INVARIANTS OF ANALYTIC LOCAL RINGS (%)
by S. S. ABHYANKAR, T. T. MOH and M. VAN DER PUT

§ 1. Introduction.

This is a sequel to [2]. In Theorems (4.2), (4.3), (5-.5), (5.6), (5.7), (5.8),
(5.9), and (6.1) we shall prove several results concerning groups of automorphisms
of analytic local rings and the rings of invariants of such groups. In the statements
of all these theorems except the last one, K is any valued field and A,, is the ring of
convergent power series in indeterminates X, ..., X, with coefficients in K. In § 7
we shall make some remarks concerning fields of definition and their relationship with
fields of invariants.

Terminology. — We shall use the terminology of [2, § 2]. By card we shall denote
cardinal number. If R is any ring and S is the integral closure of R in the total quotient
ring T of R, then every automorphism of R can be extended uniquely to an auto-
morphism of S, i.e., given any geG(R) there exists a unique #£eG(S) such that
h(r)=g(r) for all reR; (namely, since T is the total quotient ring of R, there exists
a unique A'eG(T) such that A'(r)=g(r) for all reR; since S is the integral closure
of R in T, we must have A'(S)=S, and hence we get the unique £eG(S) by taking
h(s) ="h'(s) for all seS); the resulting map of G(R) into G(S) will be denoted by Iy,
ie., Iz :G(R) > G(S) is the unique monomorphism such that for all geG(R) and all
reR we have Ig(g)(r)=g(r); note that

I.(G(R))={keG(S) : A(R)=R}.

§ 2. Integral dependance and conductor.

Recall that if R is a ring and S is an overring of R then by definition,
the conductor of R in S

={ueR :useR for all seS}

=the largest ideal in R which remains an ideal in S.

Lemma (2.1). — Let R be a ring and let S be an overring of R. Let G be the conductor
of R in S. Then we have the following.
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GP-6388 at Purdue University. The work of van der Put was supported by the Netherlands Organization for
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(2.31.3) Let Q be any ideal in S, and let heG(S, Q) and geG(R) be such that
h(ry=g(r) for all reR. Then geG(R, Q nR).

(2.1.2) For any heG(S, C) we have h(R)=R.

(2.1.3) Let Q be any ideal in R. Then QG is an ideal in S. Moreover, for any
heG(S, QC) we have R(R)=R, and upon defining geG(R) by taking g(r)=h(r) for all
reR, we have that geG(R, QC).

(2.1.4) Let Q be any ideal in S, and let ueC. Then (uS)Q is an ideal in R. Now
assume that u is a nonzerodivisor in S, and let heG(S) and geG(R, (uS)Q) be such that
h(r)=g(r) for all reR. Then heG(S, Q).

(2.1.5) Let Q be any ideal in R, and let ueC be such that u is a nonzerodivisor in S.
Let heG(S) and geG(R, (uR)Q) be such that h(r)=g(r) for all reR. Then heG(S, QS).

Proof of (2.1.1). — Obvious.

Proof of (2.1.2). — For any heG(S, C) and any reR we have A(r)—reCcR,
and hence A(r)eR. Thus for any £eG(S, C) we have A(R)cR; by [2, (2.1)] we
also have A 'eG(S, C) and hence 42 !(R)cR; therefore A(R)=R.

Proof of (2.1.3). — Any element ¢ in (QC)S can be expressed as a finite sum:
t=2qus, with ¢,eQ ,ueC, 5€S; now us5eC for all 7, and hence teQC. This

shows that QC is anidealin S. Since QCcC, we have G(S, QC) cG(S, C); therefore
the rest now follows from (2.1.1) and (2.1.2).

Proof of (2.1.4). — Clearly (#S)Q cR and hence (#S)Q is an ideal in R. Now
assume that z is a nonzerodivisor in S, and let 2eG(S) and geG(R, (#S)Q) be such
that A(r)=g(r) for all reR. Given any seS we want to show that A(s)—seQ. Now
useR; since geG(R, (u8S)Q), and u and us are elements in R, we get

glus)—us=uq with qeQ, and g(u)—u=uqg with ¢'€Q,

Now g(us)— us = h(us)—us

= h(u)h(s)— uh(s) +uh(s)—us

= h(s) (h(u) — ) + u(h(s) —s)

= h(s)(g(w)—u) +ulh(s)—s)
and hence u(h(s)—s) = (g(us)—us) — h(s)(g(u)—u)

=uqg— h(s)uq’

—u(g—h(s)).
Since u is a nonzerodivisor in S, we must have A(s)—s=¢—#h(s)¢’ and hence A(s)—seQ.

Proof of (2.1.5). — We get a proof of this by making the following changes in

the proof of (2.1.4): omit the first two sentences; in the third and the last sentences
change Q to QS;in the fourth sentence change G(R, (#S)Q) to G(R, (uR)Q). Alter-
natively let Q'=QS; then Q' is an ideal in S; clearly (¥R)Q c(z§)Q’ and hence
geG(R, (#S)Q’); therefore by (2.1.4) we get that heG(S, Q).

Lemma (2.2). — Let R be a ring and let S be the integral closure of R in the total quotient
ring of R. Let Q be the conductor of R in S. Then we have the following.
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(2.2.1) If Q is any ideal in S then G(S, Q)nIz(G(R))cIz(G(R, Q aR)).

(2.2.2) G(S, C) c Iz(G(R)).

(2.2.3) If Q is any ideal in R then QG is an ideal in S and G(S, QC) cIz(G(R, QQC)).

(2.2.4) Let Q be any ideal in S, and let uecC. Then (uS)Q is an ideal in R. If
moreover u is a nonzerodivisor in R, then Ig(G(R, (uS)Q))cG(S, Q).

(2.2.5) Let Q be any ideal in R, and let ucG be such that u is a nonzerodivisor in R.
Then Ig(G(R, (xR)Q))cG(S, QS).

Proof. — (2.2.1), (2.2.2) and (2.2.3) follow respectively from (2.1.1), (2.1.2)
and (2.1.3). (2.2.4) and (2.2.5) follow respectively from (2.1.4) and (2.1.5) by
noting that in the present case every nonzerodivisor in R is also a nonzerodivisor in S.

Lemma (2.3). — Let R be a noetherian ring with radg{o}={o}. Let P, ..., P,
be all the distinct prime ideals of height zero in R.  Let T be the total quotient ring of R. Let R
be a noetherian subring of T such that T is the total quotient ring of R'. (Note that then by
[1, (18.9)] we have that: P,T, ..., P, T are exactly all the distinct prime ideals in T,
and they all have height zero; T is noetherian; (P,T)nR’, ..., (P,T)nR" are exactly
all the distinct prime ideals of height zero in R"; radp.{o}={o0}; and for 1<i<e
we have (P,T)nR=P, and ((PT)nRT=P,T.) Let S be the integral closure of R
in T. Assume that R*CS and S is integral over R*. Then we have the following:

(2.3.1) For 1<:<e we have

Iz(G[S, (P,T)nS])=GI[R, P],
IzH(G[S, (B;T)nS])=G[R’, (B;T)nR7,
and Iz 11z (G[R', (P, T)nR])) cG[R, P].

(2.3.2) Assume that the integral closure of R [P, in its quotient field is a finite (R |P;)-module
Jor 1<i<e. Let C be the conductor of R in S. Then C contains a nonzerodivisor of R.

(2.3.3) Assume that the integral closure of R [P; in its quotient field is a finite (R |P;)-module
for 1<i<e. Also assume that the integral closure of R'[(P,T)nR" in its quotient field is a
Sfinite (R*](P,T) aR")-module for 1<i<e. Let] be any ideal in R. Then there exists an

ideal I in R" such that Ip.(G(R', J)) cIx(G(R,])) and such that for 1<i<e we have:
JcP, T JcP,T.

Proof of (2.3.1). — The second equation follows the first equation by interchan-
ging R and R’. The last inclusion follows from the first and the second equations.
To prove the first equation, given any geG(R) let 2=1I3(g). What we have to show
is that: g(P)=P, < (P, T)nS)=(P,T)nS. If A(P,T)nS)=(P,T)nS then

g(P)=h(B)=h(R n (B, T) nS))=h(R) n h((B;T) n S) = R ((B;T) n §)=E..
Conversely, suppose that g(P)=DP;. Let 2’ be the unique element in G(T) such that

k' (s)=h(s) for all seS. Since P,T, ..., P, T are exactly all the distinct prime ideals
in T and /' is an automorphism of T, we see that A'(P,;T)=P,T for some j. Now

P,=g(P) =k (B) =K ((B;T)nR) =K (P T)n ' (R)=(B;T) nR=P,
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and hence j=i. Therefore
R(PT)nS)=~r((P,T)nS)=1(P,T)n k' (S)=(P,T)nS.

Proof of (2.8.2). — The quotient ring of R with respect to P; is clearly a field
and hence by [1, (19.21.2)] we get that G P;. This being so for 1<i<e¢, we conclude
that C contains a nonzerodivisor of R.

Proof of (2.3.3). — Let C be conductor of R in S; by (2.3.2) wecan find ueC such
that u is a nonzerodivisor in T, i.e., u¢P, T for 1<i<e. Let C" be the conductor of R
in S; by (2.3.2) we can find #'€C" such that «" is a nonzerodivisor in T, i.e., «'¢P,T
for 1<i<e. By (2.2.3) weknow that JCis anidealin S and G(S, JC) cIz(G(R, JC));
since JCcJ, we also have I{(G(R,JC)cIz(G(R,])). By (2.2.4) we get that
(@S)(JC) is an ideal in R* and I (G(R", («"S)(JC))) cG(S, JC). Therefore upon
letting J'=(«"S)(JC) we get that J"is an ideal in R" and I;.(G(R", J)) cIz(G(R, ])).
Now (uu'T)(JT)cJ TcJT, and wu'¢P, T for 1<i<e; therefore for 1<<i<e we have:
JcP,T < JcPT.

Lemma (2.4). — Let R be an analytic local ving over a valued field K. Let S be an overring
of R such that S is a finite R-module. Let N be any subset of S such that N is contained in every
maximal ideal of S. Then R[N] is an analytic local ring over K.

Proof. — We can find a finite sequence of elements y;, ..., 5, in N such that
R[N]=R[y, .., 3,]; now Ry, ..., 2]1=R[y, ..., 041 [»] for 1<i<m; conse-
quently, by an obvious induction, the general case would follow from the case when N
consists of a single element y. Let X, X,,X,, ... be indeterminates. Since R is
an analytic local ring over K, there exists a K-epimorphism 2:B-—-R where
B=K[(X,, ..., X,>] for some nonnegative integer n. Let A=K[{X,, ..., X,>]
where we regard A to be an overring of B. Since y is integral over R, there exists a
positive integer ¢ and elements a,, ..., 4, in B with g,=1 such that
(1) X o(a)y'=o.

Let d be the smallest nonnegative integer <e such that ¢,¢ M(B). Let g=¢—d. Then
by the Weierstrass Preparation Theorem [1, (10.3)] there exist elements b, ..., §,,
fy, -- ., t, in B such that b =r1=t, beM(B) for 0<i<d, {,¢M(B), and

e d q
(2) igoaixf)=(i§0bixf))(i§0tixf))'

Now »(t,)¢M(R). For every maximal ideal M in S we have MnR=M(R) and
hence (t,)¢M; since by assumption yeM, we get that f,4-t,y+... 4+ '¢M. This
being so for every maximal ideal M in S, we conclude that #-4y+...+¢ )" is a unit
in S; therefore by (1) and (2) we get that

d
2 o(b) =o.

168



INVARTANTS OF ANALYTIC LOCAL RINGS 169

Whence, in particular, d>o0. Let

d
i=0
and let A’ be the set of all polynomials of degree <d in X, with coefficients in B. Then
by [1, (10.3)], for every feA there exists a unique reA’ such that f—rneFA. We
get a map w:A—R[y] by taking
a—1

w(f)=Zo(f)y for all feA

3=

where f,, ..., f,_, are the unique elements in B with
a—1
1= TEO JiXs-

By [1, (10.3)] we also have that: 7, p=7+4r7. and ru—rr.eFB[X]] for all fand f
in A. It follows that w(z)=v(z) for all zeR, w is a ring homomorphism of A into
R[y] and w(A)=R[y] (note that if d=1 then we must have ypeR). Therefore
R[] is an analytic local ring over K.

§ 3. Automorphisms leaving a hypersurface fixed.

Let K be a valued field, and let A=K[KX}>]=K[<(X,, ..., X,>] where
X=(X,, ..., X,) areindeterminates and #>>0 (the statement and proof of Lemmas (3. 1)
and (g.2) hold verbatim also for n=o0).

Lemma (3.1). — Let B=K[KX,Y,, ..., Y, >] where Y, ..., Y, are indeterminates
(m>o0). Let V,=V,(X,Y,,...,Y,)eB with

(1) V,—Y.e((Yy, ..., Y,)B)?  for 1<i<m.

Let D;eM(A) for 1<i<m. Then there exist unique elements E, ..., E, in M(A) such
that

(2) Vz(X: Els U Em)zD; .for IS ZS m.

Moreover, we have

(3) (Ey, ..o, Eg)A=(Dy, ..., D,)A

and

(4) E—De((Dy, ..., DYAR for 1<i<m,

Proof. — In view of (1) we see that the value of the jacobian determinant

o(V,—D,, ...,V,—D,)
oYy, ..., Y,)

(0, ..., 0)
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equals 1, and hence by the Implicit Function Theorem [1, (10.8)] there exist unique
elements E;, ..., E, in M(A) satisfying (2). By (1) and (2) we see that

(Dyy ... D, )AC(Ey, ..., E)Ac(Dy, ..., D, )A+((E;, ..., E,)A)YM(A)

m

and hence by Nakayama’s lemma we get (3). By (1), (2), and (3) we get (4).
We shall now give an alternative proof by using the Inversion Theorem instead
of the Implicit Function Theorem. In view of (1) we sec that

WV, ..., V,)

ELaes SR

and hence by the Inversion Theorem [1, (10.10)] there exists
W,=W,(X,Y,, ..., Y, )eMB) for 1<i<m,

such that for 1<i<m we have

(5) Yz:Vz(X: WI(X> Yl: RIS Ym)’ sy Wm(Xi Y17 i Ym))
and
(6) Y,=W,(X, Vi(X,Y,, ..., Y,), ..., V(X, Yy, , Y,))

We can write

W, =W+ W, Y, +...+W,, Y, + W,
with WeM(A), WyeA, Wie((Yy, ..., Y,)B)%

now in view of (1), by (6) we get that
Y, =W, 4+W,Y,+...4+W,. Y +an element in ((Y,,...,Y,

m T m

)B)*.

Considering the above as an equation between power series in Y, ..., Y, with coeffi-
cients in the quotient field of K[[X]], and comparing coefficients on the two sides we see
that

W;=o0, W;=1, and W =0 whenever j=#i.

In other words,

(7) W,—Y;e((Y, ..., Y,)B)> for 1<i<m.
Upon letting

(8) Ei:Wi(X> D17 MR Dm) fOI‘ IS lé m,
we get elements E,, ..., E, in M(A); upon substituting D,, ..., D, for Y, ..., Y,
in (5) we get (2); by (1), (2), (7) and (8) we get (3) and (4). Conversely, if E,, ...
are any elements in M(A) satisfying (2) then upon substituting E,, ..., E, for Y,, ..., Y,

in (6) we get (8), which proves the uniqueness.
For the formal case the following lemma was given by Samuel [3]:
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Lemma (3.2). — La F=FX)=FX,, ..., X,)eA. La F,=0F[0X,. Let
D;eM(A) for 0<i<n, 0o<j<n. Then there exist elements H,, ..., H, in M(A) such
that

n

(1) F(X,+H,, ..., X, +H)=F+ X X D,FF,
1=0j=
and
(2) Hi—EOD;jF,-E((Fo, .oy E)A)((Dgg, Dy, ..., DAY for 0<i<n.

Progf. — Let Z,, ..., Z, be indeterminates. Then
(3) F(X0+ZO7 RIS Xn+Zn)=F+l§()Z@F@+V,

where V'’ is an element in K[(X, Z,, ..., Z,>] such that the order of V' in Z,, ..., Z

is >>2, and hence we can write

n

(4) V=3 VX, Zy, ..., Z)ZZ;

i=0j=0

with Vi(X, Z,, ..., Z,)eK[(X, Z,,...,Z,>]. Let Yy, Yy, ..., Y, be (n+41)* inde-
terminates. Upon substituting

rs 8

;()Y F, for Z,,0<r<n,
by (3) and (4) we get

(5) F(X0+s§0YOst: L] Xn+s§0Ynst)= F +i§0 jEOVij(X: YOO’ YOla ctts Y

nt

.,

2

where V,=V.(X, Yy, Yy, ..., Y,,) isthe elementin B=K[<{X, Yy, Yy, .-, Y, 0]
given by

Vij(X’ YOO) YOI: tet Ynn):Y1]+ t?—:O ;()V;u(x) gOYOsFN e ganst)YtiYuj
and hence V,—Y,e((Yoo, Yoi» - -+, Y, )B)?  for 0<i<n, 0<j<n.

By (3.1) there exist (n+1)*> elements Ey, Ey, ..., E,, in M(A) such that

(6) Vi(X, Eg, Egy, ..., E)=D;  for 0<i<n,0<j<m,
and

(7) E;—D;e((Dy, Dy, -+ -, D, )A)?  for 0<i<n,0<j<u.
Let

(8) H,:é]oEmFS for 0<r<n.

Then H, ..., H, are elements in M(A) and upon substituting E, for Y, (0<r<n, 0<s<n)
in (5), by (6) and (8) we get (1). By (7) and (8) we also get (2).
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Lemma (3.3). — Given FeA let F,=0F]0X,. Let DeM(A) be such that
DF,eM(AY for o<i<n. Then there exists geGy(A, (DF,, ..., DF)A) such that
g(F)=F,

g(Xo)‘X0+DF1€(D2Fo> s DZFn)A>
8(X,)—-X,—DF,e(DF,, ..., D’F A,
and e(X,)—X,e(D?F,, ..., D’F)A  jfor 2<:i<m.
Proof. — Upon taking
Dy=—D, Dy=o0=D, for 2<;j<n,
D,=D, Dy;=o for 1<;<n,
D; =o for 2<i<n and o0<;<n,

by (3.2) we find elements H,, ..., H, in M(A) such that
F(XO+H09 MRS Xn_’_Hn):F

and such that the elements H;+ DF,, H —DF , H,, ..., H, all belong to the ideal
(D*F,, ..., D*F )A. In particular then H,e(DF,, ..., DF,)cM(A)? for 0<i<n,
and hence by [2, (2.15)] we get a unique geGg(A) such that g(X,)=X,+ H, for
0<i<n. Now clearly g(F)=F,

g(X,)—X,+ DF,e(D?F,, ..., D*F)A,

g(X,)—X,—DF,e(D*F,, ..., D°F A,
and ¢X,)—X,e(D*F,, ...,D’F)A for 2<i<n.
Since g(X,)—X;=H;e(DF,, ..., DF,) for 0<:<m, by [2, (2.9)] we see that
geGg(A, (DF,, ..., DF)A).

Lemma (3.4). — Let 0o+FeM(A), LeA, E.eM(A), ..., E;eM(A) (d>0), be such
that L(0F|0Xg)¢E,A for 1<;<d. Let Py, ..., P, be all the distinct trime ideals of height
one in A containing F. Let u be a positive integer. Then there exists an infinite subset G of

Gy (A, (LA)nM(A)) nG[A, P ]n...nGg[A, P,]

with card(G) >card(K) such that for all geG we have g(F)=F, and for all g+h in G
we have g(X)—h(X;)¢EA for 1<;<d.

Proof. — Let ] be the set of integers 1, ..., d, and let J'={jeJ :E;+0}. For
every jeJ’ let r,=ord,E; and let E; be the unique nonzero homogeneous element of
degree 7; in K[X] with E,—EjeM(A)i+%,

J
Clearly there exists an infinite set N of pairwise coprime nonconstant irreducible

homogeneous elements in K[X,, X,] (namely, if K is infinite then {X,+£X,:£eK}
18 such a set; in the general case, upon letting N, to be the set of all monic irreducible

polynomials of degree 7 in K{X,] we clearly have that il=JlN,. is an infinite set, and hence

il__Jl{ X/ (Xy/Xy) : f(X,)eN,} is an infinite set of pairwise coprime nonconstant irredu-

cible homogeneous elements in K[X, X;]). Moreover, for any such N we have that N
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is an infinite set of pairwise coprime nonconstant irreducible homogeneous elements
in K[X].

Therefore, we can find a nonconstant irreducible homogeneous element E, of some
degree g>o, in K[X] such that for all je]’ we have E/¢ EK[X].

Let w;: A—>A/E;A be the canonical epimorphism.

We claim that if j is any integer in J, V is any element in A with (V) o, £ is
any nonzero element in K, and 4 is any nonnegative integer, then

(1) ordw],( A)wj(lc*VE”) =bg+ Ordwj(A)wj(V) .

This being obvious for j¢]’, suppose that je]’ and let v=ordwj(A)wj(V). Then there
exists a nonzero homogencous element V* of degree » in K[X] such that

(2) w;(V)=1w,(V")+an element in M(uw;(A))" "
By (2) we get
(3) w;(k' VE) =w;(K V'E’) 4 an element in M(w;(A))*+°+1,

Suppose if possible that ordwj(A)wj(k*VEb)>bq+v. Then by (3) we get that
ordwj(A)wj(k*V*E”)>bq—i—v; and hence there exists EjeA such that

FV'E—EE eM(A)k+o+1,

Since £"V'E® is a nonzero homogeneous element of degree bg+v in K[X], we must
now have

ord,E/ =bg+v—r, and k'V'E'=EE"
AT J §

where E" is the unique nonzero homogeneous element of degree bg+ov—7; in K[X]
such that

E_;—EfeM(A)bq+v_rf+1.

Now E is irreducible, E;¢EK[X], and £'V'E’¢E;K[X]; consequently we must have
V'eE/K[X], and hence V'=EE" for some E’eK[X]. It now follows that
V'—EE eM(A)**', and hence by (2) we get ord,w;(V)>v, which is a contradic-
tion. This completes the proof of (1).

We can write

@) FFom___per
where
(5) a. >0, FPeA, and FYA=P, for 1<s<e.

For all s4¢ we have

Fe¢F9A = DI(F“)A-f—M(A)"‘),
and hence we can find a positive integer 4” such that

(6) F9¢FYA +M(A)” whenever s+t
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By assumption w(L(0F/dX,))+0 for 1<j<d, and hence we can find an
integer b,>b"+u-41 such that

(7) bog>ord,, nw(L(9F/9X,))  for 1<;<d.
Given any b>b, and any keK, by taking D=#/LE’ in (3.3) we find
2.»€Gg(A, (KLE*(0F[0X,), ..., k\LE}(0F /20X ,))A)
such that
(8) %, o(F)=F,

and g, ,(X,)—X, —kLE’(8F | 0X,) e (KLE")*(0F [8X,), . .., (KLE)?*(8F [0X,))A;
clearly then

(9) 8,56 Gk (A, (LA) n M(A)Y),

(10) 81 Gk (A, M(A)7),

and

(11) 8,(X,) — X, — KL(9F | 0X,) E'e M(A)2;

in view of (4), (5) and (8) we see that there exists a permutation (H(1), ..., H(e¢)) of
(1, ...,¢) and units f;, ..., f, in A such that

gy F)=FED £ for 1<s<¢;
now in view (6) and (10) we see that H(s)=s for 1<5s<¢, and then by (5) we get
(12) 8 €Gg[A, P]n. . .nGg[A, P,].
By taking V=L(0F/&X,) in (1) we get that: if j is any integer with 1<j<d, £ is
any nonzero element in K, and 4 is any nonnegative integer, then
(13) ordwj(A)wj(k*L( oF [ 0X)EY) =bg + ord,, s, (L(oF [ 9Xy)).
It only remains to note that in view of (7), (11) and (13) we have the following:

Let b and &' be any integers with 4>54, and 5'>5,. Let £ and £’ be any elements
in K. Assume that either: 8'=54 and k'+k, or: 6>b and k+o. Then

Ordwj(A)wj(gk, »(Xy)— 8, v (X))=bg+ Ordwj(A)wj(L( oF [0X,)) <o
and hence 8, o(Xy) — g, (Xy) ¢ BAA.

Lemma (3.5). — Let v: A—>R be a K-epimorphism where R is an overring of K with
radg{o}={0}, and Kerv=FA with o+FeM(A). Let P,, ..., P, be all the distinct
prime ideals of height zero in R, Let J be any ideal in R such that ) contains a nonzerodivisor of R.
Assume that v(0F [ 0X,) is a nonzerodivisor in R.  Then there exists an infinite subset G of

Ge(R, ) nGk[R, P ]n...nG[R, P,]

with card(G) >card(K) such that for all g&h in G we have g(v(X,)))—h(2(X,))¢P;
Jor 1<i<e.
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Proof. — We can take LeA such that »(L)e] and »(L) is a nonzerodivisor of R.
Now v~ *(P,), ..., v *(P,) are exactly all the distinct prime ideals of height one in A
containing F. We can take E,eM(A) with EA=v"P) for 1<i<e. Clearly
L(0FjoX,)¢E,A for 1<i<e. Therefore by (3.4) we can find an infinite subset G* of

Gi(A, LA) n Gk[A, v ' (P)]n...nG[A, o= 1(P,)]

with card(G’) >card(K) such that for all geG" we have g(F)=F, and for all g=+#£
in G" we have g(X,)—A(X)¢v '(P) for 1<i<e. Let w: Gg[A, Kerv] — G¢(R) be
the homomorphism induced by . Now G"cGg[A, Ker ] and upon letting G=w(G"),
in view of [2, (2.2), (2.4), (2.5)], we see that G is an infinite subset of

Gg(R, ]) nGg[R, P,]n...nGg[R, P,]

with card(G)=card(G") >card(K) and for all g% in G we have g(»(X,))—A(v(X,))eP
for 1<i<e,

§ 4. Separable generation.

Let K be any valued field. Let X, X,, X,, ... be indeterminates. For every
nonnegative integer m let A, =K[(X, ..., X, >]. We shall tacitly use {2, (2.14)].

Lemma (4.1). — Let R be an analytic local ring over K with dim R =n>c¢ and
radg{o}={o0}. Let P, ..., P, be all the distinct prime ideals of height zero in R. Assume
that dim R/P,=n for 1<i<a. Let t;: R—R/P, be the canonical epimorphism. Let J
be an tdeal in R such that J contains a nonzerodivisor of R. Assume that

() for 1<i<a:R[P;, is analytically separably generated over K, i.c., equivalently,
there exisis a local K-monomorphism v, : A,~>R [P, such that R [P, is integral over v;(A,) and
the quotient field of R [P, is separable over the quotient field of v, (A,).

Now, for 1<i<a, let v, be any such and take any xR with t;(x)=u0v,(X,). Then
there exists an infinite subset G of

Gk(R,J) n Gk[R, PJn...nGk[R, P,]

with card(G)>card(K) such that for all g+h in G we have g(x;)—h(x;)¢P; for 1<i<a.

Proof. — Let T be the total quotient ring of R, and let S be the integral closure
of Rin T.

By [1, (18.9)] we see that: P, T, ..., P, T are exactly all the distinct prime
ideals in T, and they all have height zero; (P,T)nR=P, for 1<i<q; T is
noetherian; and if T" is any noetherian subring of T with total quotient ring T then
P,TYnT, ..., (P,T)nT" are exactly all the distinct prime ideals of height zero in T’,
(P, T)nT)n...n((P,T) nT)=radp{o}={o0}, and ((P,T)nT)T=P,T for 1<i<a.

For 1<i<a, we have (TP)nK=P,nK={o} and hence we can take an
overring T, of K and a K-epimorphism w;: T—T; with Ker w;=P,T. By [1, (18.9)]
we now see that w,®...9w,: T - T,;®...@T, is an isomorphism, and T, is the quotient
field of w;(R) for 1<i<a. Let S, be the integral closure of w;(R) in T, for 1<i<a.
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Because of (") we have that the integral closure of R/P; in the quotient field of R/P
is a finite (R/P;)-module for 1<:<aq, ie., S;is a finite w,(R)-module for 1<i<a.
Therefore by [1, (19.23)] we see that S is a finite R-module and

(1) S=w'(S)n...nw S,).

Let # :R/P,—T, be the unique monomorphism such that (y)=uw,(y) for
all yeR. Let v;=t{y;, Then for 1<i<a we have that: 2;:A,—T, is a
K-monomorphism; w;(x;)=0v;(X,); T, is a finite separable algebraic extension of the
quotient field of v;(A,); S; is the integral closure of »;(A,) in T,; and S, is a finite
v; (A,)-module.

Let B be the quotient field of A,. Then there exists a unique monomorphism
¢; : B=>T; such that ¢,(y)=u;(y) for all yeA,. Since T;is separable over ¢,(B), there
exists o+z;eT; such that T,=¢,(B)[z]]. Let 4,=[T;: ¢(B)], and let f/(X,) be the
monic polynomial of degree d; in X, with coefficients in B such that upon applying ¢,
to the coefficients of f; (X,) we get the minimal monic polynomial of z; over ¢;(B). We
can take elements Z; in an algebraic closure of B such that

Si(Xp)= (Xo—2i4) - - (Xo_zidi) for 1<i<a.
Since z;#0, ..., z,#+0, we must have z;%o0 for all 7, j; consequently, since B is an
infinite field, we can find nonzero elements b, ...,5, in B such that b;z;+b,2,;
for all 2,5, i', 7' with i+i. Now we can find o+becM(A,) such that upon letting
Si(ZKo) = (bb))"f] (X[ (8)))

we have

(2) Sil(X)—X7e(M(A,))[X,]  for 1<i<a.

Let z,=(¢q;(b))z; for 1<i<a. Then f(X,),...,[,(X,) are pairwise distinct

nonconstant monic irreducible polynomials in B[X], and for 1<i<a we have that

T,=¢;(B)[z] and upon applying ¢; to the coefficients of f;(X;) we get the minimal

monic polynomial of z, over ¢(B); by (2) we see that zeS;, for 1<:<a. Let

u; : B[X,]->T; be the unique homomorphism such that #(X,)=z;, and u(y)=¢(y)

for all yeBj; then #,(B[X,])=T,, Ker u;=/f,(X,)B[X,], and u;(y)=0;(y) for all yeA,.
Let

(3) F—£(Xy). . .£i(Xo)

and consider the homomorphism

w®...0u,:B[X]>T®...0T,.

/3

Since f,(X,), - -.,/,(X,) are pairwise distinct nonconstant monic irreducible polynomials
in B[X], we see that

Ker(u,@...®u,) =FB[X,] and (4,®...0u)B[X])=T,®...0T,.

Since w,®...0w,:T>T;®...®T, is an isomorphism, we get a unique homo-
morphism z : B[X,] >T suchthat (w,®...0w,)(u(»))=(4,®...9u,)(y) forall yeB[X,].
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It follows that: #(B[X,])=T; Ker u=FB[X]; w,(«(y))=0i(y) for all yeA, and all ¢
with 1<i<a; uis a K-homomorphism; and w,(u(X))=2z for 1<i<a.

Since z; is separable over u(B), we have that &f;(X,)/oX ¢/;(X,)B[X,] for
1<i<a; by (3) we get

OF |3, = T f(Xy) - fima(Xo) (K0 | TKMfsa(X) - ol

since £,(Xy), ..., f,(X,) are pairwise distinct nonconstant monic irreducible polynomials
in B{X,], we get that 0F/oX ¢f(X)B[X,] for 1<:<a; since z(B[X])=T and
Keru=f(X,)...f,(X,)B[X,], we conclude that u(9F/dX,) is a nonzerodivisor in 'I.

Letany ZeA,[X,] be given such that 4(Z) is a zerodivisor in T; since u(B[X,])=T,
there exists Z’eB[X;] such that u(Z')+o=u(Z)u(Z’); since Keru=FB[X], we
must have Z'¢FB[X,]; we can find o#Z’cA, such that Z'Z'eA,[X,]; clearly
Z'7°¢FB[X,], and hence u(Z'Z")+o0; also u(Z)u(Z'Z")=o0, and hence u(Z) is a
zerodivisor in #(A,[X,]). We conclude that every nonzerodivisor in u(A,[X,]) remains
a nonzerodivisor in T. Given any YeB[X,], we can find o+Y €A, such that
YY'eA,[X,], and then u(Y)u(Y)eu(A,[X,]) and u(Y)eA,[X,]; since f(X,) is a
nonconstant polynomial in B[X,], we must have Y ¢f,(X,)B[X,] for 1<i<a; since
Ker u=f£,(X,) ... f,(X)B[X,], and f,(X,), - .., f,(X,) are pairwise distinct nonconstant
monic irreducible polynomials in B[X,], we conclude that #(Y") is a nonzerodivisor
in #(B[X,]). Since u(B[X,])=T, it now follows that T s the total quotient ring
of w(A,[X))-

For 1<i<a we have w;(u(A,[X])="0.(A,)[z], v.(A,)cS,, and zeS;. There-
fore w;(u(A,[X,]))cS; for 1<:<e, and hence by (1) we get u(A,[X,])CS.

Given any seS, by (1) we have w(s)eS; for 1<i<a; since S; is integral
over 7;(A,) and 7{(A,)=uw;(u(A,)), there exists a nonconstant monic polynomial E,(X)
in an indeterminate X with coefficients in %(A,) such that w;(E;s))=o0; Ilet
EX)=E/(X)...E,(X); then E(X) is a nonconstant monic polynomial in X with
coefficients in #(A,), and w,(E(s))=0 for 1<i<a; consequently E(s)=o, and hence s
is integral over u(A,). This shows that S is integral over #(A,), and hence S s integral
over u(A,[X,]).

Thus upon letting R*=u(A,[X,]) we have that: R" is a noetherian subring of T;
T is the total quotient ring of R*; KcR'cS; and S is integral over R". Whence, in
particular, (P,T)nR’, ..., (P,T)nR" are exactly all the distinct prime ideals of height
zero in R'. For 1<i<a we have that: w,(R")=u(A,)[z]cS;; T; is the quotient
field of v;(A,)[2]; S, is the integral closure of v;(A,) in T;; and S;is a finite 2;(A,)-module.
It follows that for 1<<i<la, the integral closure of R'/(P,T)nR" in the quotient field
of R*/(P,T)aR" is a finite (R*/(P,T)nR")-module. By (2.3.3) we can now find an
ideal J* in R" such that J'¢P,T for 1<i<a, and

(4) Lee(Gk(R', J) €In(Gk(R, J))-
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Let d=d,+...4d,, let A’ be the set of all polynomials of degree <d in X, with
coefficients in A, and let A=K[<(X,, ..., X,>] where we regard A to be an overring
of A,. By (2) and (3) we know that F is a monic polynomial of degree d in X, with
cocfficients in A, and F—Xie(M(A,))[X,]- Therefore, by the Weierstrass Preparation
Theorem [1, (10.3)], for every feA there exists a unique 7reA’ such that f—rneFA.
We get a map v:A—T by taking o(f)=u(r) for all feA. By [1, (10.3)] we also
have that: 7, n=7+47r and 7r.—nr.eFA [X;] for all f and f" in A; and
J—neFA [X] for all feA,[X,]. Since Ker u=FB[X] and clearly (FB[X]) nA’={0},
we deduce that: »(f)=u(f) forall feA,[X,]; visa ring homomorphism of A into T;
Kerv=FA; and »(A)=u(A,[X,]). Since o(f)=u(f) for all feA,[X,], we also get
that w,(v(X,)) =w,(u(X,)) =0 (X,)=w(x) for 1<i<a.

Thus v:A—T is a K-homomorphism such that: Kerv=FA; »(dF/éX,) is a
nonzerodivisor in T; v(A)=R’; and w;(u(X,))=wy(x) for 1<i<a. Let

G,=Gx([R, J)nGk[R, P,]n...nG[R, P,],
and G, =G (R, I nGk[R', (B,T)nR"]n...nG[R, (P, T)nR"].

By (3.5) we can now find an infinite subset G* of G, with card(G")>card(K) such
that for all g 4 in G° we have g (v(X))—F(@X))¢P,T for 1<i<a. Let
G=I5'(Izs(G")). Then by (4) and (2.3.1) we see that G is an infinite subset of G,
with card(G)>card(K).

Finally, let any g## in G and any ¢ with 1<:<a be given. We shall show that
then g(x)—A(x,)¢P, and this will complete the proof. Let g'=1Iy(g) and A'=Ig(k).
Then g'elp(G"), K elp(G"), and g’ +4'; consequently g'(v(X,))—& (v(X,))¢P,T, i.e.,

(5) w(g'(2(Xy))) — wi(k' (v(Xy))) +o0.
Now g'elz(G,) and A'elx(G,), and hence by (2.3.1) we see that
g'eG[S, (P,T)nS] and AeGg[S, (P,T)nS].

In view of (1), we get a K-epimorphism =] : S—S;, with Ker w;=(P,T)n S, by taking

wi(y)=w,(y) for all yeS. Let w;:Gg[S, Ker w] - G¢(S;) be the homomorphism
induced by ®w;. Now

w;(g(x;) — h(x)) = wi(g (%) — A (%)
= wj(g' (%)) — wi (K (x;)
= w; (g) (wi (%)) — w; (k') (w](x))
=w;(g") (w; (0(Xy))) — w0 (W) (w0 (2(X,)))
=w;(g' (v(Xy))—wi(F (v(X,)))
+0 by (5),

and hence g(x)—A(x,)¢P,.

Theorem (4.2). — Let R be an analytic local ring over K with dim R>o. Let
Q. -, Q,(a>0), be any distinct isolated primary components of {o} in R such that
dimR/Q,=...=dim R/Q,. Let n=dim R/Q,. Let P,=radgQ,. Let t,:R->R/P;
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be the canonical epimorphism. Let Q'y, ..., Q) (b>0), be any finite number of ideals in R
such that for 1<i<a and 1<j<b we have Q;¢ P, Assume that

(%) there exists a K-epimorphism w: A,—~R, for some d, such that w='(Q,) is a symbolic
power of u*(P) for 1<i<a.

Also assume that ‘

(") for 1<i<a: R/P, is analytically separably generated over K, i.e., equivalently, there
exists a local K-monomorphism v, : A,—R|P, such that R [P, is integral over v,(A,) and the
quotient field of R P, is separable over the quotient field of v;(A,).

Now, for 1<i<a, let v; be any such and take any xeR with t,(x)=v,X,). Then
there exists an infinite subset G of

N ox®, Q) NGIR, Qln NGR, Q1 N GAR, B

with card(G)>card(K) such that for all g=h in G we have g(x)— h(x)¢P; for 1<i<a.

(For an intrinsic formulation of () see [2, (3.6)]. Note that (%) is automatically
satisfied in case Q,=P, for 1<:<a, because then we can take u to be any
K-epimorphism A;—~R. Also note that (%) is automatically satisfied in case
endim R=n4-1, because then we can take u to be any K-epimorphism A, ;—R;
(see [2, (2.16)]). Finally, note that if (g, ..., z,,) is any basis of M(R) and ¢ is any
integer with 1<7<g, then there exists an integer ¢ with 1<¢<m and an infinite
subset G’ of G with card(G’)>card(K) such that for all g+# in G’ we have
g(z,)—h(z,)¢P;; namely, from the existence of G, the existence of ¢ and G’ is easily
deduced by using [2, (2.3) and (2.11)].)

Progf. — Since Q, ..., Q, are isolated primary components of {o} in R, there
exists an ideal Q in R such that QnQ,n...nQ,={o0} and Q¢P, for 1<i<a.
Let J=QnQ’ n...n Q. Then JnQ,n...nQ,={o} and J&P, for 1<i<a. We
can take an overring R* of K and a K-epimorphism 2 : R—+R" with Kers=P,n...nP,.
Let J'=o(]). Let

Gy=Gx(®, J)n [ G([R, B1n N G[R, Q1,
and Gy— (R, J') 0 1 G IR, o(B)].

Let w:Gg[R, Kerv] —- G¢(S) be the homomorphism induced by ». Then by
[2, (4.4)] we have w(G,)=G,; note that clearly

Gx[R, P,]n...nGg[R, P,] cG[R, Ker o]

and hence it makes sense to talk about w(G,). Also note that, in view of |2, (2.1), (2.2)],
we have G,cGg(R, Q) cGg[R, Q)] for 1<j<bs. Now J' contains a nonzerodivisor
of R’, and hence by (4.1) there exists an infinite subset G* of Gy with card(G") >card(K)
such that for all g#+#4 in G we have g(o(x))—A(v(x))¢o(P;) for 1<i<a. Since
w(G,)=G;, for each geG" we can fix g'eG, with w(g')=g; now it suffices to take
G={g :geG}.
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Theorem (4.3). — Let R be an analytic local ring over K with dim R>o0 and
radg{o}={0}. Let P,, ..., P, be all the distinct prime ideals of height zero in R. Let T
be the total quotient ring of R, and let S be the integral closure of R in T.

(Note that then (see [1, (18.9)]): P, T, ..., P, T are exactly all the distinct prime
ideals in T, and they all have height zero; (P,T)nR=P; for 1<i<e; T is noethe-
rian; and if T’ is any noetherian subring of T with total quotient ring T then
P, T)ynT’, ..., (P,T)nT" are exactly all the distinct prime ideals of height zero in T’,
(PT)nT)n...a((P,T)nT)=radp{o}={0}, and ((P,T)nT")T=P,T for 1<:i<e.

For 1<i<e¢, we have (P,;,T)nK=P,nK={0} and hence we can take an overring T,
of K and a K-epimorphism w;: T—T; with Ker w,=P,T. By [1, (18.9)] we now see
that w,®...9w,: T—>T®...@€T, is an isomorphism, and T, is the quotient field
of w;(R) for 1<7<e.)

Assume that

() for 1<i<e:R|[P;, is analytically separably generated over K, i.e., equivalently,
there exists a local K-monomorphism v, : A, — w,(R), where n;=dim R/P;, such that w,(R)
1s integral over v(A,,), and T, is separable over the quotient field of v;(A,,).

Now, for 1<i<le, let v; be any such and take any s;€S with w;(s;)=v,(X,).

Let R’ be a subring of T.  Assume that: R’ is noetherian; K cR' €S S is integral over R';
T is the total quotient ring of R'; and the integral closure of R'[(P,T) R’ in the quotient field
of R'J(P,T)AR' is a finite (R'[(P,T)nR")-module for 1<i<e.

(Note that in the presence of ('), in view of [1, (19.23)] we see that these assumptions
on R’ are automatically satisfied in case RcR’cS.)

Let J' be an ideal in R’, and let a be an integer with 1<a<e. Assume that
dimR/P,=...=dim R/P, and J & P,;T for 1<i<a. Then there exists an infinite
subset G of

Gi(R, J)nGk[R, (B,T)nR']n...nGk[R/, (P,T)nR']
with card(G)>card(K) such that for all g+h in G we have Iz (g)(s;)— g (R)(s)¢P, T
for 1<i<a.

Proof. — By (2.3.3) we can find an ideal J in R such that J& P, for 1<i<g, and
(1) xR, J) clg (R, J).

Let

Gy=Gk(R,])nGk[R, P]n...nGk[R, P,],
and Gy=G¢(R, J)nG[R", (P,T)nR']n...nG[R", (P,T)nR].
We can take x,eR with w(x)=0,(X,) for 1<i<a. By (4.2) we can now find an
infinite subset G* of G, with card(G")>card(K) such that for all g'+% in G we
have g'(x)—# (x)¢P; for 1<i<a. Let G=Ig'(Iz(G")). Then by (1) and (2.3.1)
we see that G is an infinite subset of G; with card(G)>card(K).

Let any integer ¢ with 1<{<a and any elements g and £ in G with g<+# be given;
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let g'=1Iy(g) and A =Iy (k). We shall show that g'(s)—4'(s;)¢P,T and this will
complete the proof. Clearly
(2) w;(8;) = wi(%).

Now g'=1g(g") and A'=Igx(#") where g" and %" are elements in G" with g +4"; conse-
quently g (x)—A'(x)¢P;; since g'(x)=g (x) and A'(x)=4h"(x), we conclude that
gl(xi)—k,(xi)¢Pi> i'e')

(3) w;(8' (%)) +w;(# (%))

By (2.3.1) we have I (Gg[R, P;])cGk[S, (P;T)nS], and hence g’ and /' are in
G[S, (P,T)nS]. We get a K-epimorphism ] :S—w;(S), with Ker w;=(P,T)nS§,

by taking wj(s)=w,(s) for all seS. Let w; : G¢[S, Ker w]] - G (w;(S)) be the homo-
morphism induced by w,. Then

W) (g) (w(s) =wi(g'(s)) and wi(K)(wi(s)=w(H(s) for all seS;

consequently by (2) and (3) we get that w(g'(s)) +w,(#'(s;)), and hence
g(s)—H(s)¢P;T.

§ 5. Perfect fields,

Let K be any valued field. Let X, X, X,, ... be indeterminates. For every
nonnegative integer m let A, =K[<(X,, ..., X, >]. We shall tacitly use [2, (2.14)].
Lemma (5.x). — Assume that K is of characteristic p+o. Let

V(X,, ..., XpeK[(X,, ..., X,>], (r>o0),
be such that V(X,, ..., X,)¢K[[X,, XL, ..., XF]] and

da
V(Xps o X) =X+ BVi(X,, -, X)KE

where d>0, Vi(X,, ..., X, ) eM(K[<X,, ..., X, >]) for 1<i<d, and V,(X,,...,X,)*o0.
Then there exists an integer s with 1<s<m, and positive integers uy, ..., Uj_ 4, Uy 1,y « ., Uy,
such that upon letting Y,=X_ and Y,=X,+X' for t=1,...,5—1,541, ...,n, we have that

VX, Yy, oo, Y,)=DX,, ..., X, ) WX, ..., X,)
where D(X,, ..., X,) and W(X,, ..., X,) are elements in K[(X,, ..., X, >] such that
Do, ..., 0) %0, W(X,, ..., X)¢K[[X,, ..., X, -1, X, X, 4, ..., X,]], and
WX, ..., Xn)=X§+‘_§1Wi(XO, ey Xy Kypgs ey X)X

with e2>0 and W,(Xq, o o, X 1, Xy oo 0 X eEMK[(Xy,y oo XL Xyggs o0 X0])
Jor 1<i<e. Moreover, if V(X,, ..., X,) is irreducthle in K[<(X,, ..., X, >][X,] then
W(X,, ..., X,) is trreducible in K(<X, ..., X1, Xopgs oo X0 [X(]
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Proof. — Since V(X,, ..., X, J¢K[[X,, X}, ..., X?]], there exists an integer j
with 1<j<d such that V(X,, ..., X )¢K[[X?, ..., X?]]. Now

3

VilX,, - X) = SH(X,, ., X,)

where H (X, ..., X,) is an element in K[X,, ..., X,] which is either zero or is homo-
geneous of degree a. Since Vi(X,, ..., X)¢K[[X],...,X]]], we must have
H,(X,, ..., X )eK[[X}, ..., XI]] for some a; let b be the smallest such value of a.
Now we must have H,(X,, ..., X )¢K[X,, ..., X,_, X, X, 4, ..., X,] for some s
with 1<s<n. Since V,(X,, ..., X,)+0, by a standard argument [4, p. 147] we
can find integers #,>1 for ¢t=1,...,5s—1,5+1,...,7n, such that upon letting Y,=X,
and Y,=X,+X for {=1,...,5—1,541,...,n, we have that

(1) VoY, o YK, X X - X)K[X, - XD

We get an element V' (X, ..., X,) in K[<X,, ..., X,>] by setting
VX, oo X)=V (X, Yy, ., Y

By (1) we see that

(2) ViXy, o s X)Xy oo Xygy Xyigs « - X)K[[X, -+ -5 X1

and hence by the Weierstrass Preparation Theorem [1, (10.3)] we have

(3) VX oo, X)=D(X,, ..., X ) WX, ..., X,)

where D(X,, ..., X,) and W(X, ..., X)) are elements in K[<{X,, ..., X,>] such that
(4) D(o, ...,0)*0

and W(X,, .-, Xn):Xﬁ—l—é]lWi(Xo, ey Xy Ky e X)X

with ¢>o0 and

Wi(XOJ R Xs—ia XS+1’ et X,JEM(K[(XO, RS Xs—l’ Xs+1> LR Xn>])
for 1<i<e; by [1, (10.3) and (10.7)] we also know that if V(X,, ..., X,) is irreducible
in K[KX,, ..., X, >[X,] then W(X,, ..., X,) is irreducible in

KXy, ooy Xy gy Xpgs - ’ X)X

Let E be the set of all polynomials of degree <d in X, with coefficients in

K[[X, ..., X]]. Let Vi(X,,...,X,)eK[[X,, ..., X,]] be defined by setting
VilXy, - LX) =Vi(Ys, L Y).

d
Then V'(Xpy 0 X)=Xi+ TVIX,, .o, X)X

and Vi(X,, ..., X, )eM(K[[X,, ..., X,]]) for 1<i<d; consequently by the uni-
queness part of the Preparation Theorem [1, (10.3)] we see that
En(VI(X,, ..., X)K[[X,, ..., X,]])={o},
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and hence by (3) and (4) we get
(5) Ea(WX,, ..., X)K[[X,, ..., X,]])={o}.
Since #,>1 for t=1,...,5—1,5+1, ...,n, we sce that
H,(Y, ..., Y,)=H/(X,, ..., X,)+terms of degree>b in (X,, ..., X,)

and hence

b—1
= E Ha(Y1> R ] Yn)+Hb<X1: L] Xn)

a=1

+terms of degree>b in (X, ..., X));
since H, (X,, ..., X,)eK[X?, ..., X" for 1<a<h and |
H(X,, .., X)¢K[X, .., X, X0, X, -0 X,
we conclude that

V;(Xlﬁ ] Xn)¢K[[X1ﬂ crt Xs-—l’ Xf: Xs+15 MRS} Xn]]a

and hence
(6) oV;(Xy, ..., X,)[0X, *o.
a
Now V' (X, ..., X)X, = ,gi(avz(xl, o, X)X )X

and hence by (5) and (6) we get that
(7) IV (Xy, ooy X)X EW(X,, ..., XOK[[X, -5 X,]]
By (3) we have
VI (X, o .ny X)X, =(D(X,, ..., X,)[XIW(X,, ..., X,)
+D(X,, - XWX, ..., X,)/0X))
and hence by (7) we get that
OW(X,, ..., X,)]0X, *0,

ie., WX, ..., X)eK[[X,, .., X, XU, X ., .., X

Lemma (5.2). — Assume that K is a perfect field of characteristic p=o, and let R
be an analytic local domain over K with dim R=n>o0. Let T be the quotient field of R.
Let (x,, ...,x,) be a system of parameters of R, let R,=K[{x, ..., x,>], and let
To=K({(%, ..., %,>). Let zeM(R) be such that either: (1) z¢T?, or: (2) z is inseparable
over T.  Then there exists a basis (2, ..., z,) of M(Ry) such that (z, 25, ..., Z,) i5 & system
of parameters of R and z, is separable over K ({2, 25, ..., 2,>).

Proof. — Let

X)) =X+ /X1 +...+f;, with fieT,,
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be the minimal monic polynomial of z over T;. Then feM(R,) for 1<:<d, and
fi+o. Let V(X,, ..., X,) be the unique element in K[(X,, ..., X,>] such that
Vilx,, ..., x,)=f;, and let

d
V(X - X)=X0+ B Vi(X,, .., X)X5

Then V(X,, ..., X,)eK[(X,, ..., X0, VilX,, ..., X, )eM(K[(X,, ..., X,>]) for
1<:<d, V,(X,, ..., X,) %0, and V(X,, ..., X,) isirreducible in K[(X, ..., X, >][X].

Suppose if possible that V(X,, ..., X, eK[[X,, X7, ..., X2]]. Since K is perfect,
by [1, (24.1)] we then have f(X,)eR*[X,]. If also f(X,)eT,[X}] then we would
get fIX)7eT,[X,] and f(X,)=(f(X,)"")?, which would contradict the fact that f{X,)
is irreducible in T, [X,]. Consequently, f(X,)¢T,[X?], and hence z is separable
over T,. Therefore z¢T?. Now z'7 satisfies the equation

(zllp)d+ﬂ1/p<z1/p)d—l+ . _|_fd1/p= o
of degree d with coefficients /i'7, ..., /" in T,, and hence
[To(2'7) : To) <d=[Ty(z) : Tol.

Consequently 2'7eT,(z) cT, and hence zeT?. This is a contradiction.

Thus we must have V(X, ..., X,)¢K[[X,, X}, ..., XP]]. Therefore by (5.1)
we can find s, u, .., 0y, U g, ooy, Yy, oo, Y, D, W, W, L, W, as des-
cribed there. Let y,=x,, and y,=x,—a" for ¢t=1,..., s—1,541, ..., n; let
=Wz, 015 oo Y dhits -5 for 1<i<e; and let

S X)=X{+A X7 S
Then (i, ...,),) is a basis of M(Ry), and f'(y.)=o0. It follows that
(57};’ . -,)’;~1:)’§+1: A :)’1,1)

is a system of parameters of R, and f'(X,) is the minimal monic polynomial of y, over
K(<Z,)’1, v -:.y.;—la_y;+1’ o 7.y7,‘b>)' Since
WX, - X)¢eK[[X,, -, X, XXy, L X

we also have that y; is separable over K(<z, 91, ..., % 1, Ve 415 - - > 9>). It now suffices
to take (Zy, -5 ) =I5 D0 -+ > Temt3 Vo5 2 I0)-

Lemma (5.3). — Assume that K is a perfect field of characteristic p+o, and let R be an
analytic local domain over K with dim R=n>o. Let T be the quotient field of R,
let (xy, ..., %,) be a system of parameters of R such that T is separable over K({xy, ..., x,>),
and let zeM(R) be such that z¢'TP. Then there exists a basis (2, ..., 2,) of
M(K[<xy, ..., x,0]) such that (z, 2y, ..., z,) is a system of parameters of R and T is separable
over K({2, 29, « -3 %,))-

Proof. — By (5.2) there exists a basis (g;, . ..,2,) of M(K[<{#,, ...,%,>]) such that
(2, 2Z55 - - -5 Z2,) 18 @ system of parameters of R and z, is separable over K(<z, 2,, ..., 2,).
It follows that T is separable over K(<z, 25, ..., Z,)).
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Lemma (5.4). — Assume that K is perfect, and let R be an analytic local domain over K.
Then R s analytically separably generated over K.

Proof. — Let n=dim R, T =the quotient field of R, and p =the characteristic
of K. We have nothing to show if either p=0 or n=o0. So suppose that p+0 and
n>o. In [1, (24.5)] we have given a proof in this case under the additional assumption
of K being infinite. As an application of (5.2) we shall now give a proof which is inde-
pendent of this additional assumption. Namely, it suffices to show that given any system
of parameters (x,, ..., x,) of R such that T is inseparable over K(<x,, ..., x,>), there
exists a system of parameters (z,, ..., z,) of R such that

(I) [TZK(<.€1, s zn>)]i<[T:K(<x1: "'9xn>)]z'

where [ ]; denotes the degree of inseparability. So let (x, ..., %,) be any given system
of parameters of R such that T is inseparable over K({x;, ..., x,>). We can take
2, M(R) such that 2z, is inseparable over K({#,, ..., x,>), and then by (5.2) we can find
a basis (3,2, ...,2,) of M(K[{x, ...,%,>]) such that (z,, 2, ...,2,) is a system
of parameters of R and z is separable over K(<{z,, 2, ..., 2,>). Now we clearly
have (1).

Theorem (5.5). — Assume that K is perfect, and let R be an analytic local ring over K
with dim R>o0 and radg{o}={o}. Let Pi, ..., P, be all the distinct prime ideals of
height zero in R. Let T be the total quotient ring of R, and let S be the integral closure of R
in T.

Note that then (see [1, (18.9)]): P, T, ..., P, T are exactly all the distinct prime
ideals in T, and they all have height zero; (P,T)nR =P, for 1<i<¢; T is noethe-
rien; and if T’ is any noetherian subring of T with total quotient ring T then
®, )T, ..., (P, T)nT" are exactly all the distinct prime ideals of height zero in T’,
(B, T)nT)n...a((P,T)nT)=radr{o}={o}, and ((P,T)nT")T=P,T for 1<:i<e.

For 1<i<e¢, we have (P,;,T)nK=P;,nK={o0} and hence we can take an overring T,
of K and a K-epimorphism w,: T—T, with Ker w,=P,T. By [1, (18.9)] we now see
that w,®...Qw,: T—>T®...®T, is an isomorphism, and T; is the quotient field
of w;(R) for 1<:i<e.

Let S, be the integral closure of w;(R) in T, for 1<i<e. By (5.4) we know that R /P,
is analytically separably generated over K for 1<:<e¢, and hence S; is a finite
w;(R)-module for 1<:i<¢; consequently by [1, (19.23), (20.6)] we see that S is a
finite R-module, S=w;!(S,)n...nw;(S,), and S, is a local domain for 1<7<e.

Let R’ be a subring of T. Assume that: R’ is noetherian; KCR'CS; S is integral
over R'; T is the total quotient ring of R'; and the integral closure of R'[(P,;T)aR" in the
quotient field of R'[(P,TYnR" is a finite (R'/(P,T)nR')-module for 1<i<e.

(Note that, in view of what we have said above, these assumptions on R’ are auto-
matically satisfied in case RcR’cS.)

Let K’ be the integral closure of K in T, and let K; be the integral closure of K in T, for
1<i<e. Then we have the following.
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(5-5-1) K, is a coefficient field of S, for 1<i<e, and K'=wi'(K)n...nw ' (K).
Girven any elements x,, . .., x, in S, there exists yeS such that for 1<i<e we have: w;,(»)¢K,,
and if wi(%)¢K; then w,(y)=wi(%).

(5-5.2) Let J' be an ideal in R’, and let a be an integer with 1<a<e. Assume that
dim R/P,=...=dim R/P, and J' ¢ P;T for 1<i<a. Let any elements x,, ..., x, in S
be given, and let W be the set of all integers © with 1<i<a such that w;(x)¢K,. Now take
any elements y,, ..., 5, n S such that wi(y)¢K; for 1<i<a, and w;(y;)=uw,x;) for all
1eW (note that by (5.5.1) we can actually find yeS such that w,(»)¢K; for 1<:<e,
and w;(y)=uw;(x;) for all (eW). Then there exists an infinite subset G of

Gg(R’, J') nGg[R’, (P,T)nR']n...nG[R’, (P, T) nR]

with card(G) >card(K) such that for all g+h in G we have Iy (g)(y;)—Ig (B)(y;)¢P;T
Jor 1<i<a, and Ig(g)(x)— g (h)(x%)¢P, T for all icW.
(5-5-3) Let J' be any ideal in R’ such that J' contains a nonzerodivisor of R'. Then

Inv Gg(R’, J) n G¢[R’, (P,T) nR']n...nG4[R, (P,T)nR’]cK’.

Proof of (5.5.1). — By Hensel’s lemma [1, (20.6)] we see that K, is a coefficient
field of S; for 1<i<e.

To show that K'=wY(K)n...nw ' (K,), let any teT be given. If teK’ then
clearly w,()eK; for 1<i<e, ie., tew'(K)n...nw;'(K,). Conversely suppose
that tew (K} n...nw; 1 (K,); then w,(f)eK; and hence there exists a nonconstant
monic polynomial f(Z) in an indeterminate Z with coefficients in K such that
w(f;(t))=o0; let AZ)Y=f(Z)...f,(Z); then f(Z) is a nonconstant monic polynomial
in Z with coefficients in K, and w;(f(t))=o0 for 1<i<e; consequently f{(t)=o0, and
hence feK’.

Finally, let any elements %, ..., %, in S be given. Now §; is a local domain
with dim S;=dim w;(R)>0 and hence we can find x/eS;, with x¢K,. Since
S=wi1(S,)n...nw1(S,), there exists a unique yeS such that for 1<:<e we have:
w(y)=w(x) if w(x)¢K;, and w,(y)=x if w(x)ekK,.

Proof of (5.5.2). — Let R'=R[N] where

N=w"(M(S)) n...nw ' (M(S,)).

Now w,®...0w,: T T;®...®T, is an isomorphism, S=w;'(S,)n...nw!(S,),
and S; is a local domain for 1<i<e¢; consequently by [1, (18.8)] we see that
w;(N)=M(S,) for 1<i<e¢, and N =the intersection of all maximalideals in S; whence,
in particular, RcR"cS. Since S is a finite R-module, by (2.4) we now get that R
is an analytic local ring over K. It follows that: T is the total quotient ring of R";
S is the integral closure of R'in T; (P, T)nR’, ..., (P,T)nR" are exactly all the distinct
prime ideals of height zero in R*; ((P,T)nR)T=P,T for 1<i<e; T,=the quotient
field of w;(R") for 1<i<e¢; and for 1<i<e we have that w,(R") is an analytic local
domain over K with dim w,(R")=dim R/P, and w,(M(R"))=M(w,(R"))=M(S,).
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Also note that by (5.4) we know that R*/(P,T)nR" (ie., w;(R")) is analytically sepa-
rably genecrated over K for 1<i<le.

By (5.5.1) we know that K; is a coefficient field of S; and hence there exists a unique
keK; such that w;(y)—keM(S,); note that now o=+u;(y)—keM(S,)=M(w,(R"))
for 1<:<a.

Let n=dim R/P;; note that then n>0 and dim w;(R)=n for 1<i<a. Letp
be the characteristic exponent of K, i.e., p=1 if K is of zero characteristic, and p = the
characteristic of K if K is of nonzero characteristic. We claim that for every i with 1<i<a,
there exists a nonnegative integer &; and a local K-monomorphism 7, : A,—w,(R") such
that w;(R") is integral over z(A,), T; is separable over the quotient field of 7,(A,), and

(1) 5(XY)=wi(5)—k  where g¢=p".

Case of p=1. — Upon letting z; = w;(y;)—k;, we now have that w,(R") /z,w,(R") is
a local ring of dimension n—1, and hence we can find elements z,, ..., &, in M(#;(R")
such that (z, ..., %, is a system of parameters of w;(R’); it suffices to take b,=1
and z;: A, —>w,(R") to be the unique K-homomorphism with 3,(X;)=¢; for 1<j<n.
» Case of p+1. — Now §; is integrally closed in T;, o#uw;,(y)—keM(S,), and
mr_]lM(Si)"‘:{o}; consequently there exists a unique nonnegative integer &; such that
upon letting ¢;=p% and z,=(w;(y)—Fk)"% we have that z,eM(S;) and z,¢T?;
since M(S;) =M(w;(R")), we have z,eM(w;(R")); now by (5.3) and (5.4) we can
find elements z,, ..., 2, in M(w,(R")) such that (z;, ..., Z,) is a system of parameters
of w,(R") and T; is separable over K[{z, ..., 2;,>]; it suffices to take z;: A,—w,(R")
to be the unique local K-homomorphism with #(X))=z; for 1<j<n.
This completes the proof of the claim. For 1<:<a we can take 5eS with

(2) w;(s;) =,(Xy).
Upon taking R” for R in (4.3) we now find an infinite subset G of
GiR, J)nG[R', (P, T)nR'In...nG[R', (P, T)nR']
with card(G) >card(K) such that for all g£2% in G we have I (g)(s;)— Iy (A)(s,) ¢P, T
for 1<:<a. Henceforth let i be any integer with 1<i<a, let g and % be any elements

in G with g+4 and let ¢'=Ig(g) and A =I,(k). We know that then
g'(s)—W(s)¢PT, Le.,

(3) ' w;(¢'(5) F wi(k'(s)-
We want to show that: g'(y)—4%'(y)¢P,T; and if ieW then g'(x)—4"(x;)¢P;T.

Thus, what remains to be proved is that

(4) w,(g' () Fwi(h'(5)),
and
(5) if w(y)=w(x) then w,(g (x;))+w( (x)).
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Now w(S)=S; and hence we get a K-epimorphism w]:S—S;, with
Ker w,=(P,T)nS, by taking w](s)=uw;(s) for all seS. Let w; : G¢[S, Ker w]] — Gg(S))
be the homomorphism induced by w;. Now g'=1Ig.(g) and A'=Ig (), and g and %
arein G¢[R’, (P;T) nR’}; hence by (2.3.1) we see that g’ and A" are in G¢[S, (P,T) nS].
Let g'=w;(¢’) and K =uw,(k'). Then

(6) 2£eGg(S;) and w(g'(s)) =g (w;(s)) for all seS,
and
(7N FeGg(S,) and w,(K(s))=F(ws)) for all seS.

By (2), (3), (6) and (7) we get that

(8) £ @(Xy)) # 1 (0,(Xy))-

In view of (6) and () we also see that (4") and (5°) are equivalent to asserting that:
& (w, () #4 (w,(5)). We now proceed to show that

(9) g (wi(5))— kK (w()) *o,

and this will complete the proof.

Now #;(X,)eM(w;(R"))=M(S,); since g and %" are automorphisms of S;, we
have g'(M(S,))=M(S,) and A (M(S,))=M(S;); consequently

g (@(X))eM(S) and #(z(X,)eM(S,).
Therefore by (8) we get that

(10) 0+ (1(X,)) — A (%(X,)) e M(S)).
Let ' .
Z =g (o(XD))—H (5(X37))-
Then by (1)
(11) g (wi(3)— K (w,(5)) =Z+ g (k)— k' (k).
Now Z =(g' (0(Xy) — A (X))

and hence by (10) we get that
(12) o+ZeM(S,).
Now K, is the integral closure of K in S;, and g" and %" are K-automorphisms of S;;

consequently we must have g (K;)=K; and /' (K;)=K;; therefore g'(k)eK, and
k' (k)eK,;, and hence

(13) g (k) —F (k)eK,
By (5.5.1) we know that K, is a coefficient field of S;; therefore by (11), (12) and (13)

we get (9).
Proof of (5.5.3). — Follows from (5.5.1) and (5.5.2).
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Theorem (5.6). — Assume that K is perfect, and let R be an analytic local ring over K
with dim R>o0. Let Qg, ..., Q, (a>0), be any distinct isolated primary components of {0}
i R such that dim R/Q,=...=dim R/Q,. Le P,=radgQ,. Let Q,...,Q} (b>0),
be any finite number of ideals in R such that for 1<i<a and 1<j<b we have Q&P
Assume that:

(%) there exists a K-epimorphism u : A,—~R, for some d, such that w=*(Q)), is a symbolic
power of u=*(P) for 1<i<a.

Let any elements x,, . .., x, in M(R) be given. Clearly there then exist elements y,, . .., y,
in M(R) such that for 1<i<a we have: y,¢P,, andif x,¢P; then y,=x;; nowlet y,, ..., »,
be any such. Let W be the set of all integers i with 1<i<a such that x,¢P,. Then there exists
an infinite subset G of

N Ge®, ) n N GelR, Qa1 GiR, Q0 A Gy (R, B

with card(G) >card(K) such that for all gk in G we have g(3,)—k(9,)¢P; for 1<i<aq,
and g(x)—h(x;)¢P; for all (e W.

(For an intrinsic formulation of (%) see [2, (3.6)]. Note that (*) is automatically
satisfied in case Q;=P, for 1<i<a, because then we can take u to be any
K-epimorphism A;—R. Also note that (%) is automatically satisfied in case
emdim R=7n+41 where n=dim R/Q,, because then we can take # to be any
K-epimorphism A, . ;—>R; see [2, (2.16)].)

Proof. — Since Q, ..., Q, are isolated primary components of {0} in R, there
exists an ideal Q in R such that QnQ;n...nQ,={o} and Q¢ P; for 1<i<a.
Let J=QnQ'n...nQ% Then JnQ n...nQ,={o0} and J¢P, for 1<i<a. We
can take an overring R" of K and a K-epimorphism »:R—>R" with Kerv=P,n...nP,.
Let J'=0(J). Let

Go=Gx(R, J) o 1 G[R, Pl N G([R, Q1,
and Gy =Gx(R, J') n [l GyIR', o()].

Let w:Gg[R, Ker v] > Gg(R") be the homomorphism induced by ». Then by
[2, (4-4)] we have w(G,)=Gj; note that clearly

G¢[R, P]n...nGg[R, P,]cGg[R, Ker 7]

and hence it makes sense to talk about w(G,). Also note that, in view of [2, (2.1), (2.2)],
we have G,CGg(R, Q) cGk[R, Q)] for 1<;<8.

Let #:R"—R'/s(P,) be the canonical epimorphism. Then for 1<:i<g, in
view of [2, (2.10)], we have that £(s( y,)) is not integral over #(K), and: ie W<(v(x,))
is not integral over #(K) < 4(v(;))=4(v(x,)). Also clearly J'¢2(P;) for 1<i<a.
Therefore by (5.5.2) there exists an infinite subset G” of G, with card(G")>card(K)
such that for all g#+# in G" we have g(v())—h((»))¢v(P) for 1<i<a, and
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g(v(x))—h(v(x;)) ¢o(P,) for all ieW. Since w(G,)=G,, for each geG" we can fix
g'eG, with w(g')=g; now it suffices to take G={g':geG }.

Theorem (5.7). — Assume that K is perfect, and let R be an analytic local ring over K.
Let Qg ..., Q, be all the distinct isolated primary components of {0} in R. Let P;=radgQ,.
Let Qy, ..., Q) (6>0), beany finite number of ideals in R such that for 1<i<e and 1<j<b
we have Q¢ P;.  Assume that

(%) there exists a K-epimorphism u : A;—~R, for some d, such that u=*(Q)) is a symbolic
power of u=*(P,) for 1<i<e.

Let

6= c(R, Q) n A CxIR, Q)0 N (R, Q1 n A Gy IR, .

Then Inv GcK+radg{o}.

(Note that by [2, (2.10)], K+radg{o}=the integral closure of K in R.)

(For an intrinsic formulation of (%) see [2, (3.6)]. Note that () is automatically
satisfied in case Q;=P;, for 1<:i<e¢, because then we can take u to be any
K-epimorphism A;,—R. Also note that (%) is automatically satisfied in case
dimR/P,=...=dim R/P, and emdim R=n-+41 where n=dim R/P;, because then
we can take u to be any K-epimorphism A, ,—R; see [2, (2.16)].)

Progf. — Follows from (5.6).

Theorem (5.8). — Assume that K is perfect, and let R be an analytic local ring over K
with radp{o}={0}. Let Py, ..., P, be all the distinct prime ideals of height zero in R. Let
Q}, ..., Q4 (6=>0) be any finite number of ideals in R. such that for 1<i<b we have that Q]
contains a nonzerodivisor of R.  Let

G:jrj1 Gy(R, Q) njrj1 Gi[R, Q] nifjl Gg[R, P,].

Then Inv G=K. Moreover, if G’ is any subset of G(R) with GcG’, then Inv G’ is a
subfield of K.

(Note that by [2, (2.10)] we know that K =the integral closure of K in R.)

Proof. — By (5.7) we get that Inv G=K. The second assertion follows from this
in view of [2, (2.7)].

Theorem (5.9). — Assume that K is perfect, and let R be an analytic local ring over K
with radg{o}={o}. Then Inv Gx(R)=K, and Inv G(R) is a subfield of K.

(Note that by [2, (2.10)] we know that K = the integral closure of K in R.)

Progf. — Follows from (5.8).

§ 6. Local rings in which every nonunit is a zerodivisor.

Theorem (6.1). — Let R be a local ring with coefficient field K. Let n=emdim R,
Assume that n>o (i.e., R+K). Also assume that every element in M(R) is a zerodivisor of R.
Let Ry=K[X]/X®*K[X] where X is an indeterminate. Then we have the following:
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«n=1, card(K)=2, and M(R)*={o}
<card(K)=2 and R is K-isomorphic to R,
<card(K)=2 and R is isomorphic to R,
<card(R)=4

<G(R)={1}.

Proof. — Now M(R) is an associated prime ideal of {o} in R, and hence there
exists o+yecM(R) such that (JR)M(R)={o}.

First suppose that yeM(R)%. Take a basis (x,, ..., x,) of M(R). Now every z
in R can uniquely be expressed as

2=2z+2z%+... +2,%,+2 with 2z, ..., 2, in K and zeM(R)%.
For every a=(a,, ..., a,)eK" we get a K-homomorphism g, : R—-R by setting:
&y=z+(ya+...+2z,a,)y for all zeR.

Upon letting —a=(—a,, ..., —a,), we have g,g_,=g_,g,=the identity map of R,
and hence g,eGg(R). Clearly g,+g, for all a+5 in K® Thus we have shown that:

(5) If yeM(R)? then card(Gg(R))>card(K").

Next suppose that y¢M(R)®> and »n>1. Let x,=—y. We can find elements
Xyy o ooy X,y in M(R) such that (x, ..., x,) is a basis of M(R). Again, every z in R
can be uniquely expressed as

2=zt 2% +...+2,.x,+2 with z,, ...,z, in K and 2’e M(R)2
For every a=(a, ..., a,_,)eK"™* we get a K-homomorphism g, : R—R by setting:
&R)=z+ (4. .. +2,_4a, 1)y for all zeR.

Upon letting —a=(—a,, ..., —a,_,), we have g g_,=g g =theidentity map of R,
and hence g,eG¢(R). Clearly g,+g, for all a+4 in K"~'. Thus we have shown
that:

(6) If y¢M(R)® and n>1 then card(Gg(R))>card(K"™1).

Finally suppose that y¢M(R)* and n=1. Now M(R)=yR and

M(R)*=»*R ={o}.
Consequently, every z in R can uniquely be expressed as z=z,+2, 7 with z, and z,
in K. For every o+acK we get g,eGy(R) by setting: g,(z)=2,4az;» for all zeR.
Clearly g,+g, for all o+a+b+0 in K. Thus we have shown that:
(7) If y¢M(R)? and n=1 then M(R)*={0} and card(Gg(R))>card(K)—1.
(1), (2) and (3) follow from (5), (6) and (7). (4) follows from (1), (2) and (3).
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§ 7. Remarks on fields of definition.

Let R be a local ring, let S=R/M(R), and let ¢:R—->S be the canonical
epimorphism; now G(R)=G[R, M(R)], and hence ¢ induces a homomorphism
u:GR)—>G(S). Let V'=InvG(R) and V=Invu(G(R)). Let p be the charac-
teristic of S, where p may or may not be zero.

(7.1) t(V')cV, and t(V') and V are subfields of S. If p+o0 and y is any element
n S with y*eV then yeV; whence, in particular, if S is perfect then so is V.

Obviously ¢(V’')cV. By [2, (2.7)] we have that V is a subfield of S. If p=o
and y is any element in S with »?eV then clearly yeV. To see that ¢{(V’) is a subfield
of S, let any xeV’ with #(x)+o0 be given; now x¢M(R) and hence 1/xeR; for any
g€G(R) we have

1/ =(1/x)g(1) = (1/x)g((x) (1 /%)) = (1 /x)g (%) g (1 [x) = (1 /x) (x) (1 [x) = g(1 [x) ;
thus 1/xeV’ and clearly #(1/x)=1/¢(x).

(7.2) If R has a coefficient field K such that g(K)=X for all geG(R), then clearly
t{KnV)=t(V)=V (note that by [2, (2.7)] we know that KnV’ is a subfield of K,
and hence now ¢ induces an isomorphism of KnV’ onto V). Note that by [2, (2.12)]
we see that: if S is perfect with p+o0 and R has a coefficient field K, then g(K)=K for all
geG(R). Finally note that by (5.9) we know that: if radg{o}={o0} and R is an
analytic local ring over a perfect valued field K, then V' is a subfield of K, and hence t induces an
isomorphism of V' onto t(V').

Henceforth assume that R is complete, R is of characteristic p, and S is algebraically
closed. For any field H and any nonnegative integer a let H, denote the ring of formal
power series in indeterminates X, ..., X, with coefficients in H. By Cohen’s theorem
we know that R has a coefficient field, i.e., equivalently, there exists an epimorphism &:
S,—~R for some a, such that #(6(s))=s for all seS. Let E(a) be the set of all epimor-
phisms 4: S,—~R such that #(b(s))=s for all seS. For every beE(a) let D(q, b) be
the set of all subfields H of S such that ((Ker ) nH,)S,=Ker 4, and let D’(a, b) be the
set of all subfields H” of R such that H'=54(H) for some HeD(q, ). Let

oc

p=U U D@y, D=U U Db,

a=0 bc E) a=0 b€ Ea)
D'={HeD: H is perfect}, D”"={HeD’: H is perfect},
F=Ngyg F=MNH F=NH F=10NH
HED HeDr

HeD HeD*
One might designate every member of D* {or D, or D", or D) to be a field of definition
of R, and F* (or F, or F”, or F) to be the field of definition of R. Note that clearly
FcF,FcF" «(F")cF, and #(F')cF; in view of [2, (2.12)] we also see that if p=o
then #(F")=F" and #(F)=F.

Thus, to R we have attached the six subfields: ¢(V’), V, t(F'), F, {(F”), and F’
of S. It would be interesting to investigate the properties of these fields and their
relationships. For instance, one may ask: 1) FeD?; 2) F'eD"?; 3) are these various
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fields, “ in some sense °, finitely or countably generated over their prime subfield?; etc.
In this connection we only offer the following two remarks (7.3) and (7.4):

(7-3) VCF'. Moreover, if HcV for some HeD" then H=F=V,

The second assertion follows from the first. To prove the first assertion, let any
perfect subficld H of S and any epimorphism 4: S,—~R be given such that ¢(b(s))=s
for all seS and ((Ker d)nH,)S,=XKer b; also let any yeS be given such that y¢H.
We want to show that then y¢V. By [2, (2.8)] there exists A'€Gy(S) such that
R (y)+y. We get heGy(S,) by taking

h(Efy X0 XE) =T (f )XT. . X
for all
Xfy ol Xe . XeeS, with f, €S

Since ((Kerd)nH,)S,=Ker b, we see that heGy[S,, Ker b]. Let
b" : Gy[5S,, Ker 8] — Gy (R)

be the homomorphism induced by 4, and let g=u(d'(h)). Then geu(G(R)) and
g(»)=H(y)*y. Therefore yp¢V.

(77-4) Let K be any algebraically closed field of characteristic p, where p may or
may not be zero. Let K; be the prime subfield of K. Let z,, ..., 2, be any given
finite number of elements in K with z,=1. Let L=Ky(z, ...,%,). In other words,
let L be any subfield of K such that L is finitely generated over K,. Let L'=L if p=o,
and L'=LF" if p+o0; note that if p+o then: L' is finitely generated over K,<>L
is algebraic over K. We can take positive integers m, n, ¢, d such that: ¢ ge<m;
m-+q+qe<n; nis not divisible by p; n+m-+¢+¢e<d; and n and d are coprime. Let X

be an indeterminate, and let

Y:Xn+m+ > z{xn+m+q+qi+xd.
i=0

Upon taking R=K[[X" Y]] we clearly have that R is a one-dimensional complete
local domain with coefficient field K and emdim R =2. Let S, ¢, V, etc., be as above.
By [2, (5.3)] we have that #(L) cV and hence by (7.1) we get that #L’)cV. Clearly
t(L")eD", and hence by (7.3) we get that ¢(L')=F=V. In view of (7.2), we now also
see that, if p+o0 then V=1

Purdue University, Lafayeite, Indiana, U.S.A.
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