq in B such that b d = i = t q ,  b~M(B) for o < i < d ,  t0~M(B), and 

d q 
�9 i i (2) a' x ;  = b'X4) ( , - - X o t ' X ~  

Now V(to)r ). For every maximal ideal M in S we have M n R = M ( R )  and 
hence v(t0)$M; since by assumption y ~ M ,  we get that t o + t l y + . . . + t q y q $ M .  This 
being so for every maximal ideal N[ in S, we conclude that t o + ray + . . .  + tqy q is a unit 

in S; therefore by (I) and (2) we get that 

d 

Y~ v(b4)y i = o. 
i = 0  
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Whence, in particular, d>o .  Let 
d 

F----Z biX~ 
i = 0  

and let A' be the set of all polynomials of degree < d  in X 0 with coefficients in B. Then 
by [i,  ( io .3)] ,  for every l E A  there exists a unique rt~A' such that f - - r t e F A .  We 
get a map w : A ~ R [ y ]  by taking 

d--1 

w ( f ) =  i~=oV(f~)y' for all f E A  

where f o, . . . , J d - 1  are the unique elements in B with 
d--1 

r t = ~=ofX~. 

By [i,  ( io .3)  ] we also have that:  rt+t,=rt+rt,  and rft,--rtrl, eFB[Xo] for a l l f a n d f *  
in A. It follows that w(z)=v(z)  for all zeR,  w is a ring homomorphism of A into 
R[y]  and w ( A ) = R [ y ]  (note that if d = i  then we must have y e R ) .  Therefore 
R [y] is an analytic local ring over K. 

w 3" Automorphisms leaving a hypersurface fixed. 

Let K be a valued field, and let A = K [ ( X ) ] = K [ ( X o ,  . . . , X , ) ]  where 
X = (Xo, . . . ,  X,) are indeterminates and n>  o (the statement and proof of Lemmas (3. i) 
and (3.2) hold verbatim also for n = o). 

Lemma (3. i ) .  - -  Let B = K [ ( X ,  Y1, . . - ,  Ym)] 
(m>o).  Let V~=V~(X, Yt, . . . ,  Ym) EB with 

( I )  

Let DieM(A ) for 
that 

(2) 

Moreover, we have 

(3) 

and 

where Y1, . . . ,  Y,, 

Vi--Yie((Y~, . . . ,  Ym)B) z for i < i < m .  

(4) 

are indeterminates 

i < i < m .  Then there exist unique elements El, . . . ,  E m in M(A) such 

V~(X, El, . . . ,  E,,)--=D~ for i < i < m .  

(El, . . . ,  E , , )A= (D~, . . . ,  D,,)A 

Ei--Die((D1, . . . , D , , ) A )  2 for I < i < m .  

Proof. - -  In view of (I) we see that the value of the jacobian determinant  

O(V~ -- Da, ..., V~-- Din) 

O(Y~, . . . ,  Ym) 
(0 ,  . . . ,  O) 
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equals I, and hence by the Implicit Function Theorem [i,  (lO.8)] there exist unique 

elements El, . . . ,  E~ in 1V[(A) satisfying (2). By (I) and (2) we see that 

(D~, ..., DIn)At (E~, ..., E,,)Ac (D~, ..., Dm)A q-((E~, ..., E~)A)M(A) 

and hence by Nakayama's  lemma we get (3). By (1), (2), and (3) we get (4). 

We shall now give an alternative proof by using the Inversion Theorem instead 
of  the Implicit Function Theorem. In view of (I) we see that 

O(V,, . . . ,  Vm) 
(o, . . . ,  o) =1  

a(Y~, ..., Y~) 

and hence by the Inversion Theorem [I, (io. Io)] there exists 

W i = W i ( X  ,Y~, . . . ,Ym)eM(B)  for I<i<m,  

i < i < m  we have 

Y, =V~(X, W,(X, Y,, . . . ,  Ym), . . . ,  WIn(X, Y*, " ", Ym)) 

such that for 

(5) 

and 

(6) 

We can write 

Y i = w ~ ( x ,  v~(x ,  Vl, . . . ,  Y~), . . . ,  v A x ,  Y1, . . . ,  Ym)). 

w~ =w~ +w~l Y1 + . . .  + w~Ym +w; 

with W~eM(A),  W~yA, W~e((Y1, . . . ,  Ym)B)~; 

now in view of (I), by (6) we get that 

Yi=W,~q-WilY1 -t---- q-WimYm q- an element in ((Yj, . . . ,  Ym)B) 2. 

Considering the above as an equation between power series in Y1, . . . ,  Y,~ with coeffi- 
cients in the quotient field of K[ [X] ] ,  and comparing coefficients on the two sides we see 
that 

W~ = o, Wii = I ,  and Wij = o whenever j 4= i. 

In  other words, 

(7) 

Upon letting 

(a) 

Wi--Yie((Y1, . . . ,  Ym)B) 2 for l< i<m.  

E i = W i ( X  ,D1, . . . , D , , )  for I<i<m,  

we get elements E l , . . . ,  E,, in M(A);  upon substituting D 1 , . . . ,  D m for Y I , . . . ,  Wm 
in (5) we get (2); by (i), (2), (7) and (8) we get (3) and (4). Conversely, if El, . . . ,  E,,, 

are any elements in 1V[(A) satisfying (2) then upon substituting El, . . . ,  E m for Y1, �9 �9 ym 
in (6) we get (8), which proves the uniqueness. 

For the formal case the following lemma was given by Samuel [3]: 
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Lemma ( 3 . 2 ) . -  Let F = F ( X ) = F ( X o ,  . . . , X , ) e A .  Let Fi=OF/0X ~. Let 
DijeM(A ) for o < i ~ n ,  o < j < n .  Then there exist elements H o , . . . ,  H,~ in M(A) such 
that 

n n 

(~) F(Xo+Ho, . . . , X , + H , ) - - - - F + E  ~ D~jF~Fj 
i = o j = o  

and 

(2) Hi-- ~oDoFjE((Fo, . . . ,  F~)A)((Doo , Do, , . . . ,  D,,)A) 2 for o< i<n .  

Proof. - -  Let Zo , . . . ,  Z, be indeterminates. Then 

(3) F(Xo-~- Zo, . . . ,  X n - q - Z n ) = F -  ~- Z Z i F i - ~ V  t 
i = 0  

where V' is an element in K[ (X,  Zo, . . . ,  Z,~)] such that the order of V' in Zo, . . . ,  Z, 
is ~2 ,  and hence we can write 

fl n 
(4) V'---- ~3 ]~ V~j(X, Zo, . . . ,  Z,)Z, Zj 

i = o j = o  

with V~j(X, Zo, . . . ,  Z~)eK[(X, Zo, . . . ,Zn) ] .  Let Yoo, Y o i ,  ' '  " ,  Ynn be (n+I )  2 inde- 
terminates. Upon substituting 

~Y~sF8 for Zr, o ~ r ~ n ,  
8~0 

by (3) and (4) we get 

oYosFs, ., oY, sFs) Y~ Z V,j(X, Yoo, Yo~, . . . ,  Y,~)F, Fj (5) F(X~ .. X,~- l -8= =Fq-,=o~=o 

where Vii =Vij(X, Yoo, Yo,, ---,  Yn,) is the element in B = K [ ( X ,  Yoo, Yo,, . - . ,  Yn,)] 
given by 

n n n n 

V~j(X, Yoo, Yo~, . - . ,  Y~)=Y~j+  y' E V~(X, Y, YosFs, . . . ,  E Y~sFs)Yt~Y~ 
/ = 0 u = 0  s = 0  s = 0  

and hence Vo--Yoe((Yoo, Yoa, -- . ,  Y,,)B) 2 for o<i<n ,  o_~j<_n. 

By (3-I) there exist (nq-r) 2 elements Eoo , Eol , . . . ,  E,,  in M(A) such that 

(6) 

and 

(7) 

Let 

Vi~(X, Eoo , Eol , . . . ,  E,,,)= Dij 

E~-- D~je ((Doo , Do~ , . . . ,  D,,)A) z 

for o < i < n ,  o<_j<n, 

for o < i < n ,  o<_j<_n. 

n 

(8) H r =  ~oErsF 8 for o < r < n .  

Then Ho,.. . ,  H a are elements in N[(A) and upon substituting Er8 for Yr8 (o<r<n, o<_s<_n) 
in (5), by (6) and (8) we get (I). By (7) and (8) we also get (2). 
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Lemrna 

DF~ eM(A)  2 
g ( F ) = F ,  

and 

( 3 . 3 ) . -  Given F e A  let F i = O F / 0 X  i. Let D e M ( A )  be such that 

for  o < i < n .  Then there exists geGK(A , (DFo, . . . , D F , , ) A )  such that 

g(Xo)-- X o + DFIe (D2Fo, . . . ,  D2F,)A, 

g (X~) -- X, -- DFoe (D2Fo, . . . ,  D2F.)A, 

g(Xi)--  Xie (D2Fo, . . . ,  D2F,,)A for  2 < i < n .  

Proof. - -  Upon  taking 

Do1 = -- D, Doo = o = Doj for 2 < j <  n, 
Dlo = D, Dlj = o for I ~ j ~  n, 
Dij =O for 2 < i < n  and o < j < n ,  

by (3.2) we find elements Ho, . . . ,  H~ in 1V[(A) such that  

F (X o + Ho, . . . ,  X,~ + H~) = F 

and such that  the elements H0-t-DF~, H~--DF0,  H ~ , . . . ,  H ,  all belong to the ideal 
(D~F0, . . . ,D~F~)A.  In part icular  then H~e(DF0, . . . , D F ~ ) c M ( A )  2 for o < i < n ,  

and hence by [2, (2.I5)  ] we get a unique geGK(A ) such that  g ( X i ) = X i + H  i for 
o < i < n .  Now clearly g ( F ) = F ,  

g(Xo)-- X o + DFle  (D2Fo, . . . ,  D2F,)A, 

g(X~)--X~--  DFoe (D~Fo, . . . ,  D~F~)A, 

and g (X~.) --  Xie (D2Fo, . . . ,  D2F~)A 

o < i < n ,  

for 2 < i < n .  

by [2, (2.9) ] we see that  Since g(X~)--X i = H i e ( D F o ,  . . . ,  DFn) for 
geGK(A , (DFo, . . . ,  DF~)A). 

Lemma ( 3 . 4 ) . -  Let o + F s M ( A ) ,  L e a ,  E leM(A) ,  . . . ,  EdsM(A ) (d>o) ,  be such 

that L(0F/0Xo)r  for  I~jSd. Let PI, . . . ,  Pe be all the distinct ~trime ideals of  height 

one in A containing F. Let u be a positive integer. Then there exists an infinite subset G of 

GK(A , (LA) n M(A) ") n GK[A , P~] n . . .  n GK[A , Pe] 

with c a r d ( G ) > c a r d ( K )  such that for  all g e G  we have g ( F ) = F ,  and for  all g + h  in G 

we have ;for 
Proof. - -  Let J be the set of  integers I, . . . ,  d, and let J ' - - { j e J  : Ejg:o}. For 

every j e J '  let 7)---=ordAE j and let E~ be the unique nonzero homogeneous element of 
degree rj in K[X]  with Ej--E~eM(A)ri  +1. 

Clearly there exists an infinite set N of  pairwise coprime nonconstant  irreducible 
homogeneous elements in K[X0, X1] (namely, if K is infinite then { X 0 + k X  1 : k e K }  
is such a set; in the general case, upon  letting N i to be the set of all monic irreducible 

oo 

polynomials of degree i in K[X0] we clearly have that  i_l=JlNi is an infinite set, and hence 
O9 

I.J {X~f(X0/X~) : f (X0)en i}  is an infinite set of pairwise coprime nonconstant  irredu- 

cible homogeneous elements in K[X0, X1] ). Moreover, for any such N we have that  N 
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is an infinite set of pairwise coprime nonconstant  irreducible homogeneous elements 
in K[X] .  

Therefore, we can find a nonconstant  irreducible homogeneous element E, of some 
degree q>o ,  in K[X]  such that  for all j e J '  we have E~r  

Let w ~ : A ~ A / E j A  be the canonical epimorphism. 
We claim that  i f j  is any integer in J,  V is any element in A with wj(V) :t:o, k* is 

any nonzero element in K, and b is any nonnegative integer, then 

(i) ordwilA)w~( k*VEb ) -= bq + ordwj(A)w~ (V). 

This being obvious for j e J ' ,  suppose that  j e J '  and let v----ord~i/A)w~(V ). Then  there 

exists a nonzero homogeneous element V* of degree v in K[X]  such that  

wj(V) = w~(V*)-t- an element in M(wj(A)) ~+~. (2) 

By (2) we get 

(3) wj(k*VE b) = wj(k*V'E b) -t- an element in M(wj(A)) bq+v+l 

Suppose if possible that  ord~icA)wj(k*VEb)>bq+v. Then  by (3) we get that  

ordwjcA)w~(k*V*Eb)>bq+v; and hence there exists E~eA such that  

k*V*Eb_ 

Since k*V*E b is a nonzero homogeneous element of degree bq+v in K[X] ,  we must  
now have 

ordAE~=be-k-v--r j and k*V*Eb----E~E~ * 

where E~* is the unique nonzero homogeneous element of degree bq--I-v--r~ in K[X]  
such that  

E~-- E~'eM(A)bq+~-~j +1 . 

Now E is irreducible, E2r  and k*V*E%E~K[X];  consequently we must  have 
V*eE;K[X] ,  and hence V*=E;E~.* for some Ej*eK[X].  I t  now follows that  
V*--EjE *eM(A) and hence by (2) we get ordweA)wj(V)>v , which is a contradic- 
tion. This completes the proof  of (I). 

We can write 

(4) 
where 

(5) as>o,  

For all s :t: t we have 

F = F (a)a' . . . F  (e)"' 

F(~)~A, and F( ' )A=P8 for I < s < e .  

F(~)~F(t)A = 5 (F(t)A + M(A)") ,  
m = l  

and hence we can find a positive integer b* such that  

(6) F/~)q~F(~)A + M(A)b* whenever  s~et. 
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By assumption 

integer bo>b*+ u § i 

(7) 

Given any 

such that 

(8) 

w~(L(OF/OXo))4:o for I ~ j S d  , and hence we can find an 
such that 

boq>ordwi(A)w~(L(OF/OXo) ) for l__<j<__d. 

b>b o and any k~K, by taking D = k L E  b in ( 3 . 3 ) w e  find 

g~, beGK(A, (kLEb(0F/0Xo) , . . . ,  kLEb(OF/0X,))A) 

g~,~(r)=F, 

and 
clearly then 

(9) 

( IO)  

and 

gk, b(X~) --  Xt --  kLEb(OF/0Xo) e ((kLEb)2(OF/0X0) , . . . ,  (kLEb)2( OF/0X,))A; 

gk, bsGK(A, (LA) o M(A)"), 

gk, beGK(A, M(A)b*), 

( ,  i ) gk, b ( X l )  - -  X l  - -  kL ( OF / 0Xo)  E b ~ M (A)~bq ; 

in view of (4), (5) and (8) we see that there exists a permutat ion (H(I) ,  . . . ,  H(e)) of  
(1, . . . ,  e) and units f l ,  . . . , f ,  in A such that 

gk, b (F(81) = F(~I(81)f~ for l < s < e ;  

now in view (6) and (IO) we see that H ( s ) = s  for I < s < e ,  and then by (5) we get 

(i ~) gk, b e G K [A, el] n . . .  n G K [A, P,]. 

By taking V =- L(0F/OXo) in (i) we get that : i f j  is any integer with i<j< d, k* is 
any nonzero element in K, and b is any nonnegative integer, then 

(i 3) ord~ja)wj(k*L ( OF/OXo)E b) = b e + ordwj(A)w~ (L (OF/0Xo) ) . 

It  only remains to note that in view of (7), (i I) and (I3) we have the following: 
Let b and b' be any integers with b > b  o and b '~b  0. Let k and k' be any elements 
in K. Assume that either: b '=b and k'4=k, or: b'>b and k4:o. Then  

ord ~j(A)wj (g)~,b (X1) --  gk', b' (X~)) = bq -1- ordwj(A)w j (L ( OF / 0X0)) < Go 

and hence gk, b(Xl)--gk',b,(X1) CE~A. 

Lemma (3.5).  - -  Let v : A - + R  be a K-epimorphism where R. is an overring of K with 
radR{o}={O}, and K e r v = F A  with o=~FeM(A).  Let P1, . . . , P ~  be all the distinct 
prime ideals of height zero in R.. Let J be any ideal in R such that J contains a nonzerodivisor Of R. 
Assume that v( OF / OXo) is a nonzerodivisor in R. Then there exists an infinite subset G of 

G~(R, J)n GK[R, P1] n . . .  n G~[R, e,] 

with c a r d ( G ) > c a r d ( K )  such that for all g+h  in G we have g(v(Xl))--h(v(X~))r  ~ 

for i < i < e .  
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Pro@ - -  We can take L e A  such that v(L) eJ and v(L) is a nonzerodivisor of R. 
Now v-l(P,),  . . . ,  V--I(Pe) are exactly all the distinct prime ideals of height one in A 
containing F. We can take E ieM(A ) with EiA=v-~(Pi )  for l < i < e .  Clearly 

L(0F/aX0)q~E~A for I < i < e .  Therefore by (3.4) we can find an infinite subset G* of 

GK(A , L A ) n  GK[A , v-l(Pt)] n . . .  0 GK[A, V--I(Pe)] 

with ca rd (G ' )>ca rd (K)  such that for all geG* we have g ( F ) = F ,  and for all g+h  

in G* we have g(Xi)- -h(X~)r  for I < i < e .  Let w : GK[A , Ker v] --> GK(R ) be 
the homomorphism induced by v. Now G * c G  K[A, Ker v] and upon letting G=w(G*),  
in view of [2, (2.2), (2.4), (2.5)], we see that G is an infinite subset of 

GK(R, J ) n GK[R , P~] r a . . . n  GK[R, Pc] 

with ca rd(G)=card(G*)  > c a r d ( K )  and for all g Jeh in G w e  have g(v(X~)) - -h(v(X, ) )sP 
for I < i < e .  

w 4. S e p a r a b l e  g e n e r a t i o n .  

Let K be any valued field. Let Xo, Xl, X2, . . .  be indeterminates. For every 
nonnegative integer m let A m = K [ ( X 1 , . . . ,  Xm) ]. We shall tacitly use [2, (2.I4) ]. 

Lemma (4. x). - -  Let R be an analytic local ring over K with dim R = n > o  and 
radR{o}={o  }. Let P1, . . . ,  Pa be all the distinct prime ideals of height zero in R.  Ass,me 
that d i m R / P i = n  for I < i < a .  Let t i :R-+R. /P  i be the canonical epimorphism. Let J 
be an ideal in R such that J contains a nonzerodivisor of R. Assume that 

(') for I < i < a : R/Pi is analytically separably generated over K, i.e., equivalently, 
there exists a local K-monomorphism v i : An-+It./P i such that R/P i is integral over vi(An) and 
the quotient field of R/P~ is separable over the quotient field of vi(A,, ). 

Now, for i < i < a ,  let v i be any such and take any xiER with ti(xi)=vi(X1). Then 
there exists an infinite subset G of 

GK(R, J) n GK[R, P,] n . . .  n GK[R , P~] 

with c a r d ( G ) > c a r d ( K )  such that for all g . h  in G we have g(xi)--h(xi)r i for l < i < a .  

Proof. - -  Let T be the total quotient ring of R, and let S be the integral closure 
of R in T. 

By [i, (18.9) ] we see that:  PIT, . . . ,  PeT are exactly all the distinct prime 
ideals in T, and they all have height zero; (PIT) o R = P  i for I < i < a ;  T is 
noetherian; and if T '  is any noetherian subring of T with total quotient ring T then 
(P1T) n T',  . . . ,  (PAT)nT '  are exactly all the distinct prime ideals of height zero in T',  
((P,T) n T ' ) n . . . r a  ((PAT) n T ' ) = r a d T , { O } = { o } ,  and ( (P IT)c~T ' )T=P~T for l < i < a .  

For I < i < a ,  we have (TPi) n K = P i n K = { o  } and hence we can take an 

overring T i of K and a K-epimorphism wi : T ~ T  i with Ker w i =  PiT. By [1, (18.9)] 
we now see that Wl| �9 �9 �9 | : T ~ T I |  | is an isomorphism, and Tiis the quotient 
field of wi(R ) for I < i < a .  Let S~ be the integral closure of wi(R ) in T i for i < i < a .  
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Because of (') we have that the integral closure of R/P  i in the quotient field of R/P  
is a finite (R/Pi)-module for I ~ i ~ a, i.e., Si is a finite wi(R)-module for i ~ i ~ a. 
Therefore by [I, (I9.23) ] we see that S is a finite R-module and 

( I )  S t o w ;  1(81) r ,N Wa-l(Sa), 

Let t ~ : R / P i ~ T  i be the unique monomorphism such that t~ti(y)=w~(y) for 
all y e R .  Let v~=t~v~. Then for i < i < a  we have that: v~:A,--->T~ is a 
K-monomorphism; wi(xi)=v~(Xl) ; T~ is a finite separable algebraic extension of the 
quotient field of v'i(A~); Si is the integral closure of v~(A,) in Ti; and S i is a finite 
v~ (A,)-module. 

Let B be the quotient field of A n. Then  there exists a unique monomorphism 
qi : B--->Ti such that qi(y)=v~(y) for all yeA,~. Since T i is separable over qi(B), there 
exists o:t :zleTi such that Ti=q~(B)[z~]. Let di=[Ti:q~(B)], and let fi' (X0) be the 
monic polynomial of degree di in X 0 with coefficients in B such that upon applying qi 
to the coefficients off((X0) we get the minimal monic polynomial of z~ over qi(B). We 
can take elements z~j in an algebraic closure of B such that 

f((Xo) = (X0-- z i , ) . . .  (Xo-- zidi) for I < i < a .  

Since z'~4=o, . . . ,  Z'a~eo, we must have Zij:t:o for all i , j ;  consequently, since B is an 
infinite field, we can find nonzero elements b ~ , . . . ,  b a in B such that bizq4=bi, zi, j, 
for all i,j, i ' , j '  with i:l:i'. Now we can find o~ebeNI(A,) such that upon Jetting 

f~(Xo) = (bb,)a% ' (Xo/(bbi)) 
we have 

(2) 

Let zi=(q~(bb~))z~ 

f~(X0) - -  X~ie (M(A,)) [X0] for I < i < a .  

for I < i < a .  Then ft(X0) , . . . , fa(Xo)  are pairwise distinct 
nonconstant monic irreducible polynomials in B IX0] , and for I < i < a we have that 
T i =  qi(B)[z4] and upon applying qi to the coefficients of  f~(Xo) we get the minimal 
monic polynomial of zi over qi(B); by (2) we see that zieSi for I < i < a .  Let 

u i :B[X0] -+T  i be the unique homomorphism such that udXo)=z  i and ui(y)=qi(y ) 
for all y e B ;  then ui(B[Xo])=Ti,  Kerui=f(Xo)B[Xo] ,  and ui(y)=v~(y) for all y e A , .  

Let 
(3) F =f~(X0) . . .A(Xo)  

and consider the homomorphism 

u l | 1 7 4  a : B [ X o ]  ~ T I | 1 7 4  a. 

Since 3c1(Xo), . . .  ,fa(Xo) are pairwise distinct nonconstant monic irreducible polynomials 

in B [Xo] , we see that 

Ke r (u l |  | ---= FB [X0] and (ul@.. .  | [Xo])= T I |  | 

Since w l | 1 7 4 1 7 4  a is an isomorphism, we get a unique homo- 

morphism u : B[X0] -+T such that (w~| | = (U~| Qua)(y) for a l lyeB[X0].  
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It  follows that:  u (B[X0] )=T ;  Ker u=FB[Xo]  ; w d u ( y ) ) = 4 ( y  ) for all y e A ,  and all i 

with i < i < a ;  uis a K-homomorphism; and w~(u(Xo))=z ~ for I < i < a .  
Since zi is separable over ui(B), we have that  Of(Xo)/ONoCf~(Xo)B[X~] for 

I < i < a ;  by (3) we get 
a 

0v/0x0= ,=Z (Xo)( af,(Xo)/OXo)f,+ 

since fl(Xo) , . . .  ,fa(X0) are pairwise distinct nonconstant monic irreducible polynomials 
in B[X0] , we get that OF/OXo6f(Xo)B[Xo] for i < i < a ;  since u (B [X 0] )=T  and 
Ker u =ft(X0). . . f~(Xo)B[X0],  we conclude that u(0F/0Xo) is a nonzerodivisor in T. 

Let any Z e A  n [X0] be given such that u(Z) is a zerodivisor in T;  since u(B[Xo] ) = T ,  
there exists Z'EB[X0] such that u(Z ' )~eo=u(Z)u(Z ' ) ;  since K e r u = F B [ X o ]  , we 
must have Z'6FB[X0] ; we can find o+Z*EA n such that Z'Z*eAn[X0]; clearly 
Z'Z*r and hence u (Z 'Z*)4o ;  also u(Z)u(Z 'Z*)=o,  and hence u ( Z ) i s  a 

zerodivisor in u(An[Xo] ). We conclude that every nonzerodivisor in u(An[X0] ) remains 
a nonzerodivisor in T. Given any YEB[X0] , we can find o + Y * c A  n such that 

YY*EAn[Xo] , and then u(Y)u(Y*)eu(An[Xo] ) and u(Y*)eAn[Xo] ; since f (Xo)  is a 
nonconstant polynomial in B[X0] , we must have Y*$f(X0)B[Xo] for I < i < a ;  since 

Ker u=f l (X0) . . . fa(X0)B[Xo] ,  andfl(Xo),  . . . , f~(Xo) are pairwise distinct nonconstant 
monic irreducible polynomials in B[Xo] , we conclude that u(Y*) is a nonzerodivisor 
in u(B[X~]). Since u (B[X0] )=T  , it now follows that T is the total quotient ring 
of u(An[Xo]). 

For I < i < a  we have wi(u(A.[Xo]))=v~(An)[z~],v~(A.)r and z~eS~. There- 
fore wi(u(An[X0]))cS i for i < i < a ,  and hence by (i) we get u(An[X0] ) cS .  

Given any ssS, by (i) we have wi(s)sSi for i < i < a ;  since S i is integral 
over v~(An) and v~(A,)=wi(u(An)), there exists a nonconstant monic polynomial Ei(X ) 
in an indeterminate X with coefficients in u(A,) such that wi(E~(s))=o; let 
E ( X ) = E I ( X ) . . . E , ( X ) ;  then E(X) is a nonconstant monic polynomial in X with 

coefficients in u(An) , and wi(E(s)) = o  for I < i < a; consequently E(s) = o, and hence s 
is integral over u(An). This shows that S is integral over u(An) , and hence S is integral 
over u(A,[X0] ). 

Thus upon letting R*-----u(An[X0] ) we have that:  R* is a noetherian subring of T;  
T is the total quotient ring of R*; K c R * c  S; and S is integral over 1C. Whence, in 
particular, (P1 T) n R*, . . . ,  (Pa T) n R* are exactly all the distinct prime ideals of  height 
zero in R*. For i < i < a  we have that:  w~(R*)=v~(A,)[z4]cS 5 T i is the quotient 
field of v~ (An) [Zi] ; Si is the integral closure of v~ (An) in T i; and Si is a finite v'i (An)-module. 
It  follows that for I < i < a ,  the integral closure of R*/(P~T)nR* in the quotient field 

of  R*/(P~T) n R* is a finite (R*/(P~T) n R*)-module.  By (2 .3 .3 )  we can now find an 
ideal J* in R* such that J* r  for i < i < a ,  and 

(4) IR.(G~(R*, J*)) r IR(GK(R, J)) .  
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Let d = d l + . . .  +da, let A' be the set of all polynomials of degree < d  in X o with 
coefficients in A,,  and let A = K [ ( X 0 ,  . . . ,  X , ) ]  where we regard A to be an overring 
of A,.  By (2) and (3) we know that F is a monic polynomial of degree d in X 0 with 
coefficients in AN, and F - -X~(M(A, ) ) [X0] .  Therefore, by the Weierstrass Preparation 
Theorem [I, (IO.3)], for every f e A  there exists a unique rleA' such that f - - r t e F A .  
We get a map v : A ~ T  by taking v( f )=u(r t )  for all l e A .  By [I, (IO.3) ] we also 
have that: rt+t.=rt+rt,  and rtt.--rtrt.eFA,[Xo] for all f and f*  in A; and 

f - - r t eFA, [Xo]  for allfEA,[X0]. Since Ker u =FB[X0] and clearly (FB[Xo]) n A ' = { o } ,  
we deduce that: v ( f ) = u ( f )  for all feA,[X0] ; v is a ring homomorphism of A into T;  
Ker v = F A ;  and v(A)=u(A,[X0] ). Since v ( f ) = u ( f )  for all feA,[X0]  , we also get 
that w~(v(X1))=wi(u(X1))=v~(X1)=w~(xi) for I < i < a .  

Thus v : A ~ T  is a K-homomorphism such that: Ker v = F A ;  v(OF/OXo) is a 
nonzerodivisor in T;  v(A)=R*;  and wi(v(X1))=w~(x,) for i < i < a .  Let 

Go= GK(R, J) n GK[R, Pa] n...n GK[R , P j, 

and G0-----GK(R,J*) CaGK[K , ( P 1 T ) n R * ] n . . . o G K [ K  , (P,T) nR*]. 

By (3.5) we can now find an infinite subset G* of G o with card(G*)>card(K) such 
that for all g*4=h* in G* * * we have g (v(X1))--h (v(X1))r for i < i < a .  Let 

--1 * G-=--I R (IR,(G)). Then by (4) and (2.3. I) we see that G is an infinite subset of G O 
with card(G) > card(K). 

Finally, let any g 4= h in G and any i with I < i < a be given. We shall show that 
then g(xi)--h(xi)6P ~ and this will complete the proof. Let g'--=IR(g ) and h '=IR(h ). 
Then g'elR.(G*), h'~IR.(G*), and g'4:h'; consequently g'(v(X1))--h'(v(X1))(~PiT , i.e., 

(5) w,( g' ( v(Xl) ) ) -- wi( h' ( v(Xx) ) ) 4: o. 

Now g'eIR(G0) and h'~I~(G0) , and hence by (2 .3 . I )  we see that 

g'eGK[S, (P,T) n S] and h'~GK[S , (P,T) t~ S]. 

In  view of (I), we get a K-epimorphism w~ : S-+Si, with Ker w~=(PiT ) o S, by taking 
w~(y)=wi(y  ) for all yeS.  Let w~ : GK[S, Ker w~] -+ GK(Si) be the homomorphism 
induced by w~. Now 

w,(g (x,) - = ( g '  - -  h '  (x,)) 
= w~ (g'(xi)) -- w~ (h' (x,)) 

�9 ! t = w;(g') (x , ) ) -  (h) (w, 
= w~(g')(w~ (o(X~)))- w*~(h')(w~ (v(X~))) 
= w ~ ( g t ( v ( X 1 ) ) ) - -  W~ ( h t ( v ( X l ) ) )  

4:o by (5), 
and hence g(*3--h(*3r 

Theorem (4.2). - -  Let R be an analytic local ring over K with 
Q . ~ , . . . ,  Q~ (a:>o), be any distinct isolated primary components of {o} 
dim R/Qa . . . . .  dim R/Q.~. Let n = d i m  R / Q , .  Let P~-~radRQ~. 

d i m R > o .  Let 
in R such that 

Let t i : R - + R / P  i 

178 



INVARIANTS OF ANALYTIC LOCAL RINGS I79 

be the canonical epimorphism. Let 0~1 , . . . ,  O~b (b>o), be any finite number of ideals in R 
such that for I < i < a  and i<j<_b we have O~jcPi.  Assume that 

(,) there exists a K-epimorphism u : Aa-+R, for some d, such that u-l(Q~) is a symbolic 

power ofu-l(P~) for I < i < a .  

Also assume that 
(') for I < i < a: R/P i is analytically separably generated over K, i.e., equivalently, there 

exists a local K-monomorphism vi: A,--->R/P i such that R/P  i is integral over vi(An) and the 
quotient f ield of R/P~ is separable over the quotient f ield of v~(A,). 

Now, for I < i < a ,  let v~ be any such and take any x.ieR with ti(x~)=vi(X~). Then 
there exists an infinite subset G of 

b b a a 

n o (R, nj9 lo m,  ,01o [R, Q,] n g o m, P,] 

with c a r d ( G ) ~ c a r d ( K )  such that for all g 4 h  in G we have g(x~)--h(xi)r i for i < i < a .  
(For an intrinsic formulation of (*) see [2, (3.6)]. Note that (,) is automatically 

satisfied in case Qi- -P~ for i < i < a ,  because then we can take u to be any 
K-epimorphism Aa-~R. Also note that (,) is automatically satisfied in case 
endim R = n + i ,  because then we can take u to be any K-epimorphism hn+l-->R.;  

(see [2, (2. I6)]). Finally, note that if (Zl, . . . ,  Zm) is any basis of M(R) and i is any 
integer with I < i < a, then there exists an integer q with I <  q_~ m and an infinite 
subset G' of G with c a r d ( G ' ) ~ c a r d ( K )  such that for all g 4 h  in G' we have 
g(zq)--h(zq)~P~; namely, from the existence of  G, the existence of q and G' is easily 
deduced by using [2, (2.3) and (2.I1)] .)  

Proof. - -  Since Q1, . . . ,  Qa are isolated pr imary components of {o} in R, there 
exists an ideal Q i n  R. such that Q c ~ Q l n . . . n Q ~ = { o  } and QCP~ for I < i < a .  
Let J = e n Q ' t n . . . n O S b .  Then J n Q ~ c ~ . . . n Q ~ = { o }  and JCP~ for I < i < a .  We 
can take an overring R* of K and a K-epimorphism v : R-+R* with Ker v=P~ n . . .  n P~. 

Let J*=v(J). Let 
a 

Go---- GK(R, J) n01GK[R,  P~] %01G [R, q,], 
a 

and G o = GK(R* , J*) n 01GK[R* , v(P~)]. 

Let w :GK[R. , K e r v ] - + G K ( S  ) be the homomorphism induced by v. Then by 

[2, (4.4)] we have w(G0)=Go; note that clearly 

G K IN, P1] c~...  c~ G K IN, Pal C G K [R, Ker v] 

and hence it makes sense to talk about w(G0). Also note that, in view of [2, (2. i), (2.2)], 
we have G0CGK(R , Qj~) cGK[R , O~j] for I<_j<_b. Now J* contains a nonzerodivisor 
of R*, and hence by (4.1) there exists an infinite subset G* of G~ with card(G*)~card(K)  

such that for all g~:h in G* we have g(v(x~))--h(v(x~))r for r < i < a .  Since 

w(G0)=G0, for each geG* we can fix g ' e G  0 with w(g ' )=g;  now it suffices to take 

G = { g '  : g~G*}. 
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Theorem (4.3).  - -  Let R be an analytic local ring over K with dim R > o  and 
radR{o}={o }. Let PI, . . . ,  Pe be all the distinct prime ideals of height zero in R. Let T 
be the total quotient ring of R,  and let S be the integral closure of R in T.  

(Note that then (see [i,  ( i8 .9) ] ) :  P~T, . . . ,  P~T are exactly all the distinct prime 
ideals in T, and they all have height zero; (PiT) n R = P i  for I < i < e ;  T is noethe- 
rian; and if T '  is any noetherian subring of T with total quotient ring T then 
(P1T) n T',  . . . ,  (P,T) n T '  are exactly all the distinct prime ideals of height zero in T',  
((P1T) n T ' )  n . . . n  ((PET) nT')=radT,{O}={o}, and ( ( P I T ) n T ' ) T = P i T  for I < i < e .  

For I < i < e ,  we have (P~T) n K =  Pin  K = { o }  and hence we can take an overring T~ 
o f K  anda K-epimorphism w ~ : T ~ T  i with K e r w ~ = P i T .  By [i, (18.9) ] we now see 
that w~ |174 : T - - - ~ T I @ . . . |  e is an isomorphism, and T~ is the quotient field 
of wi(R ) for I < i < e . )  

Assume that 

(') for I < i < e : R / P  i is analytically separably generated over K, i.e., equivalently, 
there exists a local K-monomorphism v~ : A,i ~ wi(R), where ni = dim R/P  o such that wi(R ) 
is integral over v,(A,i), and T~ is separable over the quotient f ield of vi(A,i ). 

Now, for I < i < e ,  let v i be any such and take any s i t s  with wi(si)=vi(Xl). 

Let R '  be a subring of T.  Assume that: R' is noetherian; K c R' c S; S is integral over R';  
T is the total quotient ring of R' ;  and the integral closure of R ' / ( P I T ) n  R' in the quotient field 
of  R ' / ( P ~ T ) n R '  is a finite (R'/(P~T) nR')-module for I < i < e .  

(Note that in the presence of ('), in view of [I, (I 9.23)] we see that these assumptions 
on R'  are automatically satisfied in case R r  

Let J '  be an ideal in R', and let a be an integer with i < a < e .  Assume that 
d i m R / P  1 . . . . .  d imR/P~ and J ' r  for I < i < a .  Then there exists an infinite 
subset G of 

GK(R' , J ')  n GK[R' , ( P t T )  n R'] n . . .  n GK[R' , (P~T) n R'] 

with c a r d ( G ) > c a r d ( K )  such that for all g + h  in G we have IR,(g)(s~)--IR,(h)(si)~PiT 

for I < i < a .  

Proof. - -  By (2.3.3) we can find an ideal J in R such that J r Pi for I < i < a, and 

(I) IR(R, J) c I R, (R', J ' ) .  

Let 

and 

G o = G~:(R, J) n GK[R , t)1] n . . . n  GK[R , P,], 

G' 0 = GK(R' , J ' )  n G K [R', (P1T) n t('] n . . .  n GI~ [R', (P~ T) n R'].  

We can take xieR with wi(xi)=v~(X1) for i < i < a .  By (4.2) we can now find an 
infinite subset G* of G o with card(G*)>card(K)  such that for all g*~eh* in G* we 

have g*(xi)--h*(xi)r ~ for i < i < a .  Let G=I~,I(IR(G*)).  Then by (I) and (2 .3 . I )  

we see that G is an infinite subset of  G' 0 with card(G)_>card(K).  

Let any integer i with I < i < a and any elements g and h in G with g + h be given; 
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let g'=IR,(g ) and h '= I w( h  ). We shall show that g'(si)--h'(si)r and this will 
complete the proof. Clearly 

(2) wi(si) = wi(xi).  

Now g'=Ia(g*) and h'=Ia(h* ) where g* and h* are elements in G* with g*#h*; conse- 
quently g*(xl)--h*(xi)r since g'(xl)=g*(xi) and h'(xi)=h*(xi) , we conclude that 
g'(xi)--h'(xl)r i.e., 

(3) wi(g' (xi)) 4: w,(h' (xi)). 

By (2.3.I) we have IR(GK[R, Pi])CGK[S , (PiT) nS],  and hence g' and h' are in 
GK[S , (PIT) nS]. We get a K-epimorphism w~ : S~wi(S), with Ker w~=(PiT ) nS, 
by taking w~(s)=wi(s ) for all seS. Let w~ : GK[S , Ker w~] -+ GK(Wi(S)) be the homo- 
morphism induced by w~. Then 

* ! * t wi(g)(wi(s))=wi(g'(s)) and wi(h)(wi(s))=wi(h'(s)) for all seS; 

consequently by (2) and (3) we get that wi(g'(si))+wdh'(sl)), and hence 
g ' ( s i ) -  h'(si) CPiT. 

w 5. Perfect  f ie lds.  

Let K be any valued field. Let Xo, Xl, X2, . . .  be indeterminates. For every 
nonnegative integer m let Am=K[(X1,  . . . ,  Xm) ]. We shall tacitly use [2, (2. I4) ]. 

Lemma (5-x). - -  Assume that K is of characteristic p 4:o. Let 

V(Xo, . . . ,  X,) eK[(Xo,  . . . ,  X , ) ] ,  (n>o), 

be such that V(X0, . . . ,  X,)r  X~, . . . ,  X~]] and 
d 

V(Xo, . . . ,  v i ( x , . . . ,  

where d>o,  Vi(X~, . . . ,  X , )eM(K[(X1,  . . . , X , ) ] )  for I < i < d ,  and Vd(X~, . . . ,Xn)  +O. 
Then there exists an integer s with i < s < m, and positive integers ua , . . . ,  u s _ a ,  u~ + l , . . . ,  Un, 

such that upon letting Y~=X8 and Y t = X t  +X~'  for t=  i, . . . ,  s--  I, s+  i, . . . ,  n, we have that 

V(Xo, Y~, . . . ,  Y,)=D(Xo,  . . . ,  X,)W(Xo, . . . ,  X,) 

where D ( X o , . . . , X , )  and W ( X o , . . . ,  X,) are elements in K [ ( X o , . . .  , X , ) ]  such that 
D(o, . . . ,  o) +o, W(Xo, . . . ,  X,)r  . . . ,  X,_I,  X~, X~+~, . . . ,  X,]], and 

e 

W ( X o ,  . . . ,  X n )  = X ; - - ~ - / ~ I W I ( X o ,  . . . ,  X s _ l ,  X s + l ,  . . . ,  X n ) X ~  - i  

with e>o and WdXo, . . . ,X~_I ,  X8+1, . . . , X , ) e M ( K [ ( X o ,  . . . ,Xs_1 ,X ,+ l ,  . . . , X , ) ] )  
for I < i < e .  Moreover, i f  V(Xo, . . . ,Xn)  is irreducible in K[(X1, . . . , X , ) ] [ X o ]  then 
W(Xo, . . . ,  X,) is irreducible in K((Xo, . . . ,  X8_1, X~+I, . . . ,  X , ) ) [ X j .  
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Proof. - -  Since V(Xo, . . . ,  Xn)qIK[[Xo, X~, . . . ,  X~]], there exists an integer j 
with I < j < d  such that V~(X1, . . . ,  Xn)r  . . . , X ~ ] ] .  Now 

oo 

V j ( X l ,  . . . ,  Xn)---- • Ha(X1,  . . . ,  X,,) 
a = l  

where Ha(X1, . . . ,  X,)  is an element in K[X1, . . . ,  X,]  which is either zero or is homo- 

geneous of degree a. Since Vi(X1, . . . , X , ) ~ K [ [ X ~ ,  . . . , X ~ ] ] ,  we must have 

Ha(X1, . . . ,  X,)q~K[[X~, . . . ,  XPn]] for some a; let b be the smallest such value of a. 

Now we must have Hb(Xl, . . . ,  Xn)~K[X1,  . . . ,  X , _ l ,  X~, X ,+ l ,  . . . ,  Xn] for some x 

with I < s < n .  Since Vd(Xl, . . . , X , ) + o ,  by a standard argument [4, P- I47] we 
can find integers u t> I  for t = I ,  . . . ,  s - - I ,  s-t-I, . . . ,  n, such that upon letting Y~ = X ~  

and Yt- - - -Xt+X~ t for t = I ,  . . . , s - - I , S + I ,  . . . , n ,  we have that 

(i) Vd(Y~, . . . ,  Yn)r . . . ,  X~_~, X,+a,  . . . ,  X , ) K [ [ X a ,  . . . ,  Xn]]. 

We get an element V*(Xo, . . . ,  Xn) in K [ ( X o ,  . . . ,  X , ) ]  by setting 

v*(Xo, . . . ,  x , ) =  V(Xo, Y~, . . . ,  Y~). 

By (I) we see that 

(2) v*(xo, . . . ,  x , ) r  . . . ,  x._~, x.+~, . . . ,  X~)K[{Xo, . . . ,  X.]] 

and hence by the Weierstrass Preparation Theorem [i, (10.3)  ] we have 

(3) v*(Xo, . . . ,  x , ) =  D(Xo, . . . ,  X~)W(Xo, . . . ,  X~) 

where D(Xo, . . . ,  Xn) and W(Xo, . . . ,  Xn) are elements in K [ ( X o ,  . . . ,  X , ) ]  such that 

(4) D(o, . . . ,  o) * o  
e 

and W(Xo, . . . ,  X , ) = X ; - } -  _~IW~(Xo,= . . . ,  X~_~, X~+~, . . . ,  X , )X ;  -~ 

with e > o  and 

W,(X0, . . . ,  X,_~, X,+~, . . . ,  X ~ ) e M ( K [ < X o ,  . . . ,  X~_~,X,+~,  . . . ,  Xn)] )  

for 1 < i < e; by [ I, (I o. 3) and (lO. 7) ] we also know that if V(Xo, . . . ,  X,~) is irreducible 

in K [ ( X ~ ,  . . . ,  X , ) ]  [Xo] then W(Xo, . . . ,  X~) is irreducible in 

K(<Xo, . . . ,  X , _ I ,  X , + , ,  . . . ,  X~>)[X~]. 

Let E be the set of all polynomials of  degree < d  in X o with coefficients in 

K [ [ X  D . . . ,  X~]]. Let V~(X~, . . . ,  X~)eK[[X~,  . . . ,  X,] ]  be defined by setting 

V;(X~, . . . ,  Xn) = V{(Y~, . . . ,  Y~). 
d 

Then V (X0, . . . ,  X ~ ) =  V~(X~, . . . ,  X~)N~ -4 
1 

and V ~ ( X ~ , . . . , X ~ ) e M ( K [ [ X D . . . , X , J ] )  for I < i < d ;  consequently by the uni- 

queness part  of  the Preparation Theorem [I, (IO.3)] we see that 

E n  (v*(Xo, . . . ,  X , )K{[Xo ,  . . . ,  X , ] ] ) = { o } ,  
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and hence by (3) and (4) we get 

(5) E ~, (W(Xo, . . . ,  X , ) K [ [ X 0 ,  . . . ,  X.] ] )={o} .  

Since u t > I  for t----=I, . . . , s - - I , s + I ,  . . . , n ,  we see that 

Hb(Y1, . . . ,  Y,)--~Hb(X1, . . . ,  X ~ ) + t e r m s  of degree>b in (X1, . . . ,  X,)  

and hence 
~3 

V2(X~, . . . ,  X n ) =  Y~ H~(Y~, . . . ,  Y,) 
a = l  

b - - 1  

= Z Ha(Y~, . . . ,  Y , ) + H b ( X , ,  . . . ,  X,) 
a = l  

+ terms of degree>b in (X1, . . . ,  X,) ; 

since H,(Xj ,  . . . ,  X.)EK[X~,  . . . , X ~ ]  for I<_a<b and 

Hb(Xa, . . . ,  Xn) CK[X1, . . . ,  Ks_l ,  X~, K s + l ,  . . . ,  Xn] , 

we conclude that 

v ; ( x . . . . ,  X , ) r  . . . ,  Xs_~, X5 X~+~, . . . ,  X.]], 

and hence 

(6) 

I83 

ov;(xl, . . . ,  x . )  / a x e ,  o. 

Now OV* (X o, . . . ,  X ,) / aX e =,=Y~t ( OV* (X1, . . . ,  X,)  / OX 8) Xao - '  

and hence by (5) and (6) we get that 

(7) OV*(Xo, . . . ,  X~)/aX~r . . . ,  Xn)K[[Xo, . . . ,  X~]]. 

By (3) we have 

0V*(Xo, . . . ,  X~)/aX~ =(OD(Xo, . . . ,  X~)/OX~)W(Xo, . . . ,  X~) 

+ D ( X o ,  . . . ,  X~)(OW(Xo, . . . ,  X,) /aXe) 

and hence by (7) we get that 

aW(Xo, . . . ,  x . )  / a x e ,  o, 

i.e., W(Xo, . . . , X ~ ) r  ]. 

Lemma (5.2).  - -  Assume that K is a perfect f ield of  characteristic p + o ,  and let R 
be an analytic local domain over K with dim R = n > o .  Let T be the quotient f M d  of  R.  

Let (Xl, . . . ,  x~) be a system of  parameters of R ,  let R o = K [ ( x  D . . . ,  x , ) ] ,  and let 
T o = K ( ( x l ,  . . . ,  xn)).  Let z e M ( R )  be such thateither: (i) z ~ T  p, or: (2) z is inseparable 
over T o. Then there exists a basis (Zl, . . . ,  zn) of  M(Ro) such that (Z, Q, . . . ,  Z~) is a system 

of  parameters of  R and Zl is separable over K((z ,  z2, . . . ,  z,~)). 

Proof. - -  Let 

f(Xo) = X ~ + f ~ X ~ - l +  - . -  + fe ,  with f e T o ,  
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be the minimal monic polynomial of z over T 0. Then f e M ( R o )  for I < i < d ,  and 
fa4=o. Let V~(X1, . . . , X , )  be the unique element in K[(X1,  . . . , X n > ]  such that 
Vi(Xl, . . . ,  x,)=f~, and let 

d 

�9 X . ) X o  �9 v ( x 0 ,  =2v (xl, . . . ,  

Then V ( X o , . . . , X , ) ~ K [ ( X o ,  . . . , X n > ] ,  V , ( X ~ , . . . , X n )  e M ( K [ ( X ~ , . . . , X , ) ] )  for 
I < i <  d, Va(X~, . . . ,  X,)  ~eo, and V(X0, . . . ,  X,) is irreducible in K[<X1, . . . ,  X,}]  [Xo]. 

Suppose if possible that V(X0, . . . ,  X,) e K [ [Xo, XI ~, . . . ,  X~]]. Since K is perfect, 
by [I, (24. i)] we then have f(Xo)eRoP[Xo]. If  also f(Xo)~To[Xo p] then we would 
get f(X0)l/peTo[Xo] and f (Xo)=  (f(Xo)l/v) p, which would contradict the fact thatf(X0) 
is irreducible in T0[X0]. Consequently, f(X0)r and hence z is separable 
over T 0. Therefore zCT p. Now z ~/p satisfies the equation 

+Z1/  + . . .  = o 

of degree d with coefficients f l l /P , . . . , fd  i/p in To, and hence 

[To(Z 1/,) : T0] < d =  [T0(z) :To]. 

Consequently zl/PeTo(z)cT, and hence z ~ T  v. This is a contradiction. 

Thus we must have V(Xo, . . . ,  X,,)r X v, . . . ,  XV]]. Therefore by (5. i) 
we can find s, ui, . . . , % _ 1 , % + 1 ,  . - . , % , Y 1 ,  - . . , Y n ,  D , W , e ,  Wt, . . . , W ,  as des- 
cribed there. Let y ; = % ,  and y ~ = x  t -x~t  for t = I , . . . ,  s - - I , S + I ,  . . . , n ;  let 

f ' = W ~ ( z , y ' ~ ,  . . . , y ; _ ~ , y ; + ~ ,  . . . , X )  for I < i < e ;  and let 

f '(x~) = x;  + f ~ ' x ; - l + . . .  +f~'. 

Then (y;, . . . ,y~) is a basis of M(Ro) , and f ' ( y ; ) = o .  It  follows that 

(z ,y; ,  . . . ,Y ; -~ ,Y '8+I ,  . . . ,Y~)  

is a system of parameters of R, a n d f ' ( X , )  is the minimal monic polynomial o f y '  s over 

K((z , y '~ ,  . . . , Y ' , - I , Y ; + I ,  . . . ,Y ' ,>) .  Since 

W(X0, . . . ,  Xn)r . . . ,  X~_~, X~, X~+a, . . . ,  X~]], 

l ! l t we also have thaty'~ is separable over K ( ( z ,  y j ,  . . . , Y s - ~ , Y ~ + I ,  �9 �9 .,Y~>). It  now suffices 
r ! t 

to take (Zl, " " ., Zn)=(Y],Y' i ,  " . ",Y~--l,Y~+i, " " ",Y,)" 

Lemma ( 5 - 3 ) .  - -  Assume that K is a perfect f ie ld  of  characteristic p + o, and let R be an 

analytic local domain over K with dim R = n > o .  Let T be the quotient f ield of  R ,  

let (Xl, . . . ,  x,) be a system of  parameters of R such that T is separable over K((xl ,  . . . ,  x,>), 
and let zelVI(R) be such that z C T  p. Then there exists a basis (Zl, . . . ,  Z,) of  

M(K[(x l ,  . . . ,  x,>]) such that (z, z2, . . . ,  z , )  is a system of  parameters of R and T is separable 

over K((Z, Z2, . . . ,  Z,>). 
P r o o f . -  By (5.e) there exists a basis ( z l , . . . ,  z,) of M ( K [ ( x l , . . . ,  x,>]) such that 

(z, z2, . . . ,  z,) is a system of parameters of R and z~ is separable over K((Z, z2, - . . ,  z,>). 
It  follows that T is separable over K((Z, z2, . . . ,  z,>). 
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Lemma (5 .4) .  - -  Assume that K is perfect, and let R be an analytic local domain over K.  
Then R is analytically separably generated over K.  

Proof. - -  Let n = dim R, T = the quotient field of R, and p = the characteristic 
of K. We have nothing to show if either p----o or n = o .  So suppose that p + o  and 

n>o .  In [I, (24.5)] we have given a proof  in this case under the additional assumption 
of K being infinite. As an application of (5- 2) we shall now give a proof  which is inde- 
pendent  of  this additional assumption. Namely, it suffices to show that given any system 
of parameters (xl, . . . ,  x~) of R such that T is inseparable over K ( ( x l ,  . . . ,  x,~)), there 

exists a system of parameters (zl, . .  -, z,) of R such that 

(i) IT : K((Z~, . . . ,  Z , ) ) ] ,<  [T : K((x~, . . . ,  x,))]~ 

with 
height 
in T.  

where [ ]i denotes the degree of inseparability. So let (x~, . . . ,  x~) be any given system 
of parameters of R such that T is inseparable over K(<xl,  . . . ,  x~>). We can take 

z t eM(R)  such that Zl is inseparable over K(<xl, . . . ,  xn)), and then by (5.2) we can find 

a basis (z, z2, - . - ,  Z,,) of  M ( K [ ( x l ,  . . . ,  x,~)]) such that (Zl, z~, . . . ,  z,) is a system 
of parameters of R and z is separable over K ( ( z l ,  z2, . . . , z n ) ) .  Now we clearly 
have (I). 

Theorem (5.5)-  - -  Assume that K is perfect, and let R be an analytic local ring over K 
dim R >  o and radR{o} = {  o}. Let P~, . . . ,  Pe be all the distinct prime ideals of 
zero in R.  Let T be the total quotient ring of  R,  and let S be the integral closure of R 

Note that then (see [1, (18.9)]) :  PtT,  . . . ,  PeT are exactly all the distinct prime 
ideals in T, and they all have height zero; (PiT) n R = P i  for I < i < e ;  T is noethe- 
rich; and if T '  is any noetherian subring of T with total quotient ring T then 

(P1 T) n T',  . . . ,  (PET) n T '  are exactly all the distinct prime ideals of height zero in T', 

((P1T) n T ' )  n . . . n  ((PET) nT')----radT,{o}={o},  and ( ( P ~ T ) n T ' ) T = P ~ T  for i < i < e .  
For I < i < e, we have (P~T) n K = P~ n K = { o } and hence we can take an overring T~ 

of K and a K-epimorphism w i : T - + T  i with Kerw~=P~T.  By [I, ( 1 8 . 9 )  ] w e  n o w  see 

that w l | 1 7 4  e : T - + T I | 1 7 4  e is an isomorphism, and T i is the quotient field 

of  w~(R) for I < i < e .  

Let Si be the integral closure of w~(R) in T i for I < i < e. By (5.4) we know that R/Pi  
is analytically separably generated over K for x < i < e ,  and hence Si is a finite 

w~(R)-module for I < i < e ;  consequently by [I, (19.23), (20.6)] we see that S is a 
finite R-module,  S = w~- ~ ($1) n . . .  n w 71(Se) ' and S~ is a local domain for I < i < e. 

Let R'  be a subring of T.  Assume that: R'  is noetherian; K c R ' c S ;  S is integral 
over R' ;  T is the total quotient ring of R' ;  and the integral closure of R' / (P iT)  n R '  in the 
quotient f M d  of R'/(P~T) n R '  is a finite (R'/(P~T) nR')-module for l < i < e .  

(Note that, in view of what we have said above, these assumptions on R '  are auto- 

matically satisfied in case R c R ' c S . )  

Let K'  be the integral closure of K in T,  and let K i be the integral closure of K in Ti for  
i < i < e. Then we have the following. 
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(5"5" I )  K i is a coefficient field of SJor  i < i < e ,  and K ' = W l l ( K 1 )  ra . . .nw~- l (K, ) .  
Given any elements xl, . . . ,  xe in S, there exists y e s  such that for I < i < e  we have: w~(y)r o 
and i f  wi(xi) CK~ then wi(y ) = w,(xl). 

(5.5.~,)  Let J' be an ideal in R',  and let a be an integer with i < a < e .  Assume that 
dim R./P 1 . . . . .  d im R/P~ and J ' r  PiT for ~<_i~a. Let any elements xl, . . . ,  x a in S 
be given, and let W be the set of all integers i with i < i < a such that w~(xi) CK i. Now take 
any elements yx, . . . , y~  in S such that w~(yi)r i for I < i < a ,  and w~(yi)=w~(x~) for all 
i e W  (note that  by (5.5-x) we can actually find y e s  such that  w~(y)r i for ~<i<e ,  
and w~(y)= wi(xi) for all ieW).  Then there exists an infinite subset G of 

GK(R' , J ' )  n GK[R' , (P~T) n R'] n . . . n  GK[R' , (Pe T) ~ R'] 

with c a r d ( G ) > c a r d ( K )  such that for all g~eh in G we have IR,(g)(yi)--Iw(h)(yi)r  

for i < i < a ,  and Iw(g)(xi)--Iw(h)(xi)r  for all JeW. 

(5 -5 -3 )  Let J' be any ideal in R'  such that J' contains a nonzerodivisor of R'.  Then 

Inv  GK(R' , J ')  n GK[R' , (PIT) n R']  n . . . n  GK[R', (P,T) n R'] o K ' .  

Pro( ( (5.5.  i).  - -  By Hensel's l emma [I, (20.6)] we see that  K i is a coefficient 
field of S i for I < i < e. 

To show that  K ' =  w~-l(K1) n . . .  n w~-l(K,), let any t e T  be given. I f  t eK '  then 
clearly wi(t)eK i for i < i < e ,  i.e., tew~l(K1) n . . .nw-e- l (K, ) .  Conversely suppose 
that  tewi-l(K~) n . . . n w ~ - l ( K , ) ;  then wi(t)eK i and hence there exists a nonconstant  
monic polynomial  f ( Z )  in an indeterminate  Z with coefficients in K such that  
wi(f~(t))=o;  let f (Z)--=f~(Z) . . . f~(Z);  then f (Z)  is a nonconstant  monic polynomial  
in Z with coefficients in K, and w~( f ( t ) )=o  for i < i < e ;  consequently f ( t ) = o ,  and 
hence t eK ' .  

Finally, let any elements x l , . . . ,  x e in S be given. Now S i is a local domain  
with d im S i = d i m w i ( R ) > o  and hence we can find x 'eS  i with x~r i. Since 
S=w~-l(S1) n. . .nw~-~(S~),  there exists a unique y e S  such that  for I < i < e  we have: 
wi(y)=wi(xi) if  wi(x~)~Ki. , and w i ( y ) = x  ~ if wi(xi)eKi. 

Proof of (5 .5 .2) .  - -  Let R * = R [ N ]  where 

N = n . . .  , ,  wT (M(s0)). 

Now w l | 1 7 4  e : T--~ T I | 1 7 4  is an isomorphism, S=w~-~(S1) n . . . n w ~ - l ( S , ) ,  
and S i is a local domain  for I < i < e ;  consequently by [I, (18.8)] we see that  
wi(N ) ----- M(S~) for I < i < e, and N = the intersection of all maximal  ideals in S; whence, 
in particular,  R c R * c S .  Since S is a finite R-module,  by (2.4) we now get that  R* 
is an analytic local ring over K. I t  follows that :  T is the total quotient  ring of R*; 
S is the integral closure ofl~* in T ;  (PIT) n R * , . . . ,  (PET) nR* are exactly all the distinct 
pr ime ideals of height  zero in R*; ((PIT) r for i < i < e ;  T ~ = t h e  quotient  
field ofwi(R* ) for i < i < e ;  and for I < i < e  we have that  w~(R*) is an analytic local 
domain  over K with d im wi(R*)--~dim R / P  i and wi(M(R*))=M(w~(R*))----M(S~). 
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Also note that by (5-4) we know that R*/(P~T)n R* (i.e., wi(R*)) is analytically sepa- 
rably generated over K for I < i < e. 

By (5.5. i) we know that K i is a coefficient field of S~ and hence there exists a unique 
kicK i such that wi(y~)--kieM(S~); note that now o.wdy~)--ki~M(S~)=M(wdR*)) 
for I< i<a .  

Let n = d i m R / P 1 ;  note that then n > o  and dim wi(R*)=n for I< i<a .  Let p 
be the characteristic exponent of K, i.e., p = I if K is of zero characteristic, and p = the 
characteristic of K if K is of  nonzero characteristic. We claim that for every i with I < i < a, 
there exists a nonnegative integer bl and a local K-monomorphism v~ : A ~ w i ( R *  ) such 

that wi(R* ) is integral over vi(An) , T i is separable over the quotient field of vi(An) , and 

(I) v~(X~)=w~(y~)--k i where q~=pbl. 

Case o f p = i . -  Upon letting Zit= wi(Yi)--k~ we now have that wi(IC)/zilwi(R* ) is 
a local ring of dimension n - -  I, and hence we can find elements z42, �9 �9 z4, in M(wdR*)) 
such that (Z~l, - . . ,  zi,) is a system of parameters of wi(t(*); it suffices to take b i = I  
and v~ : A,~--~w~(IL*) to be the unique K-homomorphism with v~(Xj)=z;~ for I ~ j < n .  

Case o f p + I .  - -  Now S i is integrally closed in Ti, o+w~(y~)--k~eM(Si) , and 
M(Si)m={o}; consequently there exists a unique nonnegative integer b i such that 

upon letting q~=pbi and z~l=(w~(yi)--k~) 1/qi we have that z~M(S~)  and z~r 
since M(S~)=M(w~(t~*)), we have z~telV[(w~(I(*)); now by (5.3) and (5.4) we can 
find elements z4z, . . - ,  Z~n in 1V[(wi(R.*)) such that (z4~, . . - ,  z~) is a system of parameters 
of w~(R.*) and T~ is separable over K[(z4~, . . . ,  zi,~}]; it suffices to take vi : A,-+wi(R*) 
to be the unique local K-homomorphism with v~(Xj)=z~j for i < j ~ n .  

This completes the proof of the claim. For I < i < a  we can take sitS with 

= 

Upon taking R* for R in (4.3) we now find an infinite subset G of 

GK(R', J ')  ~ GK[R', (P1T) n R ' ] o . . ,  n GK[IL', (P~T) n R'] 

with c a r d ( G ) > c a r d ( K )  such that for all g +h  in G we have Iw(g ) (s~)-- Iw(h ) (s~) q~P~T 
for ~ < i < a. Henceforth let i be any integer with i < i < a, let g and h be any elements 
in G with g+h, and let g ' = I a , ( g  ) and h'=Iw(h ). We know that then 
g'(s~)--h'(s~)(~P~T, i.e., 

(3) wdg'(s,)), 

We want to show that:  g'(yi)--h'(y4)r and if 
Thus, what remains to be proved is that 

(4*) w~(g'(y~) ) * w~(h'(y~) ), 

i~W then g'(x~)--h'(x~)(~P~T. 

and 

(5*) if w~.(y~)=w~(x~) then w~(g'(x~)) +w~(h'(x~)). 
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Now wi(S)=S i and hence we get a K-epimorphism w~:S-+Si,  with 
Ker  w~=(PiT) nS,  by taking w~(s)=wi(s  ) for all seS. Let w~ : GK[S, Ker  w~] ~ GK(Si) 
be the homomorphism induced by w~. Now g ' = I  w(g) and h ' = I  w(h), and g and h 
are in GK[R' , (PIT) n R'] ; hence by (2.3.  i) we see that g' and h' are in GK[S , (PIT) n S]. 
Let g*= w*i(g') and h*= w*l(h'). Then 

g*eGK(Si) and wi(g'(s))=g*(w~(s)) for all seS, (6) 

and 

(7) h*~GK(S~) and w~(h'(s))=h*(w~(s)) for all seS. 

By (2), (3), (6) and (7) we get that 

(8) g*(v~(X~)), h*(v,(Xl) ). 

In view of (6) and (7) we also see that (4*) and (5*) are equivalent to asserting that: 
g*(w~(yi)) 4:h*(w~(y~)). We now proceed to show that 

(9*) g*(w,(y,) ) - -  h*(w~(yl) ) . o, 

and this will complete the proof. 

Now vi(X1)~IV[(w~(R*))=M(S~) ; since g* and h* are automorphisms of S~, we 
have g*(M(Si) ) ---= 1V[(S~) and h*(M(Si) ) -= M(Si) ; consequently 

g*(vi(X~))eM(S,) and h*(v,(Xl))eM(Si). 

Therefore by (8) we get that 

o 4:g*(v,(X1) ) - -  h* (vi(Xl)) eM(S,). ( IO)  

Let 

Then by (I) 

(ii) 

Now 

Z g*(vi(X i)) * ,i = - - h  ( v , ( X l ) ) .  

g*(w~(yi) ) - -  h*(w~(y~) ) = Z + g*(k~) - -  h*(ki). 

Z = (g*(vi(X1)) -- h*(v~(Xl))) qi 

and hence by (IO) we get that 

(I2) o 4:ZeM(Si).  

Now K i is the integral closure of K in Si, and g* and h* are K-automorphisms of S~; 
consequently we must have g * ( K i ) = K  i and h*(Ki)=Ki;  therefore g*(k~)eK~ and 
h*(ki) sKi,  and hence 

(13) g*(k~)--h*(k~)eK~. 

By (5-5. I) we know that K i is a coefficient field of S~; therefore by ( I i ) ,  (I2) and (13) 
we get (9*). 

Proof of  (5.5.3).  - -  Follows from (5.5.1)  and (5-5.2).  
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Theorem ( 5 . 6 ) .  - -  Assume that K is perfect, and let R be an analytic local ring over K 

with dim R > o .  Let Q1, . . . ,  Q ,  (a>o) ,  be any distinct isolated primary components of  {o} 
in R such that dim R./Q~ . . . . .  dim R / Q , .  Let P~=radRQ ~. Let 0~1, . . . , O~b (b >o) ,  

be any finite number of  ideals in R. such that for  I < i < a  and I < j < b  we have O~jCP i. 

Assume that: 

( , )  there exists a K-epimorphism u : Ad-+R , for  some d, such that u- l (Qi) ,  is a symbolic 

power of  u -  1 (Pi) for  i < i < a. 

Let any elements xl, . . . ,  x a in IV[(R,) be given. Clearly there then exist elements y l ,  . . .  ,Ya 

in M(R) such that for  I < i  < a  we have: yiCPi, and i f  xiCP i then yi-=-- x~; now let y l ,  . . . , y ~  

be any such. Let W be the set of  all integers i with x < i < a such that x~r Pi. Then there exists 

an infinite subset G of  
b b a a 

fl GK(P'-, Q~) n 9~GK[R, Qj] ra,91GK[R, Q.i] nf]xGK[R, P,] 
j = l  "= = 

with ca rd (G)~ca rd (K)  such that for  all g ~ h  in G we have g(yi)--h(y~)r  ,for I < i < a ,  

and g(x i ) - -h(xOCP i for  all i e W .  

(For an intrinsic formulation of (,) see [2, (3.6)]. Note that (,) is automatically 
satisfied in case Q i = P i  for i<i<a, because then we can take u to be any 
K-epimorphism Aa-+IL. Also note that (,) is automatically satisfied in case 
e m d i m R = n + i  where n = d i m  R/Q1,  because then we can take u to be any 
K-epimorphism An+I-+R.; see [2, (2.I6)].)  

Proof. - -  Since Q~, . . . ,  Q~ are isolated primary components of {o} in R, there 
exists an ideal e i n  R. such that Q m Q ~ m . . . m Q a = { o }  and a c P i  for i < i < a .  

Let J = Q m O ~ l m . . . m o ~ b .  T h e n J r a Q l m . . . m Q ~ = { o }  and JCP~ for I < i < a .  We 
can take an overring R* of K and a K-epimorphism v : R-+R* with Ker  v = P l n . . ,  m P~. 
Let J*=v(J ) .  Let 

a a 

Go= GK(R , J) , fl G [R, P,] n N Gz[R , Q,], 
a 

and G o :  GK(R* , J*) n 91GK[R* , v(P~)]. 

Let w : GK[R , Kerv]  --~ GK(1L* ) be the homomorphism induced by v. Then by 
[2, (4.4)] we have w(G0)=G;;  note that clearly 

G K[R, P1] m . . .  n G  K[R, P j  c G  K[R, Ker  v] 

and hence it makes sense to talk about w(G0). Also note that, in view of [2, (2. r), (2.2)], 
we have G0CGK(R , O~j) CGK[R , O~] for x < j < b .  

Let t~ :R.*-+R*/v(Pi) be the canonical epimorphism. Then for I < i < a ,  in 
view of [2, (2. Io)], we have that ti(v(yi) ) is not integral over ti(K), and:  ieWcvt~(v(x~)) 

is not integral over ti(K),c*.t~(v(yl))=t;(v(xi) ). Also clearly J*r for i < i < a .  

Therefore by (5-5-2) there exists an infinite subset G* of G o with card(G*)>card(K)  
such that for all g + h  in G* we have g(v(y~))--h(v(y~))r for I < i < a ,  and 
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g(v(x~))--h(v(x~))r for all iEW. Since w(Go)=G; ,  for each gEG* we can fix 
g ' e G  0 with w(g' )=g;  now it suffices to take G = { g ' : g s G * } .  

Theorem (5 .7) .  - -  Assume that K is perfect, and let R be an analytic local ring over K. 
Let Q1, . . . ,  Qe be all the distinct #olated primary components of {o} in R.. Let P~ = r a d n Q  ~. 
Let 0_)]1 , . . . ,  Qb (b > o), be any finite number of ideals in R such that for I < i < e and i < j  < b 
we have O~j r Pi. Assume that 

(,) there exists a K-epimorphism u : A a ~ R ,  for some d, such that u- l (Qi )  is a symbolic 
power of u-l(Pi) for I < i < e .  

Let 
b b e e 

G =jNIGK(R, Q) nO 1GK[R, O~] %01GK[R, Q,] n ~IGK[R , P,]. 

Then Inv G c K + r a d a { o  }. 

(Note that  by [2, (2. Io)], K + r a d r ~ { o } = t h e  integral closure of K in R.) 
(For an intrinsic formulat ion of (*) see [2, (3.6)].  Note that  (.) is automatically 

satisfied in case Q ~ = P i  for r < i < e ,  because then we can take u to be any 
K-epimorphism A~-+R. Also note that  (.) is automatically satisfied in case 
d im R / P  1 . . . . .  d im R / P  e and emdim R = n q- i where n = d im R/P1, because then 
we can take u to be any K-epimorphism A , + ~ R ;  see [2, (2. I6)].) 

Proof. - -  Follows from (5.6). 

Theorem (5 .8) .  - -  Assume that K is perfect, and let R be an analytic local ring over K 
with r adR{o}={o  }. Let P~, . . . ,  Pe be all the distinct prime ideals of height zero in R. Let 
0~1, . . . ,  QJb (b>o) be any finite number of ideals in R such that for I < i < b  we have that Q~ 
contains a nonzerodivisor of R.  Let 

b b e 

G =jQ1GK(R , O~) OjO GK[R , Q~] o 0 GK[R , P,]. 

Then Inv  G = K .  Moreover, i f  G' is any subset of G(R) with G c G ' ,  then Inv  G' is a 

subfield of K. 

(Note that  by [2, (2. io)] we know that  K = t h e  integral closure of K in R.) 
Pro@ - -  By (5.7) we get that  Inv  G = K. The  second assertion follows from this 

in view of [2, (2.7)]. 

Theorem (5.9) .  - -  Assume that K is perfect, and let 1L be an analytic local ring over K 

with r ad~{o}={o} .  Then Inv G K ( R ) = K  , and Inv G(R) is a subfield of K. 
(Note that  by [2, (2. io)] we know that K = the integral closure of K in R.) 
Pro@ - -  Follows from (5.8). 

w 6. Local  r ings  in w h i c h  every  n o n u n i t  is  a zerodiv i sor .  

Theorem (6. I ).  - -  Let R be a local ring with coefficient field K. Let n = e m d i m  R. 
Assume that n > o  (i.e., R :t: K). Also assume that every element in lVI(R) is a zerodivisor of R. 

Let R 0 = K [ X ] / X 2 K [ X ]  where X is an indeterminate. Then we have the following: 
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(I) I f  n>I then card(GK(R))Zcard(Kn-1) .  
(2) I f  n = I  and M ( R ) ~ . { o }  then card(GK(R))>card(K) .  
(3) / f  n = i  and M(R)2={o}  then c a r d ( G x ( R ) ) > c a r d ( K ) - - i .  

(4) GK(R)={~}  
-~=~n=I, c a r d ( K ) = 2 ,  and M ( R ) ~ : { o }  
< * c a r d ( K ) = 2  and R is K-isomorphic to R o 
~=~card(K)=2 and R is isomorphic to R 0 
<:~card(R) = 4 
-~-G(R) = {  i}. 

Proof. - -  Now M(R)  is an associated pr ime ideal of {o} in R, and hence there 
exists o ~ y e M ( R )  such that  ( y R ) M ( R ) = { o } .  

First suppose that  y e M ( R )  2. Take a basis (xx, . . . ,  xn) of M(R) .  Now every z 
in R can uniquely be expressed as 

Z = Z o - t - z l x l + . . . + z n x , + z '  with Z o , . . . , z n  in K and z ' e M ( R )  ~. 

For every a=(al ,  . . . ,  an)eK n we get a K-homomorph i sm ga : R - + R  by setting: 

ga(z)=z- t - (z~a~+. . .+z ,an)y  for all z eR .  

Upon  letting - - a = ( - - a ~ ,  . . . ,  - - a , ) ,  we have g~g_~=g_~g~-----the identity map  of R, 
and hence gaeGK(R. ). Clearly g~+gb for all a+b in K n. Thus  we have shown that :  

(5) I f  y e M ( R )  2 then ca rd (GK(R) )>ca rd (K"  ). 
Next suppose that  y e M ( R )  z and n > I .  Let x,-~y. We can find elements 

xt, . . . ,  x ,_  t in M(R.) such that  (xl, . . . ,  xn) is a basis of M(R) .  Again, every z in R 
can be uniquely expressed as 

Z=Zo-k-zax~+. . .+z ,xn-k-z '  with z0, . . . , z ,  in K and z 'EM(R)  ~. 

For every a=(al ,  . . . ,  a , _ l ) e K  n - t  we get a K-homomorph i sm g~ : R.-->R by setting: 

g~(z)=z-t-(zla~-t- . . .+z~_lan_~)y for all z eR .  

Upon  letting --  a = (-- at, . . . ,  --  an_a) , we have g~g_~ =g_~g, = the identi ty map  of R, 
and hence g~eGK(R). Clearly g~egb for all a+b in K "-1. Thus  we have shown 
that:  

(6) I f  yr  ~ and n > I  then card(GK(R. ) )>card(K"- l ) .  
Finally suppose that  yCM(R)  2 and n- -1 .  Now M ( R ) = y R  and 

M(R)~=y2R = {  o}. 

Consequently, every z in R can uniquely be expressed as Z=Zo+Zty with z0 and Zl 
i n K .  For every o + a e K  we get g~eGK(R ) by setting: ga(z)=Zo+aZly for all z eR .  
Clearly ga+gb for all o 4 a 4 b 4 o  in K. Thus  we have shown that :  

(7) I f  y e M ( R )  2 and n = i  then 1V[(R)~={o} and c a r d ( G K ( R ) ) > c a r d ( K ) - - i .  
(i),  (2) and (3) follow from (5), (6) and (7). (4) follows from (i), (2) and (3)- 
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w 7" R e m a r k s  on f ie lds  o f  def in i t ion .  

Let R be a local ring, let S=R. /M(R) ,  and let t : R - + S  be the canonical 
epimorphism; now G ( R ) = G [ R ,  M(R.)], and hence t induces a homomorphism 
u:G(R)-->G(S). Let V ' = I n v G ( R . )  and V = I n v u ( G ( R ) ) .  Let p be the charac- 
teristic of S, where p may or may not be zero. 

(7. x) t (V ' )cV,  and t(V') and V are subfields of S. I f  p4=o and y is any element 
in S with yPEV then yEV; whence, in particular, i f  S is perfect then so is V. 

Obviously t (V ' )cV.  By [2, (2.7)] we have that V is a subfield of S. If p4=o 
andy  is any element in S with yPEV then clearly yEV. To see that t(V') is a subfield 
of S, let any xEV' with t ( x )4o  be given; now x6M(R.) and hence I /xeR;  for any 
gEG(R) we have 

I I x  = (I/x)g(I ) = (I Ix)g((X) (I IX)) = (I Ix)g(x)g(I i x) = (I I x) (x)g(I IX) = g(I I x) ; 

thus I/x~V' and clearly t(I/x) =I/t(x) .  
(7.2) I f  R has a coefficient field K such that g ( K ) = K  for all gEG(R), then clearly 

t ( K r ~ V ' ) = t ( V ' ) = V  (note that by [2, (2.7)] we know that K n V '  is a subfield of K, 
and hence now t induces an isomorphism of K n V' onto V). Note that by [2, (2.12)] 
we see that: ./fS is perfect with p +o and R. has a coefficient field K, then g ( K ) = K  for all 
gEG(R). Finally note that by (5.9) we know that: /f radR{o}={o} and R is an 
analytic local ring over a perfect valued field K, then V '  is a subfield of K, and hence t induces an 
isomorphism of V '  onto t(V'). 

Henceforth assume that K is complete, K is of characteristic p, and S is algebraically 
closed. For any field H and any nonnegative integer a let Ha denote the ring of formal 
power series in indeterminates Xt, . . . ,  X~ with coefficients in H. By Cohen's theorem 
we know that R. has a coefficient field, i.e., equivalently, there exists an epimorphism b: 
S~-->R for some a, such that t(b(s))=s for all sES. Let E(a) be the set of all epimor- 
phisms b: S~-+R such that t(b(s))=s for all sES. For every bee(a) let D(a, b) be 
the set of all subfields H of S such that ((Ker b) r~ Ha)S ~ = Ker b, and let D'(a, b) be the 
set of all subfields H' of R. such that H ' = b ( H )  for some HED(a, b). Let 

D =  LJ [J D(a, b), D ' =  LJ [J D'(a, b), 
a = 0  b~  E(a) a = 0  bee(a) 

D * = { H E D :  H is perfect}, D'*--~ { H E D ' :  H is perfect}, 

F = N H ,  F ' =  N H ,  F*= N H ,  F'*= N H. 
H ED H ED' H ED* H ED'* 

One might designate every member of D* (or D, or D'*, or D') to be a field of definition 
of R, and F* (or F, or F'*, or F') to be the field of definition of R. Note that clearly 
FcF*, F 'cF '*,  t(F'*) oF*, and t(F') oF;  in view of [2, (2.12)] we also see that if p4=o 
then t(F'*)=F* and t (F ' )=F .  

Thus, to R we have attached the six subfields: t(V'), V, t(F'), F, t(F'*), and F* 
of S. It would be interesting to investigate the properties of these fields and their 
relationships. For instance, one may ask: I) FED?; 2) F*ED*?; 3) are these various 
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fields, " in some sense ", finitely or countably generated over their pr ime subfield?; etc. 
In  this connection we only offer the following two remarks (7-3) and (7-4): 

(7-3) VcF* .  Moreover, i f  H c V  for some HeD* then H = F * = V .  
The  second assertion follows from the first. To prove the first assertion, let any 

perfect subfield H of S and any epimorphism b: S~-+R be given such that  t(b(s))=s 
for all seS and ((Ker b) n H ~ ) S ~ = K e r  b; also let any y e s  be given such that  yCH. 
We want  to show that  then yCV. By [2, (2.8)] there exists h'EGI~(S) such that  
h'(y) 4y. We get heG~(S~) by taking 

h(Y,f,,...,o x o) = 
for all 

~fh.. .~aX~l.. .  X~aeSa with f~l...~ eS. 

Since ((Ker b) c~Ha)Sa=Ker b, we see that  heGrr[S~, Ker  b]. Let 

b' : Ga[Sa, Ker b] -+ Gb(a)(R ) 

be the homomorph i sm induced by b, and let g=u(b'(h)). Then  geu(G(tL)) and 
g(y) = h'(y) +y. Therefore y(sV. 

(7-4) Let K be any algebraically closed field of characteristic p, where p may  or 
may not be zero. Let K 0 be the pr ime subfield of K. Let z0, - . - ,  Z, be any given 
finite number  of elements in K with z0---- I. Let L = K0(zl, . . . ,  ze). In  other words, 
let L be any subfield of K such that  L is finitely generated over K 0. Let L * = L  if p = o ,  
and L * = L  v-~~ if p~eo; note that  if p 4 o  then:  L* is finitely generated over K0<:~L 
is algebraic over K. We can take positive integers m, n, q, d such that :  q+qe<m; 
m+q+qe<n; n is not divisible b y p ;  n+m+q+qe<d; and n and d are coprime. Let X 
be an indeterminate,  and let 

e 

Y = X " + m +  E ziX"+m+q+q~+X d. 
i=0 

Upon  taking R = K [ [ X " ,  Y]] we clearly have that  R is a one-dimensional complete 
local domain  with coefficient field K and emdim 1L = 2 .  Let S, t, V, etc., be as above. 
By [2, (5.3)] we have that  t(L) c V  and hence by (7-I) we get that  t(L*) c V .  Clearly 
t(L*) eD*, and hence by (7.3) we get that  t(L*) = F*--~ V. In  view of (7- 2), we now also 
see that, if p + o  then V ' = L * .  

Purdue University, Lafayette, Indiana, U.S.A. 
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