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On Randomness and Probability

How To Mathematically Model Uncertain Events

Rajeeva L Karandikar

Whether random phenomena exist in nature or not, it is
useful to think of the notion of randomness as a mathemati-
cal model for a phenomenon whose outcome is uncertain.
Such a model can be obtained by exploiting the observation
that, in many phenomena, even though the outcome in any
given instance is uncertain, collectively there is a pattern.
An axiomatic development of such a model is given below.
It is also shown that in such a set-up an interpretation of the
probability of an event can be provided using the ‘Law of
Large Numbers’.

What is randomness? Do random phenomena exist outside of
casinos and gambling houses? How does one interpret a statement
like "there is a 30 per cent chance of rain tonight" — a statement we
often hear on the news?

Such questions arise in the mind of every student when she/he is
taught probability as part of mathematics. Many students who go
on to study probability and statistics in college do not find
satisfactory answers to these questions. Those who did not (and
some of those who did) study probability as part of their curricu-
lum are generally sceptical when it comes to the notions of
probability and randomness. But many of them still rely on these
notions — like physicists when it comes to statistical mechanics
and quantum theory and engineers when it comes to communi-
cations, design of reliable systems and so on.

Let us look at the question: What is a random phenomenon?
Some accept that the outcome of a toss of a coin is a random event
since it is not known whether the coin will come up Heads or Tails.
But if one were to write down all the parameters involved, like

How does one
interpret the
statement that
“there is a 30 per
cent chance of rain
tonight"?
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Some accept that
the oufcome of @
coin foss is random
since it cannot be
predicted. But if one
were to write down
all the parameters
involved, then it is
conceivable that the
exact path of the
coin can be
described by
equations of
mefion. And if one
can solve ﬁhe{se
equations, the
oulcome is
deterministic,

not random.

Think of the notion
of randomness as @
mathematical
model for events
whose ouicome is
not completely
specified.

the exact force applied, the point where the force is applied, the
wind velocity, the density of air, ... then it is conceivable that the
exact behaviour of the coin can be described by equations of
motion; and if one is able to solve them, the outcome can be
determined. Thus it can be argued that the outcome is determi-
nistic, not random. We may not be able to determine it easily
though!

The above argument prompts us to think: Are we calling certain
events random out of sheer ignorance?

Randomness as a Model for Uncertainty

One view which is not open to such criticism is to think of the
notion of randomness as a mathematical model for events whose
outcome, even in principle, is not completely specified. Immedi-
ately two questions arise. How can we model an event if its
outcome is uncertain? And why should we model such events?

Let us look at the second question first. One can think of many
situations where we have to make decisions under uncertainty.
We need to take a train at 6.30 pm at the railway station and we
need to decide when to start from home — we know that it may
take anywhere between 30 minutes and 1 hour depending on the
traffic; in any case before we start we don’t know exactly how long
it will take. Consider another situation: A drug company has
come out with a drug which it claims is better than chloroquin
for the treatment of malaria, and the government agency needs to
decide whether to allow the company to sell the drug in the
market. No one can say with certainty which medicine is more
effective and what side effects the medicine may have. This is the
case with most medicines. Take another situation which all of us
face or have faced in the past: at the end of a school year, the
teacher needs to decide which students deserve to be promoted to
the next class — it is not feasible for the teacher to ask each
student to do everything that has been taught in the class. We all
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'accept the solution in this case because we grew up with it: the
teacher chooses some questions related to the material that has
been taught during the year; and based on the answers to these
chosen questions, the decision is made. Everyone knows that the
final marks obtained by a student depend on the questions that
are asked. It is possible that a question paper set by another
teacher will yield a very different result. Yet, the marks obtained
still give an indication of what the student has learned. We believe
that it is extremely unlikely that a student who has got the highest
marks in a test will fail the test if the paper were set by another
teacher. One last example — the government wants to decide if
enough foodgrains will be produced in the country this year or
whether there will be a shortfall (in which case it has to import).
In this case, as the data on food production will be available only
after the harvest, when it may be too late to import, the govern-
ment needs to estimate the foodgrain production and make a
decision in time. The cost of an error in this case is very high for
the country as we know from recent experience.

We can think of many more situations where we have to make
decisions when we do not have complete information — may be
because the event is a future event, or our understanding of the
underlying phenomenon is incomplete, or it is too expensive to
gather the information. Thus, if we can mathematically model the
uncertainty, it may help us in decision-making.

Now let us examine the other question. How can we model
uncertain events mathematically? Over the centuries, mankind
has observed many phenomena in which the outcome in any
given instance is uncertain, but collectively the outcomes con-
forms to a pattern.

An example of this is: Though, to start with, one could not tell
whether an unborn child would be aboy or a girl, the total number
of births in a town over a year showed a pattern — the number of
male children and female children were approximately the same.

One can think of
many situations
where we have o
make decisions
based on incomplete
information.

So if we can
mathematically
model the
uncertainty, it

may help us in
decision-making.

Over the centuries,
mankind has
observed many
phenomena where
the outcome in any
given instance is
uncertain; but
collectively it
conforms fo a
pattern. We cannot
say whether a
particular unborn
baby will be a boy or
a girl, but the number
of male and female
children born
worldwide is always
almost the same.
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We seem to know
exactly what will
happen if we have
a gram of
radioactive
material. Yet there
is no deterministic
model at the atomic
level to predict
when a specified
atom wiill
disinfegrate.

And this was observed in different towns, across the continents.
The situation has changed marginally. Today, by medical tests,
itcan be determined a few months before birth if the unborn child
is a boy or a girl; but even today, there is no deterministic model
which can tell us the sex of an unborn child at the moment of
conception.

The next example is from physics — about radioactive sub-
stances. It is known that certain substances like radium and
uranium spontaneously emit particles like alpha and beta parti-
cles and/or electromagnetic radiation like gamma rays. This phe-
nomenon is called ’radioactive decay’. This happens because
some of the nuclei (i.e. radioactive nuclei) of such substances are
unstable. It is also observed that the rate of this decay is propor-
tional to the number of radioactive nuclei present in the sub-
stance, and does not depend on other factors such as the shape of
the substance and other physical conditions of the environment.
In fact it has been observed that the number of radioactive nuclei
present in a sample of a radioactive substance is reduced to half
the initial number in a fixed length of time. This time is called
the halflife. We seem to know exactly what will happen if we have,
say, 1 gram of radioactive material. Yet there is no (deterministic)
model at the atomic level for determining when a specified atom
will disintegrate.

Similar is the case with the kinetic theory of gases. It deals with
the collective behaviour of gas molecules, but there is no deter-
ministic model for the behaviour of an individual gas molecule.
There are many such instances in physics.

The Model

Let us assign to an uncertain event a number between 0 and 1
which we call its probability of occurrence with the understanding
that higher the number, the higher is the chance that it will occur.
Also, let us postulate that the certain event (i.e. an event that will

s
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definitely happen) has probability 1 and the null event (i.e. an
event that will never occur) has probability 0. We also postulate
that if two events cannot occur simultaneously (such events are
called mutually exclusive), then the probability that one of the
two events will occur is the sum of their respective probabilities.

Let us consider experiments that can result only in one of count-
ably many outcomes (finite or infinite) — we exclude, for now,
experiments which can result in one of uncountably many out-
comes. Let us represent the outcomes as ®; and let

[ |
Q =01, 02, W3, - - ,ON]

if the total number of outcomes is N <« or

!

|
Q =01, 02,3, -~ ;Wn, - -+ |

if the total number of outcomes is countably infinite..

Subsets of Q are called events. We say that the event A has
occurred if the experiment results in an outcome wije 4. A
probability allocation for this experiment is given by a real-valued
function P defined on the set of all subsets of Q such that

0sPA<L] VA c Q.
Further, if 4, B are mutually exclusive (i.e.4 N B = ®), then

P(4 U B) = P(A) + P(B). (1)

Let p; be the probability of occurrence of the event |wi; i.e.
pi =P ({wi})- Then the postulates stated above imply that :

1. pi20 Vi
2. Z pi=1
e Q 4 ;
3. PA)=) pi, VAcQ.
1.0 Q

An infinite set can be count-
able:e.g.theset{l,2,..n, ..}
or uncountable: e.g. the set of
all points on the unit interval
(0, 1.

The probability of
occurrence of an
event is a number
between 0 and 1.
The higher the
number, the higher
is the chance that
the event will-occur.

-
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The probability
model used should
reflect all the
information
available on the
phenomenon.

Thus once we choose p; = P( w; ), the probabilities of all events
A < Q are determined. How does one go about choosing p;?

Well, this is where the modelling aspect comes into the picture.
The p/’s of the probability model should reflect all the informa-
tion we have on the phenomenon or should at least be a close
approximation of the same. We will begin with the simplest
situation and draw conclusions in this case. We will get an
interpretation for the numerical value of the assigned probability
of an event and this in turn will help us in modelling more
complicated phenomena.

Let us now consider the situation where Q is a finite set with
Q= o, w2, 03 --, 0N, and where given all the information
about the phenomenon, we have reason to believe that all out-
comes are equally likely. In this case, the appropriate choice of
probabilities is

1 .
P((z)i)=°]\7 Vie Q.

This is clearly the case when there is an inherent symmetry in the
phenomenon; for example, most of us will agree that "the chance
that the first child born in a given nursing home the next day is
aboy" is the same as "the chance that the child will be a girl". Thus
the events w) = the child is a boy and the event wy = the child is a girl
are equally likely, and we can model the probabilities for this
experiment as

Similarly, if we are told that a family has 3 children but we have
no further information, we are justified in postulating that all the
8 possibilities GGG, GGB, GBG, GBB, BGG, BGB, BBG, BBB
are equally likely and hence the probability of each of these events
is 1. This is based on the observation that knowing that the first

\/\f\/\/’\/\f RESONANCE | February 1996



GENERAL | ARTICLE

child is a girl (or a boy) does not give any information about the
sex of the next child.

Let us look at the following experiment. Consider an urn con-
taining 12 balls of the same size and weight, numbered 1 to 12.
Suppose that the balls with numbers 1, 2 and 3 are red balls, and
the rest are blue. If the balls in the urn are mixed well and one
ball out of them is drawn without looking at the colour/number,
then the 12 events (that the ball with number ¢ on it is drawn,
1 £7<12 ) can be modelled as equally likely — each with prob-
ability 4. As a result the probability that the ball so drawn is
red is 14, Now even if the balls are not numbered, but the urn
contains 3 red and 9 blue balls, then the probability of drawing a
red ball is still V4 Thus even if the balls are not numbered, we
can always pretend that they are numbered.

We can thus draw the following conclusion: if a given experiment
can result in N outcomes, and based on all the information that
we have on the phenomenon, they seem to be equally likely, and
if a given event occurs in M out of the N outcomes, then its
probability (corresponding to the model that the N outcomes are
equally likely) is M/y. Note that we are not adopting this as a
definition, but as a model for the phenomenon. If another person
has more information on the experiment, his model, i.e. alloca-
tion of probabilities, could be quite different.

Now let us consider two urns, both like the one considered above.
The experiment consists of drawing one ball from each of the
urns. This time, all the 12x 12 = 144 outcomes are equally likely.
Out of these, 3 x 3 = 9 outcomes determine the event that both
the balls drawn are red, and hence its probability is %144 = V4s,
Note that this is equal to the product of the probabilities of the
event that the first ball is red and of the eventithat the second ball
is red. Here we are in a situation where the two events are
independent — i.e. the occurrence or otherwise of the first event does
not change our perception of the second event. In such a situation, the

If a given
experiment can
resultin N equally
likely outcomes and
a given event
occurs in Mout of N
outcomes, then its
probability

of occurrence

can be modelled

to be M/N.
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If two events are
independent, the
occurrence or
otherwise of the first
event does not
change our
perception of the
second event. The
probability that both
events occur can
therefore be taken
to be the product of
the individual
probabilities of the
two events.

events are said to be independent and the probability that both
events occur can be taken to be the product of the two events.
This is a very important notion and very useful in model building.

Consider two experiments,
[ ] ] { . |
Q1= *icoﬁl) ite I(l)} and Q2= {m}z) :Je I(Z)}

IV, 1'% < N, and suppose that we have a model for each of them,
namely

[ ] ( I
P({o)l(l)j,) =1,1(1) and P(iw](Z)l}) =p](2) .

The set of possible outcomes for the joint experiment is
Q ={(OJ§1) , 0)_;:2)) ‘ie I(l), je I(Z):?.

If the experiments are such that the outcome of one has no bearing
on the outcome of the other, then it is reasonable to model the
joint experiment as follows :

f
PofD, o) = pi p?.

Similarly, if we have a model for each of finitely many experi-
ments and if these experiments are independent of each other,
then we can construct a model for the experiment which consists
of performing all these experiments together.

Now we are in a position to provide an interpretation for the
probability of an event related to an experiment. We shall show
that if this experiment can be repeated again and again (inde-
pendently) then the limit of the proportion of occurrences of this
event is exactly its probability.

Law of Large Numbers

Let us now fix a set of outcomes, Q ={wi:ie I, @i # @ for
i#jwherel ={1,2,3,..,N}orI={1,2,3,... )N, ...}. Alsolet

,‘,\/\/\/\/\,
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us fix ap assignment of probabilities for subsets of Q. Recall that
such an assignment is determined by

pi = P(li)

and then for any event A,

PA)=7Y pi

i:wie 4

A function X from Q into R is called a random variable. We think
of X as follows : X represents a certain numerical characteristic
of the outcome of the experiment, and after the experiment is
conducted we get to observe the function X at the outcome (we
may or may not actually observe the outcome).

Let X be a random variable and let f be a function from the real
line into itself. We denote by f(X) the random variable given by

fX) (wiy = fAX(wi)).

Also, let R(X) denote the range of X i.e. R(X) = {x € R: there
exists ® € Q with X(w) = x}. For a subset A of R, we will write
XeA for the set {wi: X(wi) €eA}. When A = {x} we will also
write X =x for X € A. The functionx — P(X = x) is called the
distribution of X. It is easy to check that

P(X e A}) = Y, P(X=x}).
xe A

A random variable X is said to be bounded if there exists a finite
constant K such that

P(-K<X<K)=1.

For a bounded random variable X, we define its expected value
E(X) by

EX)= 2 X (o) pi. @

iel

A random variable
represents a certain
(measurable)
characteristic of the
outcome of the
experiment.
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E(X) represents the quantity we expect to observe on the average,
if we repeat the experiment (independently) a large number of
times. Hence the name expected value. A justification of the state-
ment made above is given towards the end of this article.

. Expeciationand |
e

Let us observe that for a random variable X,

EX)=Y xP(X =x). 3)
x € R(X)

To see this, let Ax = |w;: X (i) = . Then

i

EX)= ) X(oi)pi

1el

= > 2 xP(w)

xe RX) w e Ay

= Z xP({\EX=x§').
xe RX)

For a bounded random variable X such that E(| X | 2) < oo, let us
define the variance of X by

Var(X) = E(X-p)?

where 1 = E(X).
Let us note that for a positive random variable Y,
WP(Y2a)= A P(Y=3)
ye RYp:yzA
< Y yP(Y=y)
ye R(Y):y2A ‘
s X yP(Y=y)
ye R(Y)
= E(Y),
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and as a consequence, one has (for positive random variables Y)

P(Yz2) < lE(Y). 4

>)

Using this for Y = (X - u)z (where u=E(X)), one has

PH{|X-p] ze) < ;12—Var(X). G,

This inequality is known as Chebychev’s inequality.

Independence

We say that two events A, B are independent if
PA nB) = PA) P(B).

A collection of random variables X3 X - - -,X5 is said to be a
collection of independent random variables if

P(nEiXj=x) =P(X1=x1) P(X2=x2)) - -+ P({Xn=xn))

forallxj e R(X;):1<j <n.

Lemma 1: Let X,Y be independent random variables. Let f, g be
bounded functions on the real line. Then

E(f(X)g (Y))=E(f (X)) E(g (Y)).

Proof : First consider the case when both f, ¢ are positive func-
tions. Then it can be checked that

EfXg) = Y [f®g®P(X=x,Y=y).
x e R(X),y € R(Y)

Using independence of XY, it follows that

Chebychev’'s
Inequality gives a
bound on the
probability of the
tails of a
distribution.
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The essential
content of the Weak
Law of Large
Numbers is that if
our experiment can
be repeated again
and again,
independently, then
the limit of the
proportion of
occurrences of this
event is exactly ifs

probability!

There is also the Strong Law of
large Numbers which deals
nith a different and actually
stronger mode of convergence

f Z,, the proof of which is,

1owever, beyond the scope of

his article.

E(fXg() = 2 fxg®P(IX=x),P(Y=y).
xe R(X),ye RY)

The required identity now follows from this.

Theorem 2: Let X,Y be bounded independent random variables.
Then

Var (X+Y) = Var (X) + Var (Y).

Proof: Letp=EX),v=E(Y),U=X -, V=Y -v.Itiseasyto
see that Var(X) = Var (U), Var(Y) = Var (V), Var(X + Y) =
Var (U + V). Also, E(U) = E (V) = 0. Thus

Var(U + V) = E((U + V)%
= EU>»+EWV?% +2EUY)
= Var(U) + Var(V)

where we have used the previous lemma in deducing that
E(UV) = 0. The required result now follows from this.

We are now in a position to prove the Weak Law of Large Numbers.

Theorem 3: Let X3, X2,---, X5 --- be a sequence of bounded
random variables such that for each n, X1, X5, -- -, X, is a col-

lection of independent random variables and such that for all i >
1, R(Xi) = R(X1) and

P({Xi=x}) =P({X1=x}) Vxe RX).

n

Letp =E(X1andletZp =+ ¥ X; Then foralle > 0,

=1

lim P({|Zn-u| > e}) = 0.

n —» oo

-
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Proof : Using Theorem 2, it follows that

i

n
Var (Zn) —1—2- Z Var (Xj;)
n

i=1

= 2 n [Var (x)
n

]

R =

{Var (X1)|
Now using the inequality 5, we obtain for ¢ >0
P({|Zn - 1| >l <L lvex
(|Zn-n er)—ezn ar (X1).

The required conclusion follows from this.
Interpretation of Probability of an Event

Let us consider an experiment with the space of outcomes
Q ={wi:i e I} and with assignment of probabilities P((ci})=p:.
(Here, I is either equal to {1,2, ---,N| or is the set of natural
numbers.)Let us fix an event A (i.e. a subset of Q) with P(4) = 6.

Let us consider repeating the experiment » times, in such a way

‘that the outcome of the previous trials has no influence on the
next trial. This time the set of outcomes of this repeated experi-
ment can be taken to be

n { . ) . . 2 . N
Q" = (i), Wigy Bigy =+ 5 Oy) 111,42, <5 In € L.

Since we have assumed that the experiments have been performed
independently of each other, we are justified in assigning the
probabilities as follows:

P(l(0iy, Wiz izs - - - 5 Di)) =Pig Pip ** * D
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The statement that
“there is a 30 per
cenf chance of rain
tonight” simply
means that under a
given weather
forecasting
probability model,
the probability of
the event that it will
rain fonight is 0.3.
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Let us define random variables X1, X2, - - - X, as follows:
Xi(((’)ip Wi Wizy - " -y min)) = lA((Di)

where 14 denotes the indicator function of the set 4 i.e. 14(w;) =1
if wj € A and l4(ex) =0 if o ¢ A. Then it follows that
X1, X2, ..., Xn satisfy the conditions of Theorem 3 with
E(X7) = 0. It thus follows that given € > 0,1 > 0, we can choose
no such that for n > ng, one has

P(]%(X1+Xz+ - +Xp) -0 >€) < 1.

Let us note that (X1 + X2+ - - - + Xp)/n is the proportion of the
times the event 4 occurred in the n independent repetitions of
the experiment. We have seen above that for large n, this observed
proportion is close to the probability of 4.

This gives us an interpretation of P(4). Similarly, we can get an
interpretation for E(X)—namely, if we repeat the experiment a
large number of times and compute the average of the observed
values of X, then, with a high probability, this average is close to
the expected value E(X) of X.

Let us briefly return to the question posed at the beginning of the
article: how does one interpret a statement like there is a 30 per cent
chance of rain tonight?

From some theoretical reasoning and some observational data,
weather forecasters (and other forecasters) usually have prob-
ability models for forecasting. The above statement simply means

that under such a model, the probability of the event that it will
rain tonight is 0.3.

FH Niels Bohr said ... “itis diff
about the future”, kS

-
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